Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (1): 36-44.doi: 10.11843/j.issn.0366-6964.2025.01.004
• Review • Previous Articles Next Articles
SUN Yawen(), CHEN Siying, LI Kang, LENG Xuan, WANG Dong*(
), PANG Yunwei*(
)
Received:
2024-05-28
Online:
2025-01-23
Published:
2025-01-18
Contact:
WANG Dong, PANG Yunwei
E-mail:sunyw0917@163.com;dwangcn2002@vip.sina.com;pangyunwei@caas.cn
CLC Number:
SUN Yawen, CHEN Siying, LI Kang, LENG Xuan, WANG Dong, PANG Yunwei. Strategies for Alleviating Cryoinjury of Porcine Vitrified-Oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 36-44.
Table 1
The advantages and disadvantages of alleviating strategies for porcine oocyte cryoinjury"
缓解策略 Alleviating strategy | 优点 Advantage | 缺点 Disadvantage |
增强渗透调节 Enhancement of osmotic regulation | 平衡细胞内外渗透压,降低冷冻保护剂毒性 | 具有浓度依赖性,且物种之间的差异较大 |
抑制冰晶形成 Inhibition of ice crystals formation | 抑制冰晶生长,降低溶液冰点 | 控冰材料价格相对昂贵,生物相容性较差 |
促进脂质重塑 Promotion of lipid remodeling | 稳定细胞膜组成,维持细胞膜流动性 | 改变了卵母细胞固有的脂质结构特点,对后续发育的影响需进一步探索 |
降低氧化损伤 Reduction of oxidative damage | 减少ROS生成和凋亡发生率 | 不同抗氧化剂的使用效果差异较大 |
工程化策略 Engineering strategy | 仿生控冰,对细胞损伤较小 | 成本较高,可用范围局限 |
1 |
SOMFAI T . Vitrification of immature oocytes in pigs[J]. Anim Sci J, 2024, 95 (1): e13943.
doi: 10.1111/asj.13943 |
2 |
MCEVOY T G , COULL G D , BROADBENT P J , et al. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida[J]. J Reprod Fertil, 2000, 118 (1): 163- 170.
doi: 10.1530/reprod/118.1.163 |
3 |
RUBINSKY B , ARAV A , DEVRIES A L . The cryoprotective effect of antifreeze glycopeptides from Antarctic fishes[J]. Cryobiology, 1992, 29 (1): 69- 79.
doi: 10.1016/0011-2240(92)90006-N |
4 |
SOMFAI T , YOSHIOKA K , TANIHARA F , et al. Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production[J]. PLoS One, 2014, 9 (5): e97731.
doi: 10.1371/journal.pone.0097731 |
5 |
AMINI M , BENSON J D . Technologies for vitrification based cryopreservation[J]. Bioengineering (Basel), 2023, 10 (5): 508.
doi: 10.3390/bioengineering10050508 |
6 |
ZHU Y X , LIU H Y , ZHENG L , et al. Vitrification of mammalian oocytes: recent studies on mitochondrial dysfunction[J]. Biopreserv Biobank, 2024, 22 (5): 428- 440.
doi: 10.1089/bio.2023.0062 |
7 |
LIU R H , SUN Q Y , LI Y H , et al. Effects of cooling on meiotic spindle structure and chromosome alignment within in vitro matured porcine oocytes[J]. Mol Reprod Dev, 2003, 65 (2): 212- 218.
doi: 10.1002/mrd.10282 |
8 |
CASILLAS F , DUCOLOMB Y , LÓPEZ A , et al. Effect of porcine immature oocyte vitrification on oocyte-cumulus cell gap junctional intercellular communication[J]. Porcine Health Manag, 2020, 6 (1): 37.
doi: 10.1186/s40813-020-00175-x |
9 |
LÓPEZ A , DUCOLOMB Y , CASAS E , et al. Effects of porcine immature oocyte vitrification on actin microfilament distribution and chromatin integrity during early embryo development in vitro[J]. Front Cell Dev Biol, 2021, 9, 636765.
