Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (11): 5159-5172.doi: 10.11843/j.issn.0366-6964.2024.11.031
• Preventive Veterinary Medicine • Previous Articles Next Articles
Junli NI1,2(), Xinchao LIU1(
), Dong SUN1,2, Siyun FANG3, Dingai WANG3, Hanqin SHEN3, Zhuanqiang YAN3, Nanshan QI2, Mingfei SUN2,*(
), Youfang GU1,*(
)
Received:
2024-01-11
Online:
2024-11-23
Published:
2024-11-30
Contact:
Mingfei SUN, Youfang GU
E-mail:1565452246@qq.com;304368107@qq.com;smf7810@126.com;youfanggu@163.com
CLC Number:
Junli NI, Xinchao LIU, Dong SUN, Siyun FANG, Dingai WANG, Hanqin SHEN, Zhuanqiang YAN, Nanshan QI, Mingfei SUN, Youfang GU. Construction, Expression and Preliminary Functional Analysis of the Eukaryotic Plasmid ET Seven, a 7-valent Multiepitope Chimeric Recombinant Antigen of Chicken Coccidia[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5159-5172.
Table 1
Seven antigen fragments information"
抗原片段 Antigen fragments | 基因序列 Gene sequence | 序列长度/ bp Sequence length |
AMA1 | CAAATAACCGTCCCCAACCCCACGGAGTGCGGCAAAGCTGTCTTCA- AAGTTTCTTCTTCAGACAACCCCACGCAGTACACGAAGCCACCCAC- CACTGAGGCCAGCAGCAGCACCAGCTCCAGCAACGCAGTGGCCACC- ATGTGGCCTGTGGGCGCCTTTTCCAAGGACGAACCCCGCATGCAGG- GGGTGGGCACCAACTATGCCAACTGGTACACCAATGGTACTTGTG- AGATGTATGACATGGTCCCCACTTGCTTCACCCTCGCCCCTAAC | 273 |
AMA2 | CCAGGGGGGACTTGTGTTATTTTTGCTGCTGTACCCTCTTGCTTCCT- GAGGGCCCCCGGGCACACAGCCTACACCTCAGTGGGTTCTTTGGCGG- AGGAGGCCCTCCCGGACTCCGCGCCGGGGGGCCCCCCCTCTTCTGGG- GGCGGGGGGGGCCCCCAGGAGCCCCAGGGGCCCCAGGAGCCCCAGCC- GGGGGGCCCCGAACCCGAACCCAGCCCCGAACCCAGCCCCGAACCCG- GAGAGCCCGGCAGCGGCGAAGGAGGGGGGGAAGAGGGGGAAACAA- ATCCTCCAAAAGAGCCTCAAGAAGAGCCTTCCTTGCCGCCTGAAGA- GGGGGGAGGTCAAGAAGAA | 345 |
MIC3 | GAACAGGGAAAAATAGGAAACTGGTGTTCCCAGAGTTGGGTTTTTT- GCTCAACTGCCATCATCTACGACCCCGCCTACTCCTACGGCACCTGCA- AGTGCGAGTCGTACAGAAACCGCTGCCCCATAGGCAGCAGCTGCCTC- GACTCCAGCTTCGGGGCTTTTTGCAAATGCAATGAAGACTTAGAAG- AGCGAAACGGGGGCTGCCACTTCACCACAACGACCACAACCACCACC- ACCACCACCACCACCACAACCACCACCACCACAACAACCACCACCACC- ACGCCCCCCGCGCGATCTCTCTGCAAA | 309 |
MIC4 | TTGCTCAAGGGCAAGAGCCTTGAGGATTGCAGAAAGGCTTGCTCAG- CAGACCAGAAGTGCACCAACTTCACGAGCTGGCTAAATAAGGAGTG- CTATATCAAGGATGACCAGGACCACCGGATGCAGGAACCAATACCG- GAGGCTACATCCGGATGGGTTTCGTGCTCAACG | 171 |
MIC13 | GGCGCCCTCGGAGTCTGGCGCTGCTACGCAGGGGCCACCATCAACCTC- AGTGCCCACAGCCTAGCTTGCGTCACCAACTGTGGGGACCCCATGAA- CTGCTCCGGACAGCTCACCCACATCTCTCCAATCTATTTCGATAGCA- ACTCCGACATGGTGGCAATCATCAAGCAGGAAAAGGTCAGGTACTG- CGGAAACTCGCGCTCTCGGCTGTCCACC | 216 |
