Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (9): 3968-3977.doi: 10.11843/j.issn.0366-6964.2024.09.021
• Animal Biotechnology and Reproduction • Previous Articles Next Articles
Rui SHI1,2(), Shanshan LI1, Hailiang ZHANG1, Haibo LU1,3, Qingxia YAN4, Yi ZHANG1, Shaohu CHEN4, Yachun WANG1,*(
)
Received:
2024-01-24
Online:
2024-09-23
Published:
2024-09-27
Contact:
Yachun WANG
E-mail:rui.shi@wur.nl;wangyachun@cau.edu.cn
CLC Number:
Rui SHI, Shanshan LI, Hailiang ZHANG, Haibo LU, Qingxia YAN, Yi ZHANG, Shaohu CHEN, Yachun WANG. Genotype by Environment Interaction of Fertility Traits for the Holstein Cattle in China[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3968-3977.
Table 1
Summary of quality controlled data of each trait for different regions"
地区 Region | 记录数 Records | 原始数据 Raw data | 质控后数据 Quality controlled data | 质控后保留率/% Percentages of controlled data on raw data | |||||
AFC | CI | AFC | CI | AFC | CI | ||||
北京 | 表型 | 165 553 | 240 501 | 136 708 | 209 581 | 82.6 | 87.1 | ||
BJ | 牧场 | 127 | 123 | 63 | 68 | 49.6 | 55.3 | ||
天津 | 表型 | 130 568 | 183 190 | 103 187 | 167 552 | 79.0 | 91.5 | ||
TJ | 牧场 | 79 | 74 | 48 | 52 | 60.8 | 70.3 | ||
上海 | 表型 | 152 323 | 222 228 | 134 443 | 186 699 | 88.3 | 84.0 | ||
SH | 牧场 | 179 | 161 | 92 | 91 | 51.4 | 56.5 | ||
河北 | 表型 | 636 594 | 822 939 | 528 678 | 606 294 | 83.0 | 73.7 | ||
HB | 牧场 | 600 | 564 | 343 | 264 | 57.2 | 46.8 | ||
河南 | 表型 | 329 679 | 494 981 | 141 607 | 438 628 | 43.0 | 88.6 | ||
HN | 牧场 | 413 | 401 | 217 | 283 | 52.5 | 70.6 | ||
山东 | 表型 | 372 873 | 512 583 | 252 990 | 455 075 | 67.8 | 88.8 | ||
SD | 牧场 | 462 | 436 | 45 | 222 | 9.7 | 50.9 | ||
总和 | 表型 | 1 787 590 | 2 476 422 | 1 297 613 | 2 063 829 | 72.6 | 83.3 | ||
Sum | 牧场 | 1 860 | 1 759 | 808 | 980 | 43.4 | 55.7 |
Fig. 2
Percentages of retained age at first calving records in each quality control step for the data in different regions, and the quality control for abnormal distribution in Shandong region a. Percentages of retained age at first calving phenotypes in each quality control step for different regions; b. Percentages of retained farms of age at first calving dataset for different regions; c. The distribution of raw age at first calving phenotypes for Shandong region; d. The data distribution of quality-controlled age at first calving phenotypes for Shandong region. Step (1). Retention of phenotypic data within three standard deviations; Step (2). Retaining cattle farms with no less than 300 phenotypic data; Step (3). Data on abnormal phenotypic distribution were screened by region and farm"
Table 2
Descriptive statistics, variance components and genetic parameters of each trait for different regions"
地区 Region | 性状 Trait | 表型均值 Mean | 标准差 Standard deviation | 加性遗传方差 σa2 | 永久环境方差 σpe2 | 残差方差 σe2 | 遗传力 (标准误) h2 (standard error) | 重复力 (标准误) r2 (standard error) |
北京 | AFC | 767.77 | 86.67 | 1 077.40 | 3 891.40 | 0.22 (0.007) | ||
BJ | CI | 398.81 | 66.69 | 94.14 | 197.07 | 3 800.60 | 0.02 (0.002) | 0.07 (0.003) |