doi: 10.3389/fcell.2021.636765 |
10 |
WU C H , RUI R , DAI J J , et al. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes[J]. Mol Reprod Dev, 2006, 73 (11): 1454- 1462.
doi: 10.1002/mrd.20579 |
11 |
周悦, 卢俊求, 吴亚辉, 等. 玻璃化冷冻对猪GV期卵母细胞成熟及发育能力的影响[J]. 中国畜牧杂志, 2015, 51 (5): 29- 33.
doi: 10.3969/j.issn.0258-7033.2015.05.006 |
ZHOU Y , LU J Q , WU Y H , et al. Effects of vitrification on in vitro development ability of porcine oocytes at GV stage[J]. Chinese Journal of Animal Science, 2015, 51 (5): 29- 33.
doi: 10.3969/j.issn.0258-7033.2015.05.006 |
|
12 | 张超凡, 薛玉环, 左芙蓉, 等. 玻璃化冷冻对小鼠卵母细胞超微结构的影响[J]. 畜牧与兽医, 2017, 49 (6): 72- 76. |
ZHANG C F , XUE Y H , ZUO F R , et al. Effects of vitrification on ultrastructure of mouse oocytes[J]. Animal Husbandry & Veterinary Medicine, 2017, 49 (6): 72- 76. | |
13 |
OKOTRUB K A , OMELCHENKO A N , CHUYKO E A , et al. Irreversible lipid phase transition detected in a porcine oocyte at chilling[J]. Cryobiology, 2024, 114, 104850.
doi: 10.1016/j.cryobiol.2024.104850 |
14 |
MA Y M , GAO L , TIAN Y Q , et al. Advanced biomaterials in cell preservation: hypothermic preservation and cryopreservation[J]. Acta Biomater, 2021, 131, 97- 116.
doi: 10.1016/j.actbio.2021.07.001 |
15 |
SOMFAI T , HARAGUCHI S , DANG-NGUYEN T Q , et al. Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage[J]. PLoS One, 2023, 18 (3): e0282959.
doi: 10.1371/journal.pone.0282959 |
16 |
MATEO-OTERO Y , YESTE M , DAMATO A , et al. Cryopreservation and oxidative stress in porcine oocytes[J]. Res Vet Sci, 2021, 135, 20- 26.
doi: 10.1016/j.rvsc.2020.12.024 |
17 |
DAI J J , WU C F , MUNERI C W , et al. Changes in mitochondrial function in porcine vitrified MⅡ-stage oocytes and their impacts on apoptosis and developmental ability[J]. Cryobiology, 2015, 71 (2): 291- 298.
doi: 10.1016/j.cryobiol.2015.08.002 |
18 | DAI J J , NIU Y F , WU C F , et al. Both death receptor and mitochondria mediated apoptotic pathways participated the occurrence of apoptosis in porcine vitrified MⅡ stage oocytes[J]. Cryo Letters, 2016, 37 (2): 129- 136. |
19 | DAI J J , YANG J H , ZHANG S S , et al. Partial recovery of mitochondrial function of vitrified porcine MⅡ stage oocytes during post-thaw incubation[J]. Cryo Letters, 2018, 39 (1): 39- 44. |
20 |
CAO B J , QIN J P , PAN B , et al. Oxidative stress and oocyte cryopreservation: recent advances in mitigation strategies involving antioxidants[J]. Cells, 2022, 11 (22): 3573.
doi: 10.3390/cells11223573 |
21 |
JIA B Y , XIANG D C , YANG H , et al. Transcriptome analysis of porcine embryos derived from oocytes vitrified at the germinal vesicle stage[J]. Theriogenology, 2024, 218, 99- 110.
doi: 10.1016/j.theriogenology.2024.01.032 |
22 |
JIA B Y , XIANG D C , ZHANG B , et al. Quality of vitrified porcine immature oocytes is improved by coculture with fresh oocytes during in vitro maturation[J]. Mol Reprod Dev, 2019, 86 (11): 1615- 1627.
