Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (6): 2015-2023.doi: 10.11843/j.issn.0366-6964.2022.06.034
• RESEARCH NOTES • Previous Articles Next Articles
YANG Sha1, YANG Yuze2, XU Xi1, HAO Haisheng1, DU Weihua1, PANG Yunwei1, ZHAO Shanjiang1, ZOU Huiying1, ZHU Huabin1, ZHAO Xueming1*
Received:
2021-11-16
Online:
2022-06-23
Published:
2022-06-25
CLC Number:
YANG Sha, YANG Yuze, XU Xi, HAO Haisheng, DU Weihua, PANG Yunwei, ZHAO Shanjiang, ZOU Huiying, ZHU Huabin, ZHAO Xueming. The Regulation of Methylation Level of IGF2R Gene in IVF Blastocysts Derived from Vitrified Bovine Oocytes by dCas9-SunTag-DNMT3A Technology[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 2015-2023.
[1] | RIENZI L, GRACIA C, MAGGIULLI R, et al. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance[J]. Human Reprod Update, 2017, 23(2): 139-155. |
[2] | DUJČKOVÁ L, MAKAREVICH A V, OLEXIKOVÁ L, et al. Methodological approaches for vitrification of bovine oocytes[J]. Zygote, 2021, 29(1): 1-11. |
[3] | LEVI-SETTI P E, PATRIZIO P, SCARAVELLI G. Evolution of human oocyte cryopreservation: slow freezing versus vitrification[J]. Curr Opin Endocrinol Diabetes Obes, 2016, 23(6): 445-450. |
[4] | QUAAS A M, PENNINGS G. The current status of oocyte banks: domestic and international perspectives[J]. Fertil Steril, 2018, 110(7): 1203-1208. |
[5] | NAGY Z P, SHAPIRO D, CHANG C C. Vitrification of the human embryo: a more efficient and safer in vitro fertilization treatment[J]. Fertil Steril, 2020, 113(2): 241-247. |
[6] | ECKERSLEY-MASLIN M A, ALDA-CATALINAS C, REIK W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition[J]. Nat Rev Mol Cell Biol, 2018, 19(7): 436-450. |
[7] | REIK W, KELSEY G. Epigenetics: cellular memory erased in human embryos[J]. Nature, 2014, 511(7511): 540-541. |
[8] | RULANDS S, LEE H J, CLARK S J, et al. Genome-scale oscillations in DNA methylation during exit from pluripotency[J]. Cell Syst, 2018, 7(1): 63-76.e12. |
[9] | XU R M, LI C, LIU X Y, et al. Insights into epigenetic patterns in mammalian early embryos[J]. Protein Cell, 2021, 12(1): 7-28. |
[10] | CHENG K R, FU X W, ZHANG R N, et al. Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts[J]. Fertil Steril, 2014, 102(4): 1183-1190.e3. |
[11] | CHEN H H, ZHANG L, DENG T F, et al. Effects of oocyte vitrification on epigenetic status in early bovine embryos[J]. Theriogenology, 2016, 86(3): 868-878. |
[12] | ZHAO Y H, WANG J J, ZHANG P P, et al. Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing[J]. Reprod Fertil Dev, 2020, 32(7): 676-689. |
[13] | LE F, WANG L Y, WANG N, et al. In vitro fertilization alters growth and expression of Igf2/H19 and their epigenetic mechanisms in the liver and skeletal muscle of newborn and elder mice[J]. Biol Reprod, 2013, 88(3): 75. |
[14] | LAU M M, STEWART C E, LIU Z, et al. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality[J]. Genes Dev, 1994, 8(24): 2953-2963. |
[15] | YOUNG L E, FERNANDES K, MCEVOY T G, et al. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture[J]. Nat Genet, 2001, 27(2): 153-154. |
[16] | JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
[17] | QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183. |
[18] | OKANO M, BELL D W, HABER D A, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development[J]. Cell, 1999, 99(3): 247-257. |
[19] | VOJTA A, DOBRINI Ć P, TADI Ć V, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation[J]. Nucleic Acids Res, 2016, 44(12): 5615-5628. |
[20] | MCDONALD J I, CELIK H, ROIS L E, et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation[J]. Biol Open, 2016, 5(6): 866-874. |