ROP5 | CTAACGATTCCGTCGACCCCTCAAGTTGACATGAGTGGAAAAAGCC- CCATCGTCGTGCCACCTGTTCCAGCCGTTTTAGTCACTCCTGGGTCC- ACACGTATTGCGGTTGAGAGCCGAGAGACGGAAAGTGCAGGACAT- GGCACAGCAAGTGGAGTAAGCGCCACTGCCGGCGATGCTGCCAGGA- TCTCAGCAGGTACTAGC | 201 |
SAG1 | GACAGGGCTGTTTCCTTTGTCGCCCTATACAACCCCAAAACCAGCCC- CGTTGTCAGTTGCGTGCTCCTCCAGTGCCCTAATGCA | 84 |
Table 2
Seven antigen fragments gene primers"
引物名称 Primer name | 引物序列(5′→3′) Primer sequence | 片段大小/bp Fragment length | 退火温度/℃ Annealing temperature |
AMA1-F | CAAATAACCGTCCCCAACC | 273 | 54 |
AMA1-R | GTTAGGGGCGAGGGTGA | 56 | |
AMA2-F | CCAGGGGGGACTTGTGTTAT | 345 | 57 |
AMA2-R | TTCTTCTTGACCTCCCCCC | 56 | |
MIC3-F | GAACAGGGAAAAATAGGAAACT | 348 | 51 |
MIC3-R | ATCAATAACATCGCAGAAGCC | 54 | |
MIC4-F | GGCAGCGGAGAGAGCAAG | 285 | 59 |
MIC4-R | CGTTGAGCACGAAACCCAT | 57 | |
MIC13-F | AATGATTCTCTGTGCCAAAACC | 361 | 55 |
MIC13-R | ACTGCTGTTGCCCTTCCAT | 58 | |
ROP5-F | AACAGTGGTAAAATACACAAGGAC | 501 | 54 |
ROP5-R | TTTTGTGCTCCTTGAGGTGCT | 58 | |
SAG1-F | ATGCCCCAAAGTCTTAGGAG | 401 | 55 |
SAG1-R | TTTTCTTCCATTGCTCGTCGT | 56 |
Table 3
Calcium phosphate nanoparticles adjuvant delivery pcDNA3.1-ET seven in vivo experimental grouping"
分组 Group | 处理方式(肌肉多点位注射) Treatment (intramuscular multi-point injection) |
空载体质粒组 Empty plasmid group | 100 μg·羽-1 pcDNA3.1质粒+磷酸钙纳米颗粒+壳聚糖 |
磷酸钙纳米颗粒佐剂对照组 Calcium phosphate nanoparticles adjuvant control group | 磷酸钙纳米颗粒+壳聚糖(每羽剂量与免疫组相同) |
空白对照组 Blank control group | 不做任何处理 |
磷酸钙纳米颗粒免疫质粒组 Calcium phosphate nanoparticles immune plasmid group | 100 μg·羽-1 pcDNA3.1-ET seven质粒+磷酸钙纳米颗粒+壳聚糖 |
Table 4
Cytokine qPCR primers"
引物名称 Primer name | 引物序列(5′→3′) Primer sequences | 退火温度/℃ Annealing temperature |
IL-2-F | TTGGAAAATATCAAGAACAAGATTCATC | 50.9 |
IL-2-R | TCCCAGGTAACACTGCAGAGTTT | 58.3 |
IL-6-F | CGTGTGCGAACAGCATGGAGA | 60.9 |
IL-6-R | TCAGGCATTTCTCCTCGTCGAAGC | 61.7 |
IL-10-F | AGCAGATCAAGGAGACGTTC | 54.4 |
IL-10-R | ATCAGCAGGTACTCCTCGAT | 55 |
IL-12-F | CCAAGACCTGGAGCACACACCGAAG | 64.8 |
IL-12-R | CGATCCCTGGCCTGCACAGAGA | 64.7 |
IFN-γ-F | ACACTGACAAGTCAAAGCCGCACA | 61.7 |
IFN-γ-R | AGTCGTTCATCGGGAGCTTGGC | 62.7 |
CD-40-F | CCTGGTGATGCTGTGAATTG | 54.1 |
CD-40-R | CTTCTGTGTCGTTGCATTCAG | 54.1 |
β-actin-F | CAACACAGTGCTGTCTGGTGGTA | 59.6 |
β-actin-R | ATCGTACTCCTGCTTGCTGATCC | 59.2 |
Fig. 5
Cell expression was detected by PCR M. DL5000 DNA marker; 1, 2. pcDNA3.1-ET seven plasmid transfected cDNA; 3. pcDNA3.1 plasmid transfected cDNA; 4. No transfected cDNA; 5. Negative control; 6, 7. pcDNA3.1-ET seven plasmid transfected with RNA after DNA removal; 8. pcDNA3.1 plasmid transfected with RNA after DNA removal; 9. RNA after DNA removal"