doi: 10.1002/mrd.23249 |
23 |
ITO J , SHIRASUNA K , KUWAYAMA T , et al. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes[J]. Cryobiology, 2020, 93, 37- 43.
doi: 10.1016/j.cryobiol.2020.02.014 |
24 |
SCIORIO R , CAMPOS G , TRAMONTANO L , et al. Exploring the effect of cryopreservation in assisted reproductive technology and potential epigenetic risk[J]. Zygote, 2023, 31 (5): 420- 432.
doi: 10.1017/S0967199423000345 |
25 |
SCIORIO R , MANNA C , FAUQUE P , et al. Can cryopreservation in assisted reproductive technology (ART) induce epigenetic changes to gametes and embryos?[J]. J Clin Med, 2023, 12 (13): 4444.
doi: 10.3390/jcm12134444 |
26 |
CHENG K R , FU X W , ZHANG R N , et al. Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts[J]. Fertil Steril, 2014, 102 (4): 1183- 1190.
doi: 10.1016/j.fertnstert.2014.06.037 |
27 |
MOULAVI F , SAADELDIN I M , SWELUM A A , et al. Oocyte vitrification induces loss of DNA methylation and histone acetylation in the resulting embryos derived using ICSI in dromedary camel[J]. Zygote, 2021, 29 (5): 383- 392.
doi: 10.1017/S0967199421000150 |
28 |
MA Y Z , LONG C S , LIU G , et al. WGBS combined with RNA-seq analysis revealed that DNMT1 affects the methylation modification and gene expression changes during mouse oocyte vitrification[J]. Theriogenology, 2022, 177, 11- 21.
doi: 10.1016/j.theriogenology.2021.09.032 |
29 |
SPINACI M , VALLORANI C , BUCCI D , et al. Vitrification of pig oocytes induces changes in histone H4 acetylation and histone H3 lysine 9 methylation (H3K9)[J]. Vet Res Commun, 2012, 36 (3): 165- 171.
doi: 10.1007/s11259-012-9527-9 |
30 |
CHEN H H , ZHANG L , DENG T F , et al. Effects of oocyte vitrification on epigenetic status in early bovine embryos[J]. Theriogenology, 2016, 86 (3): 868- 878.
doi: 10.1016/j.theriogenology.2016.03.008 |
31 |
SHADMANESH A , NAZARI H . Alterations in the expression pattern of some epigenetic-related genes and microRNAs subsequent to oocyte cryo-preservation[J]. Zygote, 2023, 31 (5): 411- 419.
doi: 10.1017/S0967199423000321 |
32 |
JIA B Y , XIANG D C , QUAN G B , et al. Transcriptome analysis of porcine immature oocytes and surrounding cumulus cells after vitrification and in vitro maturation[J]. Theriogenology, 2019, 134, 90- 97.
doi: 10.1016/j.theriogenology.2019.05.019 |
33 |
BARBERET J , BARRY F , CHOUX C , et al. What impact does oocyte vitrification have on epigenetics and gene expression?[J]. Clin Epigenetics, 2020, 12 (1): 121.
doi: 10.1186/s13148-020-00911-8 |
34 |
MURRAY K A , GIBSON M I . Chemical approaches to cryopreservation[J]. Nat Rev Chem, 2022, 6 (8): 579- 593.
doi: 10.1038/s41570-022-00407-4 |
35 |
CHANG C C , SHAPIRO D B , NAGY Z P . The effects of vitrification on oocyte quality[J]. Biol Reprod, 2022, 106 (2): 316- 327.
doi: 10.1093/biolre/ioab239 |
36 |
LIU Z , ZHENG X , WANG J J . Bioinspired ice-binding materials for tissue and organ cryopreservation[J]. J Am Chem Soc, 2022, 144 (13): 5685- 5701.
doi: 10.1021/jacs.2c00203 |
37 |
WIESAK T , WASIELAK M , ZŁOTKOWSKA A , et al. Effect of vitrification on the zona pellucida hardening and follistatin and cathepsin B genes expression and developmental competence of in vitro matured bovine oocytes[J]. Cryobiology, 2017, 76, 18- 23.
