Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (7): 2786-2794.doi: 10.11843/j.issn.0366-6964.2024.07.002
• Review • Previous Articles Next Articles
Yue FAN1,2(), Bo HAN1,2, Yanhua LI3, Lin LIU3, Zhu MA3, Dongxiao SUN1,2,4,*(
)
Received:
2024-01-18
Online:
2024-07-23
Published:
2024-07-24
Contact:
Dongxiao SUN
E-mail:1607747014@qq.com;sundx@cau.edu.cn
CLC Number:
Yue FAN, Bo HAN, Yanhua LI, Lin LIU, Zhu MA, Dongxiao SUN. Progress in Genetic Studies of Feed Efficiency Traits in Livestock and Poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2786-2794.
Table 1
List of some candidate genes for pig feed efficiency related traits"
基因缩写Gene abbreviation | 基因全称Full name of gene | 参考文献Reference |
CYP7B1 | Cytochrome P450 Family 7 Subfamily B Member 1 | [ |
MT3 | Metallothionein 3 | [ |
MC4R | Melanocortin 4 Receptor | [ |
PPARG | Peroxisome Proliferator Activated Receptor Gamma | [ |
INSR | Insulin Receptor | [ |
Table 2
List of some candidate genes for cattle feed efficiency related traits"
基因缩写Gene abbreviation | 基因全称Full name of gene | 参考文献Reference |
CARD11 | Caspase Recruitment Domain Family Member 11 | [ |
EIF3B | Eukaryotic Translation Initiation Factor 3 Subunit B | [ |
UBAC2 | UBA Domain Containing 2 | [ |
MRPL13 | Mitochondrial Ribosomal Protein L13 | [ |
DNM2 | Dynamin 2 | [ |
NR1H3 | Nuclear Receptor Subfamily 1 Group H Member 3 | [ |
1 | 郑爱荣, 牛岩, 张晓霞, 等. 豆粕减量替代的意义、研究进展与对策建议[J]. 饲料工业, 2023, 44 (14): 93- 98. |
ZHENG A R , NIU Y , ZHANG X X , et al. Significance, research progress and countermeasure on reduction and substitution of soybean meal[J]. Feed Industry, 2023, 44 (14): 93- 98. | |
2 | 曹兵海, 张越杰, 李俊雅, 等. 2022年肉牛牦牛产业发展趋势与政策建议[J]. 中国畜牧杂志, 2022, 58 (3): 251- 257. |
CAO B H , ZHANG Y J , LI J Y , et al. Development trends and policy recommendations of beef yak industry in 2022[J]. Chinese Journal of Animal Science, 2022, 58 (3): 251- 257. | |
3 |
REKAYA R , SAPP R L , WING T , et al. Genetic evaluation for growth, body composition, feed efficiency, and leg soundness[J]. Poult Sci, 2013, 92 (4): 923- 929.
doi: 10.3382/ps.2012-02649 |
4 |
WANAPAT M , CHERDTHONG A , PHESATCHA K , et al. Dietary sources and their effects on animal production and environmental sustainability[J]. Anim Nutr, 2015, 1 (3): 96- 103.
doi: 10.1016/j.aninu.2015.07.004 |
5 | 张海亮, 常瑶, 娄文琦, 等. 奶牛育种中关注的新性状[J]. 畜牧兽医学报, 2021, 52 (10): 2687- 2697. |
ZHANG H L , CHANG Y , LOU W Q , et al. A review on novel traits in dairy cattle breeding[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (10): 2687- 2697. | |
6 |
CONNOR E E , HUTCHISON J L , OLSON K M , et al. TRIENNIAL LACTATION SYMPOSIUM: opportunities for improving milk production efficiency in dairy cattle[J]. J Anim Sci, 2012, 90 (5): 1687- 1694.