天津 | AFC | 747.56 | 84.92 | 981.06 | 2 996.10 | 0.25 (0.009) | ||
TJ | CI | 398.00 | 66.99 | 79.55 | 231.09 | 3 781.90 | 0.02 (0.003) | 0.08 (0.003) |
上海 | AFC | 767.87 | 73.44 | 242.41 | 3 820.40 | 0.06 (0.006) | ||
SH | CI | 404.80 | 66.77 | 72.05 | 204.42 | 3 501.60 | 0.02 (0.002) | 0.07 (0.003) |
河北 | AFC | 768.32 | 103.80 | 2 366.40 | 3 619.70 | 0.40 (0.005) | ||
HB | CI | 387.60 | 63.14 | 141.34 | 110.41 | 3 131.00 | 0.04 (0.003) | 0.07 (0.002) |
河南 | AFC | 779.36 | 102.94 | 1 144.00 | 4 215.80 | 0.21 (0.006) | ||
HN | CI | 390.68 | 60.27 | 74.02 | 85.35 | 2 304.90 | 0.03 (0.003) | 0.06 (0.002) |
山东 | AFC | 733.02 | 73.88 | 836.32 | 1 790.00 | 0.32 (0.009) | ||
SD | CI | 389.94 | 64.56 | 93.49 | 101.72 | 3 253.60 | 0.03 (0.002) | 0.06 (0.002) |
所有数据 | AFC | 765.06 | 95.70 | 1 425.40 | 3 661.00 | 0.28 (0.003) | ||
Sum | CI | 392.31 | 64.12 | 73.53 | 155.92 | 3 137.90 | 0.02 (0.001) | 0.07 (0.001) |
Table 3
Genetic correlations and standard errors for each fertility trait between different regions"
地区 Region | 北京 BJ | 天津 TJ | 上海 SH | 河北 HB | 河南 HN | 山东 SD |
北京 BJ | 0.862 (0.109)∧ | 0.954 (0.054)∧ | 0.580 (0.080) | 0.420 (0.107) | 0.600 (0.089) | |
天津 TJ | 0.091 (0.080)# | 0.789 (0.109) | 0.561 (0.110) | 0.262 (0.135)# | 0.794 (0.080) | |
上海 SH | 0.271 (0.099) | 0.073 (0.098)# | 0.693 (0.098) | 0.298 (0.130) | 0.543 (0.103) | |
河北 HB | 0.199 (0.043) | -0.149 (0.055) | 0.099 (0.070)# | 0.189 (0.090) | 0.551 (0.069) | |
河南 HN | 0.071 (0.062)# | -0.043 (0.065)# | -0.040 (0.087)# | 0.079 (0.040) | 0.250 (0.091) | |
山东 SD | 0.042 (0.072)# | 0.342 (0.054) | 0.122 (0.100)# | -0.016 (0.048)# | -0.092 (0.061)# |
Table 4
Percentages of overlapping sires of cows for each trait between different regions%"
地区 Region | 北京 BJ | 天津 TJ | 上海 SH | 河北 HB | 河南 HN | 山东 SD |
北京 BJ | 38.22 | 36.29 | 31.75 | 24.44 | 26.50 | |
天津 TJ | 35.71 | 30.82 | 49.79 | 39.22 | 47.22 | |
上海 SH | 32.73 | 28.35 | 44.55 | 37.89 | 43.83 | |
河北 HB | 36.15 | 52.75 | 46.46 | 41.50 | 36.94 | |
河南 HN | 23.08 | 38.51 | 37.55 | 43.26 | 36.40 | |
山东 SD | 28.53 | 30.99 | 25.25 | 52.32 | 36.36 |
Table 5
Genetic correlations and standard errors for each trait between different regions after selecting overlapping sires"
地区 Region | 北京 BJ | 天津 TJ | 上海 SH | 河北 HB | 河南 HN | 山东 SD |
北京 BJ | 0.998 (0.057)∧ | 0.865 (0.130)∧ | 0.573 (0.096) | 0.402 (0.120) | 0.784 (0.085) | |
天津 TJ | 0.196 (0.138) | 0.930 (0.084)∧ | 0.436 (0.171) | 0.288 (0.154)# | 0.919 (0.082)∧ | |
上海 SH | 0.573 (0.163) | 0.157 (0.128)# | 0.782 (0.119) | 0.336 (0.143) | 0.528 (0.129) | |
河北 HB | 0.025 (0.071)# | 0.002 (0.105)# | 0.161 (0.064) | 0.307 (0.110) | 0.607 (0.088) | |
河南 HN | 0.055 (0.094)# | 0.122 (0.106)# | -0.014 (0.078)# | 0.072 (0.046)# | 0.323 (0.102) | |
山东 SD | 0.104 (0.126)# | 0.043 (0.141)# | 0.311 (0.072) | 0.093 (0.055)# | 0.034 (0.077)# |
1 |
BRITT J H . Enhanced reproduction and its economic implications[J]. J Dairy Sci, 1985, 68 (6): 1585- 1592.
