Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (11): 5147-5158.doi: 10.11843/j.issn.0366-6964.2024.11.030
• Animal Nutrition and Feeds • Previous Articles Next Articles
Changying LI1(), Lanmeng XU1, Yuzhi HUANG1, Hang HE2, Kun WAN1, Yancong YUAN1,3,*(
), Jie ZHANG1,*(
)
Received:
2024-02-27
Online:
2024-11-23
Published:
2024-11-30
Contact:
Yancong YUAN, Jie ZHANG
E-mail:licy1983@163.com;y1400510152@163.com;zhangjie813@163.com
CLC Number:
Changying LI, Lanmeng XU, Yuzhi HUANG, Hang HE, Kun WAN, Yancong YUAN, Jie ZHANG. Effect of Feeding Regimes on Growth, Serum Biochemistry, Gut Microbiota and Their Metabolites of Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5147-5158.
Table 1
Nutritional composition of formula milk"
项目Item | 含量Content | 项目Item | 含量Content | |
粗蛋白质Crude protein | ~18% | 赖氨酸Lysine | ~1.11% | |
粗脂肪Crude fat | ~13% | 蛋氨酸Methionine | ~0.36% | |
粗纤维Crude fiber | ~2% | 氯化钠NaCl | ~0.5% | |
粗灰分Crude ash | ~8% | 维生素E Vitamin E | ~40 mg | |
水分Moisture | ~9% | 维生素K3 Vitamin K3 | ~100 mg | |
总钙Total calcium | ~0.99% | 铁Fe | ~8 g | |
总磷Total phosphorous | ~0.71% | 锌Zn | ~3 g |
Fig. 3
The effect of feeding regimes on the composition and function of gut microbiota in pigs (n=6)(Scan the OSID code on the homepage of the article to view the color image) A. Gut microbiota composition (phylum level); B. Differential microbiota (phylum level); C. Gut microbiota composition (genus level); D. Differential microbiota (genus level); E. Function analysis of differential microbiota"
Fig. 4
The effect of feeding regimes on the feces metabolites of pigs (n=6)(Scan the OSID code on the homepage of the article to view the color image) A. The number of ions identified; B. PLS-DA analysis; C. Volcano map of differential metabolite; D. Differential metabolite clustering; E. Functional analysis of differential metabolites"
1 |
ADKINS B , LECLERC C , MARSHALL-CLARKE S . Neonatal adaptive immunity comes of age[J]. Nat Rev Immunol, 2004, 4 (7): 553- 564.
doi: 10.1038/nri1394 |
2 |
BANDRICK M , ARIZA-NIETO C , BAIDOO S K , et al. Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets[J]. Dev Comp Immunol, 2014, 43 (1): 114- 120.
doi: 10.1016/j.dci.2013.11.005 |
3 | 杨玮. 不同饲喂方式对初生仔兔肠道菌群及成活率的影响[D]. 乌鲁木齐市: 新疆农业大学, 2021. |
YANG W. Effects of different feeding methods on intestinal flora and survival rate of newborn rabbits[D]. Urumqi: Xinjiang Agricultural University, 2021. (in Chinese) | |
4 |
BOUDRY G , MORISE A , SEVE B , et al. Effect of milk formula protein content on intestinal barrier function in a porcine model of LBW neonates[J]. Pediatr Res, 2011, 69 (1): 5- 9.
doi: 10.1203/PDR.0b013e3182068ff0 |
5 | WEAVER L T , LAKER M F , NELSON R , et al. Milk feeding and changes in intestinal permeability and morphology in the newborn[J]. J Pediatr Gastroenterol Nutr, 1987, 6 (3): 351- 358. |
6 |
UDALL J N , COLONY P , FRITZE L , et al. Development of gastrointestinal mucosal barrier.Ⅱ.The effect of natural versus artificial feeding on intestinal permeability to macromolecules[J]. Pediatr Res, 1981, 15 (3): 245- 249.
doi: 10.1203/00006450-198103000-00009 |
7 |
TEICHBERG S , ISOLAURI E , WAPNIR R A , et al. Development of the neonatal rat small intestinal barrier to nonspecific macromolecular absorption: effect of early weaning to artificial diets[J]. Pediatr Res, 1990, 28 (1): 31- 32.