Fig. 7
Results of cytokine mRNA levels detected by calcium phosphate nanoparticles after immunization with pcDNA3.1-ET seven A. IL-2 mRNA relative expression of 7 days after three times immunity; B. IL-6 mRNA relative expression of 7 days after three times immunity; C. IL-10 mRNA relative expression of 7 days after three times immunity; D. IL-12 mRNA relative expression of 7 days after three times immunity; E. IFN-γ mRNA relative expression of 7 days after three times immunity; F. CD-40 mRNA relative expression of 7 days after three times immunity. Compared with blank group and early immune stage, *. Significant difference (P < 0.05); **. Extremely significant difference (P < 0.01); ***. Extremely significant difference (P < 0.001)"
1 |
SIBLEY L D .Intracellular parasite invasion strategies[J].Science,2004,304(5668):248-253.
doi: 10.1126/science.1094717 |
2 |
BLAKE D P , KNOX J , DEHAECK B , et al.Re-calculating the cost of coccidiosis in chickens[J].Vet Res,2020,51(1):115.
doi: 10.1186/s13567-020-00837-2 |
3 |
ZHANG L F .Multi-epitope vaccines: a promising strategy against tumors and viral infections[J].Cell Mol Immunol,2018,15(2):182-184.
doi: 10.1038/cmi.2017.92 |
4 |
BIBI S , ULLAH I , ZHU B D , et al.In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology[J].Sci Rep,2021,11(1):1249.
doi: 10.1038/s41598-020-80899-6 |
5 |
FADAKA A O , SIBUYI N R S , MARTIN D R , et al.Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus[J].Sci Rep,2021,11(1):19707.
doi: 10.1038/s41598-021-99227-7 |
6 | TAHIR M J. Isolation and characterization of dense granules of Eimeria tenella sporozoites[D]. Guelph: The University of Guelph., 1998. |
7 |
TONKIN M L , ROQUES M , LAMARQUE M H , et al.Host cell invasion by Apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide[J].Science,2011,333(6041):463-467.
doi: 10.1126/science.1204988 |
8 |
VULLIEZ-LE NORMAND B , TONKIN M L , LAMARQUE M H , et al.Structural and functional insights into the malaria parasite moving junction complex[J].PLoS Pathog,2012,8(6):e1002755.
doi: 10.1371/journal.ppat.1002755 |
9 |
BESTEIRO S , MICHELIN A , PONCET J , et al.Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion[J].PLoS Pathog,2009,5(2):e1000309.
doi: 10.1371/journal.ppat.1000309 |
10 |
PASTOR-FERNÁNDEZ I , KIM S , BILLINGTON K , et al.Development of cross-protective Eimeria-vectored vaccines based on apical membrane antigens[J].Int J Parasitol,2018,48(7):505-518.