doi: 10.3168/jds.S0022-0302(85)80997-8 |
2 |
LUCY M C . Reproductive loss in high-producing dairy cattle: where will it end?[J]. J Dairy Sci, 2001, 84 (6): 1277- 1293.
doi: 10.3168/jds.S0022-0302(01)70158-0 |
3 |
SCHMIDTMANN C , THALLER G , KARGO M , et al. Derivation of economic values for German dairy breeds by means of a bio-economic model-with special emphasis on functional traits[J]. J Dairy Sci, 2021, 104 (3): 3144- 3157.
doi: 10.3168/jds.2019-17635 |
4 |
SAMARAWEERA A M , VAN DER WERF J H J , BOERNER V , et al. Economic values for production, fertility and mastitis traits for temperate dairy cattle breeds in tropical Sri Lanka[J]. J Anim Breed Genet, 2022, 139 (3): 330- 341.
doi: 10.1111/jbg.12667 |
5 |
MIGLIOR F , FLEMING A , MALCHIODI F , et al. A 100-Year Review: identification and genetic selection of economically important traits in dairy cattle[J]. J Dairy Sci, 2017, 100 (12): 10251- 10271.
doi: 10.3168/jds.2017-12968 |
6 | 师睿. 中国荷斯坦牛繁殖性状的基因组预测效果比较[D]. 北京: 中国农业大学, 2019. |
SHI R. Estimation of genetic parameters and genome-wide association study for female reproductive traits in Chinese Holstein population[D]. Beijing: China Agricultural University, 2019. (in Chinese) | |
7 |
刘澳星, 郭刚, 王雅春, 等. 中国荷斯坦牛初产日龄遗传评估及全基因组关联分析[J]. 畜牧兽医学报, 2015, 46 (3): 373- 381.
doi: 10.11843/j.issn.0366-6964.2015.03.004 |
LIU A X , GUO G , WANG Y C , et al. Genetic analysis and genome wide association studies for age at first calving in Chinese Holsteins[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46 (3): 373- 381.
doi: 10.11843/j.issn.0366-6964.2015.03.004 |
|
8 | 李欣, 周靖航, 温万, 等. 宁夏地区荷斯坦奶牛遗传参数估计[J]. 中国畜牧兽医, 2017, 44 (6): 1754- 1761. |
LI X , ZHOU J H , WEN W , et al. The estimation of genetic parameters of Holstein dairy cows in Ningxia Region[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44 (6): 1754- 1761. | |
9 |
ZHU K , LI T W , LIU D Y , et al. Estimation of genetic parameters for fertility traits in Chinese Holstein of South China[J]. Front Genet, 2024, 14, 1288375.
doi: 10.3389/fgene.2023.1288375 |
10 |
GHAVI HOSSEIN-ZADEH N . Genetic parameters and trends for calving interval in the first three lactations of Iranian Holsteins[J]. Trop Anim Health Prod, 2011, 43 (6): 1111- 1115.
doi: 10.1007/s11250-011-9809-1 |
11 |
ELAHI TORSHIZI M . Effects of season and age at first calving on genetic and phenotypic characteristics of lactation curve parameters in Holstein cows[J]. J Anim Sci Technol, 2016, 58 (1): 8.