doi: 10.1016/j.cryobiol.2017.05.001 |
38 |
RUSCIANO G , DE CANDITⅡS C , ZITO G , et al. Raman-microscopy investigation of vitrification-induced structural damages in mature bovine oocytes[J]. PLoS One, 2017, 12 (5): e0177677.
doi: 10.1371/journal.pone.0177677 |
39 |
CHEN J M , LIU X J , HU Y Y , et al. Cryopreservation of tissues and organs: present, bottlenecks, and future[J]. Front Vet Sci, 2023, 10, 1201794.
doi: 10.3389/fvets.2023.1201794 |
40 |
WU G Q , JIA B Y , QUAN G B , et al. Vitrification of porcine immature oocytes: association of equilibration manners with warming procedures, and permeating cryoprotectants effects under two temperatures[J]. Cryobiology, 2017, 75, 21- 27.
doi: 10.1016/j.cryobiol.2017.03.001 |
41 |
ARAV A , ZERON Y , LESLIE S B , et al. Phase transition temperature and chilling sensitivity of bovine oocytes[J]. Cryobiology, 1996, 33 (6): 589- 599.
doi: 10.1006/cryo.1996.0062 |
42 |
DOU M J , LU C N , RAO W . Bioinspired materials and technology for advanced cryopreservation[J]. Trends Biotechnol, 2022, 40 (1): 93- 106.
doi: 10.1016/j.tibtech.2021.06.004 |
43 |
TANG Y , ZHANG Y , LIU L X , et al. Glycine and melatonin improve preimplantation development of porcine oocytes vitrified at the germinal vesicle stage[J]. Front Cell Dev Biol, 2022, 10, 856486.
doi: 10.3389/fcell.2022.856486 |
44 | PELUSO G , BARBARISI A , SAVICA V , et al. Carnitine: an osmolyte that plays a metabolic role[J]. J Cell Biochem, 2000, 80 (1): 1- 10. |
45 |
GORE M , NARVEKAR A , BHAGWAT A , et al. Macromolecular cryoprotectants for the preservation of mammalian cell culture: lessons from crowding, overview and perspectives[J]. J Mater Chem B, 2022, 10 (2): 143- 169.
doi: 10.1039/D1TB01449H |
46 |
李婉君, 徐皆欢, 何孟纤, 等. 细胞松弛素B改善冷冻引起的猪卵母细胞皮质颗粒迁移障碍[J]. 畜牧兽医学报, 2024, 55 (5): 1999- 2010.
doi: 10.11843/j.issn.0366-6964.2024.05.018 |
LI W J , XU J H , HE M X , et al. Cytochalasin B alleviates the migration disorder of cortical particle caused by vitrification in porcine oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 1999- 2010.
doi: 10.11843/j.issn.0366-6964.2024.05.018 |
|
47 |
MORATÓ R , CHAUVIGNÉ F , NOVO S , et al. Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporin-3 channels[J]. Mol Reprod Dev, 2014, 81 (5): 450- 461.
doi: 10.1002/mrd.22310 |
48 | DRORI R , STEVENS C A . Divergent mechanisms of ice growth inhibition by antifreeze proteins[J]. Methods Mol Biol, 2024, 2730, 169- 181. |
49 | 董胤余, 王勇杰, 刘可可, 等. 抗冷冻蛋白Ⅲ对玻璃化冷冻猪GV期卵母细胞及其DNA的保护作用[J]. 中国兽医科学, 2023, 53 (5): 658- 663. |
DONG Y Y , WANG Y J , LIU K K , et al. Protection of antifreeze protein Ⅲ on vitrified GV oocytes and its DNA of porcine[J]. Chinese Veterinary Science, 2023, 53 (5): 658- 663. | |
50 |
SANTOS E C D S , SOMFAI T , APPELTANT R , et al. Effects of polyethylene glycol and a synthetic ice blocker during vitrification of immature porcine oocytes on survival and subsequent embryo development[J]. Anim Sci J, 2017, 88 (8): 1042- 1048.