doi: 10.2527/jas.2011-4528 |
7 | 杨宁, 孙从佼. 蛋鸡种业的昨天、今天和明天[J]. 中国畜牧业, 2021, (16): 22- 24. |
YANG N , SUN C J . Past, now and future of layer breeding industry[J]. China Animal Industry, 2021, (16): 22- 24. | |
8 | 张胜利, 孙东晓. 奶牛种业的昨天、今天和明天[J]. 中国畜牧业, 2021, (15): 22- 26. |
ZHANG S L , SUN D X . Past, now and future of dairy breeding industry[J]. China Animal Industry, 2021, (15): 22- 26. | |
9 | 张铁柱, 丽丽, 孙伟, 等. 饲料转化率性状在奶牛育种中的应用探究[J]. 中国奶牛, 2023, (5): 30- 32. |
ZHANG T Z , LI L , SUN W , et al. Application of feed conversion rate traits in dairy cow breeding[J]. China Dairy Cattle, 2023, (5): 30- 32. | |
10 |
SHAH T M , PATEL N V , PATEL A B , et al. A genome-wide approach to screen for genetic variants in broilers (Gallus gallus) with divergent feed conversion ratio[J]. Mol Genet Genomics, 2016, 291 (4): 1715- 1725.
doi: 10.1007/s00438-016-1213-0 |
11 |
HESS C W , BYERLY T C , JULL M A . The efficiency of feed utilization by barred Plymouth rock and crossbred broilers[J]. Poult Sci, 1941, 20 (3): 210- 216.
doi: 10.3382/ps.0200210 |
12 |
CRAMPTON E W , BELL J M . The effect of fineness of grinding on the utilization of oats by market hogs[J]. J Anim Sci, 1946, 5 (2): 200- 210.
doi: 10.2527/jas1946.52200x |
13 | SENIOR B J , SHEEHY E J , O'NEILL J , et al. Effect of fineness of grinding on the feeding value of oats for pigs[J]. J Dep Agric, 1950, 47 (1): 54- 70. |
14 |
AGGREY S E , REKAYA R . Dissection of Koch's residual feed intake: implications for selection[J]. Poult Sci, 2013, 92 (10): 2600- 2605.
doi: 10.3382/ps.2013-03302 |
15 | 宋颖超. 高低饲料效率黄羽肉鸡盲肠和粪便微生物宏基因组分析[D]. 北京: 中国农业大学, 2019. |
SONG Y C. Metagenomics analysis of cecum and fecal microorganism of yellow feather broiler with high and low feed efficiency[D]. Beijing: China Agricultural University, 2019. (in Chinese) | |
16 |
KOCH R M , SWIGER L A , CHAMBERS D , et al. Efficiency of feed use in beef cattle[J]. J Anim Sci, 1963, 22 (2): 486- 494.
doi: 10.2527/jas1963.222486x |
17 |
ARCHER J A , RICHARDSON E C , HERD R M , et al. Potential for selection to improve efficiency of feed use in beef cattle: a review[J]. Aust J Agric Res, 1999, 50 (2): 147- 161.
doi: 10.1071/A98075 |
18 |
LUITING P , SCHRAMA J W , VAN DER HEL W , et al. Metabolic differences between White Leghorns selected for high and low residual food consumption[J]. Br Poult Sci, 1991, 32 (4): 763- 782.
doi: 10.1080/00071669108417402 |
19 |
HOQUE M A , SUZUKI K , KADOWAKI H , et al. Genetic parameters for feed efficiency traits and their relationships with growth and carcass traits in Duroc pigs[J]. J Anim Breed Genet, 2007, 124 (3): 108- 116.
doi: 10.1111/j.1439-0388.2007.00650.x |
20 |
PRYCE J E , GONZALEZ-RECIO O , NIEUWHOF G , et al. Hot topic: definition and implementation of a breeding value for feed efficiency in dairy cows[J]. J Dairy Sci, 2015, 98 (10): 7340- 7350.
doi: 10.3168/jds.2015-9621 |
21 | 梁秋曼, 南良康, 陈明新, 等. 利用中红外光谱MIR预测奶牛饲料效率的研究进展[J]. 中国奶牛, 2018, (10): 5- 8. |
LIANG Q M , NAN L K , CHEN M X , et al. Research progress on feed efficiency of dairy cows from mid-infrared(MIR) spectra of milk[J]. China Dairy Cattle, 2018, 10 (1): 5- 8. | |
22 |
AGGREY S E , KARNUAH A B , SEBASTIAN B , et al. Genetic properties of feed efficiency parameters in meat-type chickens[J]. Genet Sel Evol, 2010, 42 (1): 25.