doi: 10.1203/00006450-199007000-00008 |
8 |
DEWEY K G , HEINIG M J , NOMMSEN-RIVERS L A . Differences in morbidity between breast-fed and formula-fed infants[J]. J Pediatr, 1995, 126 (5): 696- 702.
doi: 10.1016/S0022-3476(95)70395-0 |
9 |
POROYKO V , WHITE J R , WANG M , et al. Gut microbial gene expression in mother-fed and formula-fed piglets[J]. PLoS One, 2010, 5 (8): e12459.
doi: 10.1371/journal.pone.0012459 |
10 |
ZHANG J , LONG X , LIAO Q F , et al. Distinct gut microbiome induced by different feeding regimes in weaned piglets[J]. Genes (Basel), 2022, 14 (1): 49.
doi: 10.3390/genes14010049 |
11 | LAWRENCE R M , PANE C A . Human breast milk: current concepts of immunology and infectious diseases[J]. Curr Probl Pediatr Adolesc Health Care, 2007, 37 (1): 7- 36. |
12 | PARAMASIVAM K , MICHIE C , OPARA E , et al. Human breast milk immunology: a review[J]. Int J Fertil Womens Med, 2006, 51 (5): 208- 217. |
13 |
DEWEY K G , HEINIG M J , NOMMSEN L A , et al. Breast-fed infants are leaner than formula-fed infants at 1 y of age: the DARLING study[J]. Am J Clin Nutr, 1993, 57 (2): 140- 145.
doi: 10.1093/ajcn/57.2.140 |
14 |
RENDINA D N , LUBACH G R , PHILLIPS G J , et al. Maternal and breast milk influences on the infant gut microbiome, enteric health and growth outcomes of rhesus monkeys[J]. J Pediatr Gastroenterol Nutr, 2019, 69 (3): 363- 369.
doi: 10.1097/MPG.0000000000002394 |
15 |
HEINIG M J , NOMMSEN L A , PEERSON J M , et al. Energy and protein intakes of breast-fed and formula-fed infants during the first year of life and their association with growth velocity: the DARLING Study[J]. Am J Clin Nutr, 1993, 58 (2): 152- 161.
doi: 10.1093/ajcn/58.2.152 |
16 |
LE HUËROU-LURON I , BLAT S , BOUDRY G . Breast-v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects[J]. Nutr Res Rev, 2010, 23 (1): 23- 36.
doi: 10.1017/S0954422410000065 |
17 | ZABIELSKI R , GODLEWSKI M M , GUILLOTEAU P . Control of development of gastrointestinal system in neonates[J]. J Physiol Pharmacol, 2008, 59 Suppl 1, 35- 54. |
18 |
CATASSI C , BONUCCI A , COPPA G V , et al. Intestinal permeability.Changes during the first month: effect of natural versus artificial feeding[J]. J Pediatr Gastroenterol Nutr, 1995, 21 (4): 383- 386.
doi: 10.1002/j.1536-4801.1995.tb11955.x |
19 |
TAYLOR S N , BASILE L A , EBELING M , et al. Intestinal permeability in preterm infants by feeding type: mother's milk versus formula[J]. Breastfeed Med, 2009, 4 (1): 11- 15.
doi: 10.1089/bfm.2008.0114 |
20 | CAMPBELL T W . Chemical chemistry of mammals: laboratory animals and miscellaneous species[M]. USA: In Veterinary Hematology and Clinical Chemistry, 2012: 571- 581. |
21 |
KIM J S , INGALE S L , LEE S H , et al. Effects of energy levels of diet and β-mannanase supplementation on growth performance, apparent total tract digestibility and blood metabolites in growing pigs[J]. Anim Feed Sci Technol, 2013, 186 (1-2): 64- 70.
doi: 10.1016/j.anifeedsci.2013.08.008 |
22 |
FUJITA H , OKADA T , INAMI I , et al. Low-density lipoprotein profile changes during the neonatal period[J]. J Perinatol, 2008, 28 (5): 335- 340.
doi: 10.1038/jp.2008.8 |
23 |
OWEN C G , WHINCUP P H , KAYE S J , et al. Does initial breastfeeding lead to lower blood cholesterol in adult life?A quantitative review of the evidence[J]. Am J Clin Nutr, 2008, 88 (2): 305- 314.
doi: 10.1093/ajcn/88.2.305 |
24 |
RENZ H , BRANDTZAEG P , HORNEF M . The impact of perinatal immune development on mucosal homeostasis and chronic inflammation[J]. Nat Rev Immunol, 2012, 12 (1): 9- 23.