doi: 10.1016/j.ijpara.2018.01.003 |
11 |
OLAJIDE J S , QU Z G , YANG S L , et al.Eimeria proteins: order amidst disorder[J].Parasit Vectors,2022,15(1):38.
doi: 10.1186/s13071-022-05159-0 |
12 |
TOMLEY F M , SOLDATI D S .Mix and match modules: structure and function of microneme proteins in Apicomplexan parasites[J].Trends Parasitol,2001,17(2):81-88.
doi: 10.1016/S1471-4922(00)01761-X |
13 |
LI W Y , WANG M Y , CHEN Y F , et al.EtMIC3 and its receptors BAG1 and ENDOUL are essential for site-specific invasion of Eimeria tenella in chickens[J].Vet Res,2020,51(1):90.
doi: 10.1186/s13567-020-00809-6 |
14 |
WANG X Q , WU L L , GAO Y , et al.Evaluation of the protective effect of pVAX-EtMIC3-recombined plasmid against E. tenella in chicken[J].Parasitol Res,2017,116(3):1023-1028.
doi: 10.1007/s00436-017-5383-4 |
15 |
ZHANG X S , ZHAO Y J , ZHANG Y , et al.Role of EtMIC4 EGF-like in regulating the apoptosis of Eimeria tenella host cells via the EGFR pathway[J].Poult Sci,2022,101(10):102075.
doi: 10.1016/j.psj.2022.102075 |
16 |
FRIEDRICH N , SANTOS J M , LIU Y , et al.Members of a novel protein family containing microneme adhesive repeat domains act as sialic acid-binding lectins during host cell invasion by Apicomplexan parasites[J].J Biol Chem,2010,285(3):2064-2076.
doi: 10.1074/jbc.M109.060988 |
17 |
BEHNKE M S , FENTRESS S J , MASHAYEKHI M , et al.The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18[J].PLoS Pathog,2012,8(11):e1002992.
doi: 10.1371/journal.ppat.1002992 |
18 |
REESE M L , SHAH N , BOOTHROYD J C .The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases[J].J Biol Chem,2014,289(40):27849-27858.
doi: 10.1074/jbc.M114.567057 |
19 |
CHOW Y P , WAN K L , BLAKE D P , et al.Immunogenic Eimeria tenella glycosylphosphatidylinositol-anchored surface antigens (SAGs) induce inflammatory responses in avian macrophages[J].PLoS One,2011,6(9):e25233.
doi: 10.1371/journal.pone.0025233 |
20 |
REID A J , BLAKE D P , ANSARI H R , et al.Genomic analysis of the causative agents of coccidiosis in domestic chickens[J].Genome Res,2014,24(10):1676-1685.
doi: 10.1101/gr.168955.113 |
21 |
JAHN D , MATROS A , BAKULINA A Y , et al.Model structure of the immunodominant surface antigen of Eimeria tenella identified as a target for sporozoite-neutralizing monoclonal antibody[J].Parasitol Res,2009,105(3):655-668.
doi: 10.1007/s00436-009-1437-6 |
22 |
LIN Y H , WANG X , HUANG X F , et al.Calcium phosphate nanoparticles as a new generation vaccine adjuvant[J].Expert Rev Vaccines,2017,16(9):895-906.
doi: 10.1080/14760584.2017.1355733 |
23 |
FATOLLAHZADEH M , ESKANDARIAN A , DARANI H Y , et al.Evaluation of Th17 immune responses of recombinant DNA vaccine encoding GRA14 and ROP13 genes against Toxoplasma gondii in BALB/c mice[J].Infect Genet Evol,2021,96,105150.
doi: 10.1016/j.meegid.2021.105150 |
24 |
MOREIRA R S , FILHO V B , CALOMENO N A , et al.EpiBuilder: a tool for assembling, searching, and classifying B-Cell epitopes[J].Bioinform Biol Insights,2022,16,11779322221095221.