doi: 10.1186/1297-9686-42-25 |
23 |
YUAN J W , DOU T C , MA M , et al. Genetic parameters of feed efficiency traits in laying period of chickens[J]. Poult Sci, 2015, 94 (7): 1470- 1475.
doi: 10.3382/ps/pev122 |
24 |
XU Z Q , JI C L , ZHANG Y , et al. Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens[J]. BMC Genom, 2016, 17 (1): 594.
doi: 10.1186/s12864-016-2861-5 |
25 |
HOMMA C , HIROSE K , ITO T , et al. Estimation of genetic parameter for feed efficiency and resilience traits in three pig breeds[J]. Animal, 2021, 15 (11): 100384.
doi: 10.1016/j.animal.2021.100384 |
26 |
ROLFE K M , SNELLING W M , NIELSEN M K , et al. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle, and opportunities for selection[J]. J Anim Sci, 2011, 89 (11): 3452- 3459.
doi: 10.2527/jas.2011-3961 |
27 |
BENFICA L F , SAKAMOTO L S , MAGALHÃES A F B , et al. Genetic association among feeding behavior, feed efficiency, and growth traits in growing indicine cattle[J]. J Anim Sci, 2020, 98 (11): skaa350.
doi: 10.1093/jas/skaa350 |
28 |
MRODE R A , KENNEDY B W . Genetic variation in measures of food efficiency in pigs and their genetic relationships with growth rate and backfat[J]. Anim Sci, 1993, 56 (2): 225- 232.
doi: 10.1017/S0003356100021309 |
29 | 蔡飞翔. 提高军牧1号白猪饲料效率的测定与选择[D]. 长春: 吉林大学, 2014. |
CAI F X. Test and selection for improving feed efficiency of Junmu No. 1 white pig[D]. Changchun: Jilin University. (in Chinese) | |
30 |
WILLEMS O W , MILLER S P , WOOD B J . Assessment of residual body weight gain and residual intake and body weight gain as feed efficiency traits in the turkey (Meleagris gallopavo)[J]. Genet Sel Evol, 2013, 45 (1): 26.
doi: 10.1186/1297-9686-45-26 |
31 | 罗生浩. 猪饲料效率相关性状的遗传参数估计及全基因组关联分析[D]. 北京: 中国农业大学, 2022. |
LUO S H. Genetic parameter estimation and genome-wide association study of feed efficiency related traits in pigs[D]. Beijing: China Agricultural University, 2022. (in Chinese) | |
32 |
LIU T F , LUO C L , WANG J , et al. Assessment of the genomic prediction accuracy for feed efficiency traits in meat-type chickens[J]. PLoS One, 2017, 12 (3): e0173620.
doi: 10.1371/journal.pone.0173620 |
33 |
YUAN J W , CHEN S R , SHI F Y , et al. Genome-wide association study reveals putative role of gga-miR-15a in controlling feed conversion ratio in layer chickens[J]. BMC Genom, 2017, 18 (1): 699.
doi: 10.1186/s12864-017-4092-9 |
34 |
MAUCH E D , YOUNG J M , SERÃO N V L , et al. Effect of lower-energy, higher-fiber diets on pigs divergently selected for residual feed intake when fed higher-energy, lower-fiber diets[J]. J Anim Sci, 2018, 96 (4): 1221- 1236.
doi: 10.1093/jas/sky065 |
35 |
SAINTILAN R , SELLIER P , BILLON Y , et al. Genetic correlations between males, females and castrates for residual feed intake, feed conversion ratio, growth rate and carcass composition traits in Large White growing pigs[J]. J Anim Breed Genet, 2012, 129 (2): 103- 106.
doi: 10.1111/j.1439-0388.2011.00972.x |
36 |
MUJIBI F D N , NKRUMAH J D , DURUNNA O N , et al. Accuracy of genomic breeding values for residual feed intake in crossbred beef cattle[J]. J Anim Sci, 2011, 89 (11): 3353- 3361.