doi: 10.1111/asj.12730 |
51 |
KAMOSHITA M , KATO T , FUJIWARA K , et al. Successful vitrification of pronuclear-stage pig embryos with a novel cryoprotective agent, carboxylated ε-poly-L-lysine[J]. PLoS One, 2017, 12 (4): e0176711.
doi: 10.1371/journal.pone.0176711 |
52 |
KAWASAKI Y , KOHAYA N , SHIBAO Y , et al. Carboxylated ε-poly-L-lysine, a cryoprotective agent, is an effective partner of ethylene glycol for the vitrification of embryos at various preimplantation stages[J]. Cryobiology, 2020, 97, 245- 249.
doi: 10.1016/j.cryobiol.2020.10.004 |
53 | 李维杰, 周新丽, 刘宝林, 等. 纳米颗粒对猪GV期卵母细胞低温保存效果的影响[J]. 中国生物医学工程学报, 2013, 32 (5): 601- 605. |
LI W J , ZHOU X L , LIU B L , et al. The Effect of nanoparticle on vitrification of porcine GV-stage oocytes[J]. Chinese Journal of Biomedical Engineering, 2013, 32 (5): 601- 605. | |
54 |
MASSIE I , SELDEN C , HODGSON H , et al. Cryopreservation of encapsulated liver spheroids for a bioartificial liver: reducing latent cryoinjury using an ice nucleating agent[J]. Tissue Eng Part C Methods, 2011, 17 (7): 765- 774.
doi: 10.1089/ten.tec.2010.0394 |
55 |
CROCKETT E L . The cold but not hard fats in ectotherms: consequences of lipid restructuring on susceptibility of biological membranes to per-oxidation, a review[J]. J Comp Physiol B, 2008, 178 (7): 795- 809.
doi: 10.1007/s00360-008-0275-7 |
56 |
BARRERO-SICILIA C , SILVESTRE S , HASLAM R P , et al. Lipid remodelling: unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum[J]. Plant Sci, 2017, 263, 194- 200.
doi: 10.1016/j.plantsci.2017.07.017 |
57 |
IBAYASHI M , TSUKAMOTO S . Lipid remodelling in mammalian development[J]. Nat Cell Biol, 2024, 26 (2): 179- 180.
doi: 10.1038/s41556-023-01327-1 |
58 |
JUNG G T , LEE J H , PARK D , et al. Lipidomic changes in mouse oocytes vitrified in PEG 8000-supplemented vitrification solutions[J]. Cryobiology, 2021, 99, 140- 148.
doi: 10.1016/j.cryobiol.2020.11.004 |
59 |
AARDEMA H , BERTIJN I , VAN TOL H , et al. Fatty acid supplementation during in vitro embryo production determines cryosurvival characteristics of bovine blastocysts[J]. Front Cell Dev Biol, 2022, 10, 837405.
doi: 10.3389/fcell.2022.837405 |
60 |
CHEN X , DONG H T , CHENG M M , et al. Addition of cholesterol loaded cyclodextrin prior to GV-phase vitrification improves the quality of mature porcine oocytes in vitro[J]. Cryobiology, 2019, 90, 54- 62.
doi: 10.1016/j.cryobiol.2019.08.006 |
61 |
FU X W , WU G Q , LI J J , et al. Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes[J]. Theriogenology, 2011, 75 (2): 268- 275.
doi: 10.1016/j.theriogenology.2010.08.013 |
62 | 张紫薇, 于博, 戴佳格, 等. 小檗碱对玻璃化冷冻猪卵母细胞脂滴含量及胚胎发育的影响[J]. 北京农学院学报, 2020, 35 (1): 67- 74. |
ZHANG Z W , YU B , DAI J G , et al. Effects of berberine on lipid droplets content and embryo development in vitrified frozen porcine oocytes[J]. Journal of Beijing University of Agriculture, 2020, 35 (1): 67- 74. | |
63 |
XU H X , JIA C , CHENG W X , et al. The effect of L-carnitine additive during in vitro maturation on the vitrification of pig oocytes[J]. Cell Reprogram, 2020, 22 (4): 198- 207.