doi: 10.1186/s40781-016-0089-1 |
12 |
OJANGO J M , POLLOTT G E . Genetics of milk yield and fertility traits in Holstein-Friesian cattle on large-scale Kenyan farms[J]. J Anim Sci, 2001, 79 (7): 1742- 1750.
doi: 10.2527/2001.7971742x |
13 |
PIRLO G , MIGLIOR F , SPERONI M . Effect of age at first calving on production traits and on difference between milk yield returns and rearing costs in Italian Holsteins[J]. J Dairy Sci, 2000, 83 (3): 603- 608.
doi: 10.3168/jds.S0022-0302(00)74919-8 |
14 |
WATERS D L , CLARK S A , MOGHADDAR N , et al. Genomic analysis of the slope of the reaction norm for body weight in Australian sheep[J]. Genet Sel Evol, 2022, 54 (1): 40.
doi: 10.1186/s12711-022-00734-6 |
15 |
MCWHORTER T M , SARGOLZAEI M , SATTLER C G , et al. Single-step genomic predictions for heat tolerance of production yields in US Holsteins and Jerseys[J]. J Dairy Sci, 2023, 106 (11): 7861- 7879.
doi: 10.3168/jds.2022-23144 |
16 |
FREITAS P H F , JOHNSON J S , TIEZZI F , et al. Genomic predictions and GWAS for heat tolerance in pigs based on reaction norm models with performance records and data from public weather stations considering alternative temperature thresholds[J]. J Anim Breed Genet, 2024, 141 (3): 257- 277.
doi: 10.1111/jbg.12838 |
17 |
SONG H L , ZHANG Q , DING X D . The superiority of multi-trait models with genotype-by-environment interactions in a limited number of environments for genomic prediction in pigs[J]. J Anim Sci Biotechnol, 2020, 11, 88.
doi: 10.1186/s40104-020-00493-8 |
18 |
SONG H L , ZHANG Q , MISZTAL I , et al. Genomic prediction of growth traits for pigs in the presence of genotype by environment interactions using single-step genomic reaction norm model[J]. J Anim Breed Genet, 2020, 137 (6): 523- 534.
doi: 10.1111/jbg.12499 |
19 | FALCONER D S , MACKAY T F C . Introduction to quantitative genetics[M]. 4th ed Harlow, Essex: Longman, 1996. |
20 |
DUCROCQ V , CADET A , PATRY C , et al. Two approaches to account for genotype-by-environment interactions for production traits and age at first calving in South African Holstein cattle[J]. Genet Sel Evol, 2022, 54 (1): 43.
doi: 10.1186/s12711-022-00735-5 |
21 | SUNDBERG T , RYDHMER L , FIKSE W F , et al. Genotype by environment interaction of Swedish dairy cows in organic and conventional production systems[J]. Acta Agric Scand Sect A-Anim Sci, 2010, 60 (2): 65- 73. |
22 |
ISMAEL A , STRANDBERG E , BERGLUND B , et al. Genotype by environment interaction for activity-based estrus traits in relation to production level for Danish Holstein[J]. J Dairy Sci, 2016, 99 (12): 9834- 9844.
doi: 10.3168/jds.2016-11446 |
23 |
LIU A , SU G , HÖGLUND J , et al. Genotype by environment interaction for female fertility traits under conventional and organic production systems in Danish Holsteins[J]. J Dairy Sci, 2019, 102 (9): 8134- 8147.
doi: 10.3168/jds.2018-15482 |
24 |
ZHANG Z , KARGO M , LIU A X , et al. Genotype-by-environment interaction of fertility traits in Danish Holstein cattle using a single-step genomic reaction norm model[J]. Heredity (Edinb), 2019, 123 (2): 202- 214.
doi: 10.1038/s41437-019-0192-4 |
25 |
CHERUIYOT E K , NGUYEN T T T , HAILE-MARIAM M , et al. Genotype-by-environment (temperature-humidity) interaction of milk production traits in Australian Holstein cattle[J]. J Dairy Sci, 2020, 103 (3): 2460- 2476.
doi: 10.3168/jds.2019-17609 |
26 |
SIGDEL A , LIU L , ABDOLLAHI-ARPANAHI R , et al. Genetic dissection of reproductive performance of dairy cows under heat stress[J]. Anim Genet, 2020, 51 (4): 511- 520.