doi: 10.1038/nri3112 |
25 |
TAKⅡSHI T , FENERO C I M , CAMARA N O S . Intestinal barrier and gut microbiota: shaping our immune responses throughout life[J]. Tissue Barriers, 2017, 5 (4): e1373208.
doi: 10.1080/21688370.2017.1373208 |
26 |
TANNOCK G W , LAWLEY B , MUNRO K , et al. Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk[J]. Appl Environ Microbiol, 2013, 79 (9): 3040- 3048.
doi: 10.1128/AEM.03910-12 |
27 |
REID G . When microbe meets human[J]. Clin Infect Dis, 2004, 39 (6): 827- 830.
doi: 10.1086/423387 |
28 |
GORVITOVSKAIA A , HOLMES S P , HUSE S M . Interpreting prevotella and bacteroides as biomarkers of diet and lifestyle[J]. Microbiome, 2016, 4, 15.
doi: 10.1186/s40168-016-0160-7 |
29 | KOENIG J E , SPOR A , SCALFONE N , et al. Succession of microbial consortia in the developing infant gut microbiome[J]. Proc Natl Acad Sci U S A, 2010, 108 (S1): 4578- 4585. |
30 |
OH J K , CHAE J P , PAJARILLO E A B , et al. Association between the body weight of growing pigs and the functional capacity of their gut microbiota[J]. Anim Sci J, 2020, 91 (1): e13418.
doi: 10.1111/asj.13418 |
31 |
ZHU Z M , ZHU L Y , JIANG L . Dynamic regulation of gut Clostridium-derived short-chain fatty acids[J]. Trends Biotechnol, 2022, 40 (3): 266- 270.
doi: 10.1016/j.tibtech.2021.10.005 |
32 |
KONIKOFF T , GOPHNA U . Oscillospira: a central, enigmatic component of the human gut microbiota[J]. Trends Microbiol, 2016, 24 (7): 523- 524.
doi: 10.1016/j.tim.2016.02.015 |
33 |
CZEPIEL J , DRÓŻDŻ M , PITUCH H , et al. Clostridium difficile infection: review[J]. Eur J Clin Microbiol Infect Dis, 2019, 38 (7): 1211- 1221.
doi: 10.1007/s10096-019-03539-6 |
34 | WOODS J A , ALLEN J M , MILLER M E B , et al. Exercise alters the gut microbiome and microbial metabolites: implications for colorectal cancer and inflammatory bowel disease[J]. Brain Behav Immun, 2015, 49 Suppl, e7. |
35 |
CANI P D , VAN HUL M , LEFORT C , et al. Microbial regulation of organismal energy homeostasis[J]. Nat Metab, 2019, 1 (1): 34- 46.
doi: 10.1038/s42255-018-0017-4 |
36 |
GONZALEZ R , KLAASSENS E S , MALINEN E , et al. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide[J]. Appl Environ Microbiol, 2008, 74 (15): 4686- 4694.
doi: 10.1128/AEM.00122-08 |
37 |
EIDELS L , OSBORN M J . Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium[J]. Proc Natl Acad Sci U S A, 1971, 68 (8): 1673- 1677.
doi: 10.1073/pnas.68.8.1673 |
38 | HU J , NIE Y F , CHEN J W , et al. Gradual changes of gut microbiota in weaned miniature piglets[J]. Front Microbiol, 2016, 7, 1727. |
39 |
BARRETT E , ROSS R P , O'TOOLE P W , et al. γ-aminobutyric acid production by culturable bacteria from the human intestine[J]. J Appl Microbiol, 2012, 113 (2): 411- 417.
doi: 10.1111/j.1365-2672.2012.05344.x |
40 |
ALKHALAF L M , RYAN K S . Biosynthetic manipulation of tryptophan in bacteria: pathways and mechanisms[J]. Chem Biol, 2015, 22 (3): 317- 328.
doi: 10.1016/j.chembiol.2015.02.005 |
41 |
LEE J H , WOOD T K , LEE J . Roles of indole as an interspecies and interkingdom signaling molecule[J]. Trends Microbiol, 2015, 23 (11): 707- 718.
doi: 10.1016/j.tim.2015.08.001 |
42 |
LIANG H W , DAI Z L , LIU N , et al. Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets[J]. Front Microbiol, 2018, 9, 1736.