doi: 10.1089/cell.2020.0014 |
64 |
蔡绍莉, 徐皆欢, 何孟纤, 等. 毛喉素对猪卵母细胞降脂及冷冻保护效果研究[J]. 畜牧兽医学报, 2023, 54 (1): 178- 188.
doi: 10.11843/j.issn.0366-6964.2023.01.017 |
CAI S L , XU J H , HE M X , et al. Effects of forskolin on lipid degradation and cryopreservation of porcine oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (1): 178- 188.
doi: 10.11843/j.issn.0366-6964.2023.01.017 |
|
65 |
SANTOS E , APPELTANT R , DANG-NGUYEN T Q , et al. The effect of resveratrol on the developmental competence of porcine oocytes vitrified at germinal vesicle stage[J]. Reprod Domest Anim, 2018, 53 (2): 304- 312.
doi: 10.1111/rda.13105 |
66 | 王文杰, 葛雷, 张树山, 等. 线粒体靶向抗氧化剂MitoQ对猪孤雌激活囊胚冷冻保存的影响[J]. 上海农业学报, 2021, 37 (1): 60- 65. |
WANG W J , GE L , ZHANG S S , et al. Application of mitochondria-targeted antioxidant MitoQ in cryo-preservation of porcine parthenogenetic blastocysts[J]. Acta Agriculturae Shanghai, 2021, 37 (1): 60- 65. | |
67 | XU J H , SUN L W , WU C F , et al. Involvement of PINK1/Parkin-mediated mitophagy in mitochondrial functional disruption under oxidative stress in vitrified porcine oocytes[J]. Theriogenology, 2021, 174, 160- 168. |
68 | XIANG D C , JIA B Y , FU X W , et al. Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes[J]. Theriogenology, 2021, 167, 13- 23. |
69 | NIU Y F , DAI J J , CHEN Y N , et al. Positive effect of apoptotic inhibitor Z-VAD-FMK on vitrified-thawed porcine MⅡ stage oocytes[J]. Cryo Letters, 2016, 37 (3): 188- 195. |
70 |
陈思颍, 孙雅雯, 李伉, 等. 微流体技术在家畜体外胚胎生产中的应用进展[J]. 畜牧兽医学报, 2023, 54 (12): 4889- 4897.
doi: 10.11843/j.issn.0366-6964.2023.12.001 |
CHEN S Y , SUN Y W , LI K , et al. Application of microfluidic technologies in livestock in vitro embryo production[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (12): 4889- 4897.
doi: 10.11843/j.issn.0366-6964.2023.12.001 |
|
71 | GUO Y Y , YANG Y , YI X Y , et al. Microfluidic method reduces osmotic stress injury to oocytes during cryoprotectant addition and removal processes in porcine oocytes[J]. Cryobiology, 2019, 90, 63- 70. |
72 | 周新丽, 郭莹莹, 衣星越, 等. 微流控芯片用于卵母细胞冷冻保存的实验研究[J]. 生物化学与生物物理进展, 2018, 45 (7): 763- 771. |
ZHOU X L , GUO Y Y , YI X Y , et al. Experimental study of microfluidic chip for cryopreservation of oocytes[J]. Progress in Biochemistry and Biophysics, 2018, 45 (7): 763- 771. | |
73 | PRIBENSZKY C , VAJTA G , MOLNAR M , et al. Stress for stress tolerance?A fundamentally new approach in mammalian embryology[J]. Biol Reprod, 2010, 83 (5): 690- 697. |
74 | DU Y , PRIBENSZKY C S , MOLNÁR M , et al. High hydrostatic pressure: a new way to improve in vitro developmental competence of porcine matured oocytes after vitrification[J]. Reproduction, 2008, 135 (1): 13- 17. |
[1] | YANG Baigao, XU Jiehuan, ZHANG Liang, LONG Xi, DAI Jianjun, ZHAO Xueming, PAN Hongmei. Exploring the Effect of Vitrification on Genome Methylation Level of Porcine Parthenogenetic Activation Blastocysts by scWGBS [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 222-231. |
[2] | CAI Yunfeng, LI Hong, HUANG Xiaoming, HE Qing, DING Zhenyu, YU Wanting, LUO Shile, CHEN Fangzhi, WANG Naidong, YANG Yi, ZHAN Yang. Study on the Presentation Strategy and Immunogenicity of Porcine Parvovirus Epitope Inserted by 3-fold Axes Region on the Surface of Porcine Circovirus Type 2 Virus-like Particles [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 307-318. |