doi: 10.2527/jas.2010-3361 |
37 |
MANAFIAZAR G , GOONEWARDENE L , MIGLIOR F , et al. Genetic and phenotypic correlations among feed efficiency, production and selected conformation traits in dairy cows[J]. Animal, 2016, 10 (3): 381- 389.
doi: 10.1017/S1751731115002281 |
38 |
TORTEREAU F , MARIE-ETANCELIN C , WEISBECKER J L , et al. Genetic parameters for feed efficiency in Romane rams and responses to single-generation selection[J]. Animal, 2020, 14 (4): 681- 687.
doi: 10.1017/S1751731119002544 |
39 | 张燕, 张细权, 季从亮, 等. 优质鸡饲料报酬性状的遗传参数估计[J]. 中国畜牧杂志, 2013, 49 (7): 29-30, 87. |
ZHANG Y , ZHANG X Q , JI C L , et al. Molecular mechanisms of iron absorption, translocation, and regulation in animal intestine[J]. Chinese Journal of Animal Science, 2013, 49 (7): 29-30, 87. | |
40 |
GILBERT H , BIDANEL J P , GRUAND J , et al. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits[J]. J Anim Sci, 2007, 85 (12): 3182- 3188.
doi: 10.2527/jas.2006-590 |
41 | 赵云翔, 邝伟键, 高宁, 等. 杜洛克公猪背膘厚度、日增重、日采食量和饲料效率相关性状的遗传参数估计[J]. 家畜生态学报, 2019, 40 (11): 18- 21. |
ZHAO Y X , KUANG W J , GAO N , et al. Estimation of genetic parameters of growth and feed efficiency related traits in YX China-Line Duroc specialized strain[J]. Journal of Domestic Animal Ecology, 2019, 40 (11): 18- 21. | |
42 |
WEN C L , YAN W , ZHENG J X , et al. Feed efficiency measures and their relationships with production and meat quality traits in slower growing broilers[J]. Poult Sci, 2018, 97 (7): 2356- 2364.
doi: 10.3382/ps/pey062 |
43 | BASARAB J A , BEAUCHEMIN K A , BARON V S , et al. Reducing GHG emissions through genetic improvement for feed efficiency: effects on economically important traits and enteric methane production[J]. Animal, 2013, 7 (S2): 303- 315. |
44 |
BERRY D P , CROWLEY J J . CELL BIOLOGY SYMPOSIUM: genetics of feed efficiency in dairy and beef cattle[J]. J Anim Sci, 2013, 91 (4): 1594- 1613.
doi: 10.2527/jas.2012-5862 |
45 |
YANG F , MAO C Y , GUO L L , et al. Structural basis of GPBAR activation and bile acid recognition[J]. Nature, 2020, 587 (7834): 499- 504.
doi: 10.1038/s41586-020-2569-1 |
46 |
WU P X , WANG K , ZHOU J , et al. A combined GWAS approach reveals key loci for socially-affected traits in Yorkshire pigs[J]. Commun Biol, 2021, 4 (1): 891.
doi: 10.1038/s42003-021-02416-3 |
47 |
SILVA É F , LOPES M S , LOPES P S , et al. A genome-wide association study for feed efficiency-related traits in a crossbred pig population[J]. Animal, 2019, 13 (11): 2447- 2456.
doi: 10.1017/S1751731119000910 |
48 |
LKHAGVADORJ S , QU L , CAI W G , et al. Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298 (2): R494- R507.
doi: 10.1152/ajpregu.00632.2009 |
49 |
WANG H , XIONG K , SUN W , et al. Two completely linked polymorphisms in the PPARG transcriptional regulatory region significantly affect gene expression and intramuscular fat deposition in the longissimus dorsi muscle of Erhualian pigs[J]. Anim Genet, 2013, 44 (4): 458- 462.
doi: 10.1111/age.12025 |
50 |
DO D N , OSTERSEN T , STRATHE A B , et al. Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs[J]. BMC Genet, 2014, 15 (1): 27.
doi: 10.1186/1471-2156-15-27 |
51 |
DEVAILLY G , FÈVE K , SACI S , et al. Divergent selection for feed efficiency in pigs altered the duodenum transcriptomic response to feed intake and its DNA methylation profiles[J]. Physiol Genomics, 2024, 56 (5): 397- 408.