doi: 10.3389/fmicb.2018.01736 |
43 |
GERNER E W , MEYSKENS JR F L . Polyamines and cancer: old molecules, new understanding[J]. Nat Rev Cancer, 2004, 4 (10): 781- 792.
doi: 10.1038/nrc1454 |
44 |
BUTS J P , DE KEYSER N , KOLANOWSKI J , et al. Maturation of villus and crypt cell functions in rat small intestine: role of dietary polyamines[J]. Dig Dis Sci, 1993, 38 (6): 1091- 1098.
doi: 10.1007/BF01295726 |
45 |
MORO J , TOMÉ D , SCHMIDELY P , et al. Histidine: a systematic review on metabolism and physiological effects in human and different animal species[J]. Nutrients, 2020, 12 (5): 1414.
doi: 10.3390/nu12051414 |
46 |
FENG R N , NIU Y C , SUN X W , et al. Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: a randomised controlled trial[J]. Diabetologia, 2013, 56 (5): 985- 994.
doi: 10.1007/s00125-013-2839-7 |
47 |
WU X , GAO L M , LIU Y L , et al. Maternal dietary uridine supplementation reduces diarrhea incidence in piglets by regulating the intestinal mucosal barrier and cytokine profiles[J]. J Sci Food Agric, 2020, 100 (9): 3709- 3718.
doi: 10.1002/jsfa.10410 |
48 |
XIE C Y , WANG Q H , LI G Y , et al. Dietary supplement with nucleotides in the form of uridine monophosphate or uridine stimulate intestinal development and promote nucleotide transport in weaned piglets[J]. J Sci Food Agric, 2019, 99 (13): 6108- 6113.
doi: 10.1002/jsfa.9850 |
49 |
LÖFFLER M , CARREY E A , ZAMEITAT E . Orotic acid, more than just an intermediate of pyrimidine de novo synthesis[J]. J Genet Genomics, 2015, 42 (5): 207- 219.
doi: 10.1016/j.jgg.2015.04.001 |
50 |
CHA J Y , MAMEDA Y , YAMAMOTO K , et al. Association between hepatic triacylglycerol accumulation induced by administering orotic acid and enhanced phosphatidate phosphohydrolase activity in rats[J]. Biosci Biotechnol Biochem, 1998, 62 (3): 508- 513.
doi: 10.1271/bbb.62.508 |
51 |
ZELANTE T , IANNITTI R G , CUNHA C , et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J]. Immunity, 2013, 39 (2): 372- 385.
doi: 10.1016/j.immuni.2013.08.003 |
52 |
COOK K L , ROTHROCK JR M J , LOUGHRIN J H , et al. Characterization of skatole-producing microbial populations in enriched swine lagoon slurry[J]. FEMS Microbiol Ecol, 2007, 60 (2): 329- 340.
doi: 10.1111/j.1574-6941.2007.00299.x |
53 |
BEAUMONT M , NEYRINCK A M , OLIVARES M , et al. The gut microbiota metabolite indole alleviates liver inflammation in mice[J]. FASEB J, 2018, 32 (12): 6681- 6693.
doi: 10.1096/fj.201800544 |
54 |
HENDRIKX T , SCHNABL B . Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation[J]. J Intern Med, 2019, 286 (1): 32- 40.
doi: 10.1111/joim.12892 |
55 |
LI J J , ZHANG L , WU T , et al. Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier[J]. J Agric Food Chem, 2021, 69 (5): 1487- 1495.