[21] | MARX N, GRVNWALD-GRUBER C, BYDLINSKI N, et al. CRISPR-based targeted epigenetic editing enables gene expression modulation of the silenced beta-galactoside alpha-2, 6-sialyltransferase 1 in CHO cells[J]. Biotechnol J, 2018, 13(10): e1700217. |
[22] | HUANG Y H, SU J Z, LEI Y, et al. DNA epigenome editing using CRISPR-cas suntag-directed DNMT3A[J]. Genome Biol, 2017, 18(1): 176. |
[23] | WEI Y C, LANG J W, ZHANG Q, et al. DNA methylation analysis and editing in single mammalian oocytes[J]. Proc Natl Acad Sci U S A, 2019, 116(20): 9883-9892. |
[24] | HOU Y P, DAI Y P, ZHU S E, et al. Bovine oocytes vitrified by the open pulled straw method and used for somatic cell cloning supported development to term[J]. Theriogenology, 2005, 64(6): 1381-1391. |
[25] | BRACKETT B G, OLIPHANT G. Capacitation of rabbit spermatozoa in vitro[J]. Biol Reprod, 1975, 12(2): 260-274. |
[26] | MOORE L D, LE T, FAN G P. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38. |
[27] | HU W H, MARCHESI D, QIAO J, et al. Effect of slow freeze versus vitrification on the oocyte: an animal model[J]. Fertil Steril, 2012, 98(3): 752-760.e3. |
[28] | MOULAVI F, SAADELDIN I M, SWELUM A A, et al. Oocyte vitrification induces loss of DNA methylation and histone acetylation in the resulting embryos derived using ICSI in dromedary camel[J]. Zygote, 2021, 29(5): 383-392. |
[29] | FU L Z, CHANG H Y, WANG Z Q, et al. The effects of TETs on DNA methylation and hydroxymethylation of mouse oocytes after vitrification and warming[J]. Cryobiology, 2019, 90: 41-46. |
[30] | LIANG Y, FU X W, LI J J, et al. DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: effect of oocyte vitrification[J]. Zygote, 2014, 22(2): 138-145. |
[31] | CRISPO M, MULET A P, TESSON L, et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J]. PLoS One, 2015, 10(8): e0136690. |
[32] | FOGARTY N M E, MCCARTHY A, SNIJDERS K E, et al. Genome editing reveals a role for OCT4 in human embryogenesis[J]. Nature, 2017, 550(7674): 67-73. |
[33] | WANG H Y, YANG H, SHIVALILA C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4): 910-918. |
[34] | LIU X S, WU H, JI X, et al. Editing DNA methylation in the mammalian genome[J]. Cell, 2016, 167(1): 233-247.e17. |
[35] | VU T H, JIRTLE R L, HOFFMAN A R. Cross-species clues of an epigenetic imprinting regulatory code for the IGF2R gene[J]. Cytogenet Genome Res, 2006, 113(1-4): 202-208. |
[36] | HIURA H, OBATA Y, KOMIYAMA J, et al. Oocyte growth-dependent progression of maternal imprinting in mice[J]. Genes Cells, 2006, 11(4): 353-361. |
[37] | ZHOU Q, MENG Q R, MENG T G, et al. Deletion of BAF250a affects oocyte epigenetic modifications and embryonic development[J]. Mol Reprod Dev, 2020, 87(5): 550-564. |
[38] | BRESSAN F F, DE BEM T H C, PERECIN F, et al. Unearthing the roles of Imprinted genes in the Placenta[J]. Placenta, 2009, 30(10): 823-834. |
[39] | CAMPAGNOLO K, ONGARATTO F L, DE FREITAS C R, et al. In vitro development of IVF-derived bovine embryos following cytoplasmic microinjection for the episomal expression of the IGF2 gene[J]. Reprod Domest Anim, 2020, 55(5): 574-583. |
[40] | YAO N, WAN P C, HAO Z D, et al. Expression of interferon-tau mRNA in bovine embryos derived from different procedures[J]. Reprod Domest Anim, 2009, 44(1): 132-139. |
[41] | MAMO S, MEHTA J P, MCGETTIGAN P, et al. RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation[J]. Biol Reprod, 2011, 85(6): 1143-1151. |
[42] | PESCE M, SCHÖLER H R. Oct-4: gatekeeper in the beginnings of mammalian development[J]. Stem Cells, 2001, 19(4): 271-278. |