doi: 10.1152/physiolgenomics.00123.2023 |
52 |
LI B , FANG L , NULL D J , et al. High-density genome-wide association study for residual feed intake in Holstein dairy cattle[J]. J Dairy Sci, 2019, 102 (12): 11067- 11080.
doi: 10.3168/jds.2019-16645 |
53 |
SALLEH M S , MAZZONI G , HÖGLUND J K , et al. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle[J]. BMC Genom, 2017, 18 (1): 258.
doi: 10.1186/s12864-017-3622-9 |
54 |
SILVA D B S , FONSECA L F S , PINHEIRO D G , et al. Spliced genes in muscle from Nelore Cattle and their association with carcass and meat quality[J]. Sci Rep, 2020, 10 (1): 14701.
doi: 10.1038/s41598-020-71783-4 |
55 |
BENFICA L F , BRITO L F , DO BEM R D , et al. Genome-wide association study between copy number variation and feeding behavior, feed efficiency, and growth traits in Nellore cattle[J]. BMC Genom, 2024, 25 (1): 54.
doi: 10.1186/s12864-024-09976-8 |
56 |
KONG R S G , LIANG G X , CHEN Y H , et al. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake[J]. BMC Genom, 2016, 17 (1): 592.
doi: 10.1186/s12864-016-2935-4 |
57 |
KEOGH K , KENNY D A , ALEXANDRE P A , et al. An across breed, diet and tissue analysis reveals the transcription factor NR1H3 as a key mediator of residual feed intake in beef cattle[J]. BMC Genom, 2024, 25 (1): 234.
doi: 10.1186/s12864-024-10151-2 |
58 |
CARMICHAEL M N , DYCUS M M , LOURENCO J M , et al. Ruminal Microbiome differences in Angus steers with differing feed efficiencies during the feedlot finishing phase[J]. Microorganisms, 2024, 12 (3): 536.
doi: 10.3390/microorganisms12030536 |
59 | 黄帅. 新产奶牛胃肠道菌群与采食量的关联性及其调控采食量的机制研究[D]. 北京: 中国农业大学, 2021. |
HUANG S. The relationship between gastrointestinal microbiota and feed intake of fresh cows and it's regulation mechanism[D]. Beijing: China Agricultural University, 2021. (in Chinese) | |
60 |
YUAN J W , WANG K H , YI G Q , et al. Genome-wide association studies for feed intake and efficiency in two laying periods of chickens[J]. Genet Sel Evol, 2015, 47 (1): 82.
doi: 10.1186/s12711-015-0161-1 |
61 |
SUN L L , JIANG B G , LI W T , et al. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression[J]. Diabetes Res Clin Pract, 2011, 91 (1): 94- 100.
doi: 10.1016/j.diabres.2010.11.006 |
62 |
LI W , ZHENG M Q , ZHAO G P , et al. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers[J]. Genet Sel Evol, 2021, 53 (1): 13.
doi: 10.1186/s12711-021-00608-3 |
63 |
KANG Y L , STROUD D A , BAKER M J , et al. Sengers syndrome-associated mitochondrial acylglycerol kinase is a subunit of the human TIM22 protein import complex[J]. Mol Cell, 2017, 67 (3): 457- 470.e5.
doi: 10.1016/j.molcel.2017.06.014 |
64 |
YI G Q , YUAN J W , BI H J , et al. In-Depth duodenal transcriptome survey in chickens with divergent feed efficiency using RNA-Seq[J]. PLoS One, 2015, 10 (9): e0136765.
doi: 10.1371/journal.pone.0136765 |
65 |
JAYASOORIYA A P , MATHAI M L , WALKER L L , et al. Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance[J]. Proc Natl Acad Sci USA, 2008, 105 (18): 6531- 6536.
doi: 10.1073/pnas.0802690105 |
66 |
BERNARD M , LECOEUR A , COVILLE J L , et al. Relationship between feed efficiency and gut microbiota in laying chickens under contrasting feeding conditions[J]. Sci Rep, 2024, 14 (1): 8210.
doi: 10.1038/s41598-024-58374-3 |
67 |
ZHOU Q Q , LAN F R , GU S , et al. Genetic and microbiome analysis of feed efficiency in laying hens[J]. Poult Sci, 2023, 102 (4): 102393.