doi: 10.1177/11779322221095221 |
25 |
QIU C , WU Y Y , GUO Q Y , et al.Preparation and application of calcium phosphate nanocarriers in drug delivery[J].Mater Today Bio,2022,17,100501.
doi: 10.1016/j.mtbio.2022.100501 |
26 |
RABIEE N , BAGHERZADEH M , GHADIRI A M , et al.Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery[J].J Nanostruct Chem,2022,12(5):919-932.
doi: 10.1007/s40097-021-00446-1 |
27 |
SOKOLOVA V V , RADTKE I , HEUMANN R , et al.Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles[J].Biomaterials,2006,27(16):3147-3153.
doi: 10.1016/j.biomaterials.2005.12.030 |
28 |
PEDRAZA C E , BASSETT D C , MCKEE M D , et al.The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection[J].Biomaterials,2008,29(23):3384-3392.
doi: 10.1016/j.biomaterials.2008.04.043 |
29 |
GAGHAN C , ADAMS D , MOHAMMED J , et al.Characterization of vaccine-induced immune responses against coccidiosis in broiler chickens[J].Vaccine,2022,40(28):3893-3902.
doi: 10.1016/j.vaccine.2022.05.043 |
30 | 黄诗雯, 宋硕, 王致萍, 等.人乳头瘤病毒治疗性疫苗的研究进展[J].病毒学报,2020,36(2):314-321. |
HUANG S W , SONG S , WANG Z P , et al.Research progress in human papillomavirus therapeutic vaccines[J].Chinese Journal of Virology,2020,36(2):314-321. | |
31 |
PASTON S J , BRENTVILLE V A , SYMONDS P , et al.Cancer vaccines, adjuvants, and delivery systems[J].Front Immunol,2021,12,627932.
doi: 10.3389/fimmu.2021.627932 |
32 |
MITRA S , LEONARD W J .Biology of IL-2 and its therapeutic modulation: mechanisms and strategies[J].J Leukoc Biol,2018,103(4):643-655.
doi: 10.1002/JLB.2RI0717-278R |
33 |
TANAKA T , NARAZAKI M , KISHIMOTO T .IL-6 in inflammation, immunity, and disease[J].Cold Spring Harb Perspect Biol,2014,6(10):a016295.
doi: 10.1101/cshperspect.a016295 |
34 |
KAUR S , BANSAL Y , KUMAR R , et al.A panoramic review of IL-6:structure, pathophysiological roles and inhibitors[J].Bioorg Med Chem,2020,28(5):115327.
doi: 10.1016/j.bmc.2020.115327 |
35 |
SARAIVA M , VIEIRA P , O'GARRA A .Biology and therapeutic potential of interleukin-10[J].J Exp Med,2020,217(1):e20190418.
doi: 10.1084/jem.20190418 |
36 |
HUTCHINS A P , DIEZ D , MIRANDA-SAAVEDRA D .The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges[J].Brief Funct Genomics,2013,12(6):489-498.
doi: 10.1093/bfgp/elt028 |
37 |
BRAUN D A , FRIBOURG M , SEALFON S C .Cytokine response is determined by duration of receptor and signal transducers and activators of transcription 3 (STAT3) activation[J].J Biol Chem,2013,288(5):2986-2993.
doi: 10.1074/jbc.M112.386573 |
38 |
VERSTOCKT B , SALAS A , SANDS B E , et al.IL-12 and IL-23 pathway inhibition in inflammatory bowel disease[J].Nat Rev Gastroenterol Hepatol,2023,20(7):433-446.
doi: 10.1038/s41575-023-00768-1 |
39 |
TAIT WOJNO E D , HUNTER C A , STUMHOFER J S .The immunobiology of the interleukin-12 family: room for discovery[J].Immunity,2019,50(4):851-870.
doi: 10.1016/j.immuni.2019.03.011 |
40 |
KELCHTERMANS H , BILLIAU A , MATTHYS P .How interferon-γ keeps autoimmune diseases in check[J].Trends Immunol,2008,29(10):479-486.