doi: 10.1111/age.12943 |
27 |
DEKKERS J C M . Multiple trait breeding programs with genotype-by-environment interactions based on reaction norms, with application to genetic improvement of disease resilience[J]. Genet Sel Evol, 2021, 53 (1): 93.
doi: 10.1186/s12711-021-00687-2 |
28 |
BENGTSSON C , THOMASEN J R , KARGO M , et al. Emphasis on resilience in dairy cattle breeding: possibilities and consequences[J]. J Dairy Sci, 2022, 105 (9): 7588- 7599.
doi: 10.3168/jds.2021-21049 |
29 |
CAO L , LIU H M , MULDER H A , et al. Genomic breeding programs realize larger benefits by cooperation in the presence of genotype×environment interaction than conventional breeding programs[J]. Front Genet, 2020, 11, 251.
doi: 10.3389/fgene.2020.00251 |
30 | MISZTAL I. Complex models, more data: simpler programming?[C]//Proceedings of the Computational Cattle Breeding '99 Workshop. Tuusula, 1999: 33. |
31 |
SU G , LUND M S , SORENSEN D . Selection for litter size at day five to improve litter size at weaning and piglet survival rate[J]. J Anim Sci, 2007, 85 (6): 1385- 1392.
doi: 10.2527/jas.2006-631 |
32 |
LIU A X , LUND M S , WANG Y C , et al. Variance components and correlations of female fertility traits in Chinese Holstein population[J]. J Anim Sci Biotechnol, 2017, 8, 56.
doi: 10.1186/s40104-017-0189-x |
33 |
SHI R , BRITO L F , LIU A X , et al. Genotype-by-environment interaction in Holstein heifer fertility traits using single-step genomic reaction norm models[J]. BMC Genomics, 2021, 22 (1): 193.
doi: 10.1186/s12864-021-07496-3 |
34 |
WELLER J I , EZRA E , GERSHONI M . Genetic and genomic analysis of age at first insemination in Israeli dairy cattle[J]. J Dairy Sci, 2022, 105 (6): 5192- 5205.
doi: 10.3168/jds.2021-21528 |
35 | VEERKAMP R F , BEERDA B . Genetics and genomics to improve fertility in high producing dairy cows[J]. Theriogenology, 2007, 68 (Suppl 1): S266- S273. |
36 |
MUUTTORANTA K , TYRISEVÄ A M , MÄNTYSAARI E A , et al. Genetic parameters for female fertility in Nordic Holstein and Red Cattle dairy breeds[J]. J Dairy Sci, 2019, 102 (9): 8184- 8196.
doi: 10.3168/jds.2018-15858 |
37 |
陈紫薇, 师睿, 罗汉鹏, 等. 宁夏地区荷斯坦牛青年牛繁殖性状遗传参数估计[J]. 畜牧兽医学报, 2021, 52 (2): 344- 351.
doi: 10.11843/j.issn.0366-6964.2021.02.007 |
CHEN Z W , SHI R , LUO H P , et al. Estimation of genetic parameters of reproductive traits of Holstein heifers in Ningxia[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (2): 344- 351.
doi: 10.11843/j.issn.0366-6964.2021.02.007 |
|
38 |
MOTA L F M , LOPES F B , FERNANDES JÚNIOR G A , et al. Genome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers[J]. Sci Rep, 2020, 10 (1): 6481.
doi: 10.1038/s41598-020-63516-4 |
39 | 任小丽, 栗敏杰, 白雪利, 等. 中国荷斯坦牛青年初产年龄和成年母牛产犊间隔遗传参数估计[J]. 中国畜牧杂志, 2019, 55 (3): 45- 49. |
REN X L , LI M J , BAI X L , et al. Genetic parameters for age at first calving of heifer and calving interval of cow in Chinese Holstein[J]. Chinese Journal of Animal Science, 2019, 55 (3): 45- 49. | |
40 |
KEARNEY J F , SCHUTZ M M , BOETTCHER P J . Genotype×environment interaction for grazing vs. confinement. Ⅱ. Health and reproduction traits[J]. J Dairy Sci, 2004, 87 (2): 510- 516.