[1] | LI Jiannan, YUAN Liming, HUA Jinlian. Progress on the Application of CD46 in Breeding of Livestock for Disease Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1866-1874. |
[2] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[3] | HUANG Jin, LI Siyuan, MAO Li, CAI Xuhang, XIE Lingling, WANG Fu, ZHOU Hua, LI Jizong, LI Bin. Eukaryotic Expression of Bovine Coronavirus S1 Protein and Establishment and Application of Indirect ELISA [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2050-2060. |
[4] | GUO Xuelian, LI Yongqin, LI Ruiqian, LI Hao, JIN Shuangyuan, WANG Xueyan, DU Jiawei, XU Lihua. Biological Functions of Bovine Respiratory Syncytial Virus G and F Proteins [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1478-1487. |
[5] | LIU Qiang, NIU Xiaoxia, FANG Min, LIU Yanling, GAO Hui, CHEN Jixiang, JIAHUA Cairang, ZHANG Sinong, LI Yong. Research Progress of Bovine Coronavirus Spike Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 944-956. |
[6] | HU Qiaoyan, ZHAI Xiangqin, LI Yidan, HAN Jiale, LEI Chuzhao, DANG Ruihua. Effects of bta-miR-101 on Proliferation, Apoptosis and Secretion of Bovine Testicular Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1040-1051. |
[7] | KANG Fangyuan, LIU Zhentao, WU Kuixian, NI Han, ZHONG Kai, LI Heping, YANG Guoyu, HAN Liqiang. Regulation of Lipophagy on the Size of Lipid Droplets in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1095-1101. |
[8] | YI Pengfei, SUN Lei, MA Yanan, MA Xuelian, LI Na, SUN Yawei, ZHONG Qi, YAO Gang. Comparative on Changes in Nasal Microbiota between Healthy Angus Calves and IBRV Infected Calves [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1147-1158. |
[9] | YU Qisheng, ZHU Qing, ZHOU Qun, SONG Xin, ZHANG Jiaqi, CHEN Taoyun, XU Lin, ZHANG Chaohui, ZHANG Bin. Expression of BCoV Spike Protein by Baculovirus Expression System and Its Immunogenicity in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 640-648. |
[10] | LI Siyuan, FU Xincheng, YUAN Xuesong, MAO Li, CAI Xuhang, SUN Xinru, HUANG Jin, XIE Lingling, WANG Fu, ZHOU Hua, ZHANG Qi, LI Jizong, LI Bin. Detection of Bovine Viral Diarrhea Pathogens and Evolution Analysis of Bovine Coronavirus in Langfang, Hebei [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 649-659. |
[11] | ZHUANG Cuicui, HAN Bo. Mechanism of Mitochondrial Damage in Bovine Mammary Epithelial Cells and Mouse Mammary Gland Infected with Escherichia coli Isolated from Bovine Mastitis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 822-833. |
[12] | MIAO Shu, AN Jishan, WANG Zuo, XIAO Dingfu, LAN Xinyi, LIU Lei, SHEN Weijun, WAN Fachun. Leucine Promotes the Proliferation of Bovine Myoblasts through PI3K-AKT Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 142-152. |
[13] | LI Huihui, DONG Keer, LIU Xinbo, ZHANG Chunxiao, MA Chao, CHEN Liping, ZHONG Qi, YAO Gang, MA Xuelian. Establishment and Application of Rapid Detection Method for Bovine Norovirus and Bovine Rotavirus Dual RAA-LFD [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 406-412. |
[14] | WANG Dongliang, REN Jing, HAO Qinqin, LI Pengfei. Identification and Transcriptional Regulation Analysis of Core Promoter of Bovine CART Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3689-3699. |
[15] | XU Xi, YANG Baigao, ZHANG Hang, FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Effects of NMN on Lipid Droplet Content and Cryopreservation Effect of Bovine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3348-3357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||