doi: 10.1021/acs.jafc.0c05205 |
[1] | Jiqiao ZHANG, Yingjie CAI, Yuxiao LI, Chang CAO, Tao LI, Xiuyu BAO, Jianqin ZHANG. Comparative Analysis of Growth Performance, Immune, Intestinal Morphology, and Cecal Microbiota of Lueyang Black-bone Chickens under Different Rearing Systems [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4001-4011. |
[2] | Tana HE, Xinyun HU, Jielan MI, Li GAO, Yanping ZHANG, Xiaole QI, Hongyu CUI, Guilian YANG, Yulong GAO. Effect of Feeding Lactobacillus salivarius XP132 on the Gut Microbiota of White-feathered Broiler Breeder based on 16S rDNA Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4091-4099. |
[3] | Jiali ZHOU, Baolong DING, Ziming MA, Xingang DAN, Hongxi ZHAO. Research Progress on the Correlation between Endometritis and Gastrointestinal Microorganisms and the Role of Probiotics in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3321-3330. |
[4] | Yunfang SONG, Hao CHENG, Luya FENG, Ping BAI, Yuankun DENG, Yaoyao XIA, Bi'e TAN, Jing WANG. Research Progress on the Mechanism of Nutrition Regulating Intestinal Immune Cell Activation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2846-2858. |
[5] | Longping LI, Tuo LI, Peiwen CAO, Haijing ZHU, Xiaoling ZHANG, Chen ZHANG, Puhui XIAO, Shuwei DONG, Ping FENG, Lei QU, Taifei BI. Effects of Diets with Different Energy Levels on Rumen Fermentation Characteristics and Microbial Composition of Weaned Male Shaanbei White Cashmere Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3011-3023. |
[6] | Yingguang LÜ, Guangming JIAO, Jinfang SANG, Zhipeng KOU, Tao LIU, Yue WANG, Xiangyu LU, Chenxi PIAO, Yajun MA, Jiantao ZHANG, Hongbin WANG. The Effect of Adipose Mesenchymal Stem Cells on the Healing Process of Autologous Skin Transplantation in Bama Miniature Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3193-3204. |
[7] | Hongxu DU, Lijuan SU, Zhengke HE, Xiaoyan TAN, Xu ZHANG, Qi MA, Liting CAO, Hongwei CHEN, Ling GAN. Study on the in vitro Antioxidant and Intestinal Flora Modulating Effects of Schisandra Chinensis Polysaccharides-selenium Nanoparticles [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3234-3245. |
[8] | Qianling CHEN, Yuzhu SHA, Xiu LIU, Pengyang SHAO, Fanxiong WANG, Xiaowei CHEN, Wenxin YANG, Zhuanhui XIE, Min GAO, Wei HUANG. Research Progress on the Interaction between Gut Microbiota and Mitochondria Regulating Animal Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2293-2303. |
[9] | Ming LI, Hongwei CUI, Jie GAO, Lele AN, Songli LI, Zhenghua RAO. Identification and Genomic Analysis of Pathogenic Escherichia coli in Small Intestinal Content of White Feather Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2692-2700. |
[10] | Ji WANG, Xinyan ZHOU, Fangrui GUO, Qiurong XU, Dongyi WU, Yan MAO, Zhihang YUAN, Jin'e YI, Lixin WEN, Jing WU. Viola yedoensis Makino Improves the Growth Performance, Meat Quality, and Gut Microbiota of Broilers Exposed to Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2761-2774. |
[11] | ZHANG Jixian, FAN Dingkun, FU Yuze, JIAO Shuai, MA Tao, BI Yanliang, ZHANG Naifeng. Research Progress on Mechanism and Application of Postbiotics in Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1926-1935. |
[12] | KANG Jiawei, HUANG Xuankai, WANG Zhipeng, ZHANG Aizhen, MENG Fangrong, GAI Peng, BAO Junfu, SUN Kexin, SONG Shaokang, SUN Pan, CHEN Yichuan, ZHANG Lei, GAO Shengyue, CHANG Minghang. Estimation of Genetic Parameters for Growth, Reproduction, and Body Measurements Traits in Large White Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1936-1944. |
[13] | SUN Wenli, WANG Haoqi, ZE Licuo, GAO Yufan, ZHANG Feifan, ZHANG Jian, DUAN Mengqi, SHANG Peng, QIANG Bayangzong. Polymorphism of Pro-Inflammatory Factors (IL-1β, IL-6, TNF-α) in Tibetan Pigs and Its Association Analysis with Immune Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1958-1969. |
[14] | ZHANG Shuai, CHEN Kuirong, XU Di, JIANG Shan, WANG Mengying, ZHANG Kun, XU Yupei, LEI Guofeng, ZHANG Zhicheng, GUO Meng, ZHAO Yunxiang, LAN Ganqiu, LIANG Jing. Analysis of Microbial Composition Differences in High and Low Feed Conversion Rates Pig Feces based on 16S rRNA Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1605-1614. |
[15] | ZHANG Chonghao, MA Chang, LI Zhiqiang, WU Gang, ZHANG Yuanshu. The Role and Relationship of Renin-angiotensin System in Gut-vascular Barrier Injury in Ulcerative Colitis Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1756-1765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||