doi: 10.1016/j.it.2008.07.002 |
41 |
GARRIS C S , ARLAUCKAS S P , KOHLER R H , et al.Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12[J].Immunity,2018,49(6):1148-1161. e7.
doi: 10.1016/j.immuni.2018.09.024 |
42 |
PAN J P , ZHANG M H , WANG J L , et al.Interferon-gamma is an autocrine mediator for dendritic cell maturation[J].Immunol Lett,2004,94(1-2):141-151.
doi: 10.1016/j.imlet.2004.05.003 |
43 |
CROFT M , BENEDICT C A , WARE C F .Clinical targeting of the TNF and TNFR superfamilies[J].Nat Rev Drug Discov,2013,12(2):147-168.
doi: 10.1038/nrd3930 |
44 |
SHIMIZU K , ASAKURA M , FUJⅡ S I .Prolonged antitumor NK cell reactivity elicited by CXCL10-expressing dendritic cells licensed by CD40L+ CD4+ memory T cells[J].J Immunol,,2011,186(10):5927-5937.
doi: 10.4049/jimmunol.1003351 |
45 |
ABELEV B , ADAM J , ADAMOVÁ D , et al.Exclusive J/ψ photoproduction off protons in ultraperipheral p-Pb collisions at $\sqrt{{ }^S \mathrm{NN}} $ =5. 02 TeV[J].Phys Rev Lett,2014,113(23):232504.
doi: 10.1103/PhysRevLett.113.232504 |
46 |
XING L , FAN Y T , ZHOU T J , et al.Chemical modification of chitosan for efficient vaccine delivery[J].Molecules,,2018,23(2):229.
doi: 10.3390/molecules23020229 |
47 |
SEFERIAN P G , MARTINEZ M L .Immune stimulating activity of two new chitosan containing adjuvant formulations[J].Vaccine,2000,19(6):661-668.
doi: 10.1016/S0264-410X(00)00248-6 |
48 |
CARROLL E C , JIN L , MORI A , et al.The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons[J].Immunity,2016,44(3):597-608.
doi: 10.1016/j.immuni.2016.02.004 |
49 |
SMITH T R F , PATEL A , RAMOS S , et al.Immunogenicity of a DNA vaccine candidate for COVID-19[J].Nat Commun,2020,11(1):2601.
doi: 10.1038/s41467-020-16505-0 |
50 |
SONG K D , LILLEHOJ H S , CHOI K D , et al.A DNA vaccine encoding a conserved Eimeria protein induces protective immunity against live Eimeria acervulina challenge[J].Vaccine,2000,19(2-3):243-252.
doi: 10.1016/S0264-410X(00)00169-9 |
51 |
DING X , LILLEHOJ H S , DALLOUL R A , et al.In ovo vaccination with the Eimeria tenella EtMIC2 gene induces protective immunity against coccidiosis[J].Vaccine,2005,23(28):3733-3740.