doi: 10.3168/jds.S0022-0302(04)73190-2 |
[1] | Yue FAN, Bo HAN, Yanhua LI, Lin LIU, Zhu MA, Dongxiao SUN. Progress in Genetic Studies of Feed Efficiency Traits in Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2786-2794. |
[2] | Xinrui ZHANG, Yu FU, Sijia MA, Zhuo YANG, Jinzhong TAO. Physiological Regulation and Feeding Management of Periparturient Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2325-2333. |
[3] | XIANG Hui, GUI Linsen, YANG Di, WEI Shihao, GONG Yanbin, SHI Yuangang, MA Yun, DAN Xingang. Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1412-1422. |
[4] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[5] | XU Lei, ZHANG Menghua, ZHANG Tao, GENG Juan, FAN Shoumin, YANG Guangwei, GUO Yang, DENG Qiang, LI Jinzhi, LIU Jiangwei, HUANG Xixia, WANG Yachun. Genetic Parameter Estimates for Body Conformation in Xinjiang Brown Cattle Based on Principal Component Analysis and Factor Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3677-3688. |
[6] | ZHAO Wanli, CAO Qiqi, YANG Yue, DENG Zhaoju, XU Chuang. The Interaction between Gastrointestinal Microbiota and Mucosal Immunity in Health of Perinatal Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2751-2760. |
[7] | HUANG Shangzhen, MA Longgang, LOU Wenqi, NING Jingyang, ZHANG Hailiang, HU Lirong, ZHA Qiong, LI Bin, XU Qing, BASANG Luobu, WANG Yachun. Analysis of Influencing Factors on Blood Indicators of Dairy Cows at High-altitude Area [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1964-1978. |
[8] | FENG Xiaoyi, YANG Baigao, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Mechanism and Solution of Heat Stress Induced Embryo Quality Decline in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 868-876. |
[9] | PAN Chanyuan, ZHAO Zixuan, DUAN Mingjie, JIANG Linshu, TONG Jinjin. The Mechanism of Artemisia carvifolia Alleviating Dairy Cow Oxidative Stress Predicted by Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1071-1084. |
[10] | FAN Lei, SHEN Yu, YOU Liuchao, TIAN Xinyu, LUO Hao, WANG Xin, ZHANG Tingting, SHEN Liuhong. Research Progress on Abnormal Glucose and Lipid Metabolism in Dairy Cows Induced by Lipopolysaccharide (LPS) [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 484-493. |
[11] | SHI Rui, SU Guosheng, CHEN Ziwei, LI Xiang, LUO Hanpeng, LIU Lin, GUO Gang, ZHANG Yi, WANG Yachun, ZHANG Shengli, ZHANG Qin. Comparisons of Genomic Predictions for Fertility Traits in Chinese Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2944-2954. |
[12] | SONG Yuetong, ZHANG Rumei, LI Yanqin, LI Rongling, GAO Yundong, ZHONG Jifeng, XUE Guanghui, WANG Yudong, LI Jianbin, SUN Dongxiao. Analysis of Genetic Parameters of Type Traits and Influence of Genealogical Generation of Holstein Cows in Shandong Province [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1384-1395. |
[13] | DOU Mengying, ZHANG Cai, LI Yuanxiao, SHAO Qi, ZHU Jiali, LI Wang, CAO Zhijun. Effects of L-Arginine on Proliferation and Apoptosis of Primary Intestinal Epithelial Cells of Dairy Cows Treated with Heat Stress in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 493-504. |
[14] | CHANG Yao, SU Guosheng, LI Yanhua, LI Xiang, MA Zhu, WANG Yachun. Estimating Genetic Parameters for Body Weights using Pedigree and Genotype-pedigree based Approaches in Holstein Heifers [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3759-3768. |
[15] | CHEN Ziwei, SHI Rui, LUO Hanpeng, TIAN Jia, WEI Chen, ZHANG Weixin, LI Weiqi, WEN Wan, WANG Yajing, WANG Yachun. Estimation of Genetic Parameters of Reproductive Traits of Holstein Heifers in Ningxia [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 344-351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||