[3] | Nanzhu CHEN, Junliang LI, Dawei YU, Xinyi ZHOU, Jing WANG, Huiying ZOU, Weihua DU. Analysis of Imprinted Expression and DNA Methylation Status of the Porcine MKRN3 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3853-3863. |
[4] | Baigao YANG, Xi LONG, Liang ZHANG, Jiehuan XU, Jianjun DAI, Xueming ZHAO, Hongmei PAN. Exploring the Effect of Vitrification on Gene Expression in Porcine Parthenogenetic Blastocysts by Smart-seq2 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3936-3946. |
[5] | Liguo GAO, Hanqin SHEN, Yiquan CHEN, Sheng CHEN, Wencheng LIN, Feng CHEN. Prokaryotic Expression of Recombinant VP6* Protein of Porcine Rotavirus and Establishment of Indirect ELISA Detection Method [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4021-4028. |
[6] | Ning PENG, Yaxu LIANG, Fei LONG, Dongming YU, Xiang ZHONG. Inhibitory Effect of Resveratrol on Rotavirus-infected Porcine Intestinal Epithelial Cells IPEC-J2 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4213-4225. |
[7] | Zhentao XIA, Nan WANG, Wanjie WANG, Qilü ZHOU, Lei HUANG, Yulian MU. Characteristics Analysis of TGEV Infection Mediated by IPEC-J2 with Knockout of pAPN Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3395-3407. |
[8] | Yi WANG, Juan GAO, Yuemin HU, Yuefei YANG, Bojun FAN, Huiming JU. Effect of Transient Serum Starvation on Metabolism and Autophagy of Porcine Skeletal Muscle Satellite Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3408-3417. |
[9] | Lindan LÜ, Hao MU, Xia HU, Mingni LIU, Shaomei LI, Xing LI, Zhenhui SONG, Liu YANG. Establishment and Preliminary Application of RAA Assay for the Detection of Porcine Transmissible Gastroenteritis Virus based on S Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3590-3599. |
[10] | Weizhe LIU, Chenggang LUO, Rong YUAN, Yijie LIAO, Yimin WEN, Ying SUN, Enbo YU, Sanjie CAO, Xiaobo HUANG. Isolation and Identification of a Highly Pathogenic Strain of Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3049-3063. |
[11] | Jinting LUO, Fafang XU, Lei WANG, Xuan LUO, Yuhong MA, Jianbo ZHANG, Weihua HUANG, Yuejun SHANG, Guofang WU. The Effect of RSP on Cell Proliferation and Apoptosis of Porcine Leydig Cells with Hypoxia [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2441-2450. |
[12] | Dongliang LI, Guanmin ZHENG, Shuai LI, Hongsen ZHU, Chao WU. Differential Expression of Transcriptome in Jejunal of Piglets Infected with Porcine Epidemic Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2652-2661. |
[13] | Shuqi XIAO, Jun LIU, Yingtong FENG, Yang LI, Lele XU. Effect of Antimicrobial Use in the Perinatal Period on the Performance of Sows and Piglets in PRRSV-positive Farms [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2751-2760. |
[14] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[15] | HAN Yang, GUAN Shuaiyin, LI Zhen, ZHOU Saisai, YUAN Honggen, SONG Yunfeng. Prokaryotic Expression and Protein Activity of Porcine Circovirus Type 3 Rep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2061-2071. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||