doi: 10.1016/j.vaccine.2005.01.144 |
[1] | WANG Lele, WANG Liyue, CAI Weimin, KANG Xilong, FENG Qianqian, ZHANG Zhizhi, FAN Xuelian, ZHU Yu, LIU Dandan, XU Jinjun, PAN Zhiming, TAO Jianping. Immunoprotective Efficacy of Recombinant Protein rEnApiAP2 against Coccidia in Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1716-1727. |
[2] | WANG He, GUO Zhiting, LI Jianxi, ZHANG Jingyan, WANG Lei, ZHANG Kang, SUN Jiwen, SHANG Xiaofen, MA Yonghua. Effect of Radix dichroa Powder on the Control of Eimeria tenella Infection in Chick at Different Developmental Stages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1278-1289. |
[3] | GAO Dengke, ZHAO Hongcong, DONG Hao, JIN Yaping, CHEN Huatao. The Cloning, Expression Vector Construction and Function Analysis of Goat RORα Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1779-1794. |
[4] | YUAN Jing, ZHANG Xinxin, ZHOU Di, YANG Shuai, ZHOU Jiayan, LIANG Aixin, YANG Liguo. Evaluation of the Effect of SS and CST Dual-expression DNA Vaccines with Attenuated Salmonella as Carrier in Immunizing Calves through Different Routes [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1914-1924. |
[5] | JIAO Yuzhou, YANG Huanhuan, LU Yao, SHI Congcong, XU Xiaojuan, CAI Xuwang. Effect of Enterococcus faecium on Growth Performance and Intestinal Barrier of Broilers Infected with Eimeria tenella [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1210-1219. |
[6] | LUO Ying, PENG Meiqi, XIAO Zhengpan, LUO Chenghui, WANG Dayong, PEI Yechun. Expression of Blomia tropicalis Major Allergens Blo t 5 and Blo t 21 Induced the Production of IgG and Regulatory T Cells in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1220-1230. |
[7] | YIN Dejing, WU Yan, YUE Jun, YANG Peng, CHEN Jing, WANG Hui, ZHANG Shuangxiang, WANG Kaigong, CHENG Zhentao. Construction of Eukaryotic Expression Vector of N-terminal Gene of LppA Protein of Mycoplasma Mycoides subsp.Capri and Analysis of Its Immune Efficacy in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 847-856. |
[8] | LI Yajun, RU Yi, HAO Rongzeng, JIANG Chenghui, WANG Wei, ZHANG Yue, ZHANG Guicai, LIU Huanan, LU Bingzhou, YANG Yang, TAO Shiyu, YANG Rui, SONG Xiangdong, CHEN Jiao, YU Sijiu, ZHENG Haixue. Expression of Bovine Viral Diarrhea Virus E2 Protein in CHO Cells and Immunogenicity Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4315-4324. |
[9] | ZHENG Tengfei, XIN Xiang, HAN Gaolian, LI Mengxin, LI Junling, QIN Jian, DU Rong. Construction of Eukaryotic Expression Vector of Sheep Musclin Gene and Its Effects on Glucose Metabolism and Insulin Function in Myocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 641-652. |
[10] | LI Xian, ZHANG Zhongwang, ZHANG Fudong, Lü Jianliang, LI Jiahao, PAN Li. Evaluation of the Characteristics of Mannosylated Chitosan PLGA Nanospheres as a Delivery System for DNA Vaccine of A/FMDV [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3557-3568. |
[11] | HAN Gaolian, GUO Lirong, LI Mengxin, ZHENG Tengfei, LI Junling, QIN Jian, DU Rong. Eukaryotic Expression of Sheep c-Myc and EGFP Fusion Protein and Its Regulation on the Cell Proliferation [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 965-975. |
[12] | LIANG Shanshan, ZHU Shunhai, ZHAO Qiping, HUANG Bing, DONG Hui, YU Yu, WANG Qingjie, YU Shuilan, WANG Haixia, HAN Hongyu. Preliminary Study on the Function of Elongation Factor 1α of Eimeria tenella [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(12): 3111-3121. |
[13] | YANG Wei, WEI Guan-dong, TANG De-yuan, ZENG Zhi-yong, HUANG Tao, WANG Bin, HU Ling-ling, LONG Dong-mei, HUANG Qiu-han, LIAO Xiao-kang, TIAN Hong-yu. Japanese Encephalitis Virus Virulent Strains and Attenuated Strains of Non-Structural Proteins NS1, NS2A and NS1-NS2A Induce Mouse CD4+ T Cell Responses [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(8): 1693-1700. |
[14] | LI Jun-min, YONG Yan-hong, GONG Dong-liang, FENG Yuan, WEI Xuan, HE Yu-lin, JU Xiang-hong. The Establishment of a Cell Line Stably Expressing Porcine GM-CSF [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(5): 963-970. |
[15] | SUN Cheng-juan, XU Hou-qiang, DUAN Zhi-qiang, CHEN Wei, ZHAO Jia-fu, ZHOU Di. Construction of Recombinant Eukaryotic Expression Vector of FoxO 4 Gene from Congjiang Xiang Pig and Its Expression in Subcutaneous Preadipocytes [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(12): 2268-2276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||