doi: 10.1016/j.psj.2022.102393 |
68 |
HE Z X , LIU R R , WANG M J , et al. Combined effect of microbially derived cecal SCFA and host genetics on feed efficiency in broiler chickens[J]. Microbiome, 2023, 11 (1): 198.
doi: 10.1186/s40168-023-01627-6 |
[1] | XU Lei, ZHANG Menghua, ZHANG Tao, GENG Juan, FAN Shoumin, YANG Guangwei, GUO Yang, DENG Qiang, LI Jinzhi, LIU Jiangwei, HUANG Xixia, WANG Yachun. Genetic Parameter Estimates for Body Conformation in Xinjiang Brown Cattle Based on Principal Component Analysis and Factor Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3677-3688. |
[2] | WANG Zheng, GUO Wenjie, CHENG Jin, YUAN Yitong, LUO Rong, XUE Yi, ZHANG Lihuan, ZHU Zhiwei, LI Huifeng. Association Study of Polymorphism in the Regulatory Region of Nutrient Transport-related Genes and Feed Conversion Ratio in Yellow-feather Broiler [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2343-2352. |
[3] | SONG Yuetong, ZHANG Rumei, LI Yanqin, LI Rongling, GAO Yundong, ZHONG Jifeng, XUE Guanghui, WANG Yudong, LI Jianbin, SUN Dongxiao. Analysis of Genetic Parameters of Type Traits and Influence of Genealogical Generation of Holstein Cows in Shandong Province [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1384-1395. |
[4] | CHANG Yao, SU Guosheng, LI Yanhua, LI Xiang, MA Zhu, WANG Yachun. Estimating Genetic Parameters for Body Weights using Pedigree and Genotype-pedigree based Approaches in Holstein Heifers [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3759-3768. |
[5] | LI Sen, DU Yongwang, WEN Jie, HUANG Chao, CHEN Zhiwu, ZHAO Guiping, ZHENG Maiqing. A Study of Genomic Selection for Feed Efficiency Traits in Fast-growing Yellow-feathered Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2151-2161. |
[6] | CHEN Ziwei, SHI Rui, LUO Hanpeng, TIAN Jia, WEI Chen, ZHANG Weixin, LI Weiqi, WEN Wan, WANG Yajing, WANG Yachun. Estimation of Genetic Parameters of Reproductive Traits of Holstein Heifers in Ningxia [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 344-351. |
[7] | PENG Peng, LI Jianming, JIANG Guie, YANG Chendong, MA Yabin, NI Junqing, SUN Dongxiao. Genetic Parameters Analysis for Milk Production and Type Traits in Chinese Holstein in Hebei [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(1): 42-51. |
[8] | ZHU Bo, LI Jiao, WANG Congyong, XU Lingyang, CHEN Yan, GAO Xue, ZHANG Lupei, GAO Huijiang, LI Junya. Genetic Parameter and Genetic Gain Estimation for Growth and Development Traits in Chinese Simmental Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1833-1844. |
[9] | WEI Chen, GUAN Mingxuan, FU Xuefeng, TIAN Yuezhen, XU Xinming, HANIKEZI Tulafu, HUANG Xixia, WANG Yachun, TIAN Kechuan, WANG Zhiming, LULAN Hayierbieke. Estimates of Genetic Parameters for Wool and Reproduction Traits in Chinese Merino Sheep(Xinjiang type) by Bayesian Method [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1537-1547. |
[10] | SHANG Xiuguo, YU Weiwei, ZHAO Yunxiang, ZHU Xiaoping, CAO Tingting, GAO Guangxiong. Estimation of Genetic Parameters and Analysis of Season Effects and Age Effects for Semen Traits in Landrace Boars [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(10): 2425-2432. |
[11] | LI Jing, WANG Jie, KANG Huimin, LIU Ranran, LI Hua, ZHAO Guiping. The Difference of Genetic Parameters for Carcass and Meat Quality Traits by BLUP and GBLUP Methods in Beijing You Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1): 35-42. |
[12] | XU Yaxi, HU Jian, LIU Hehe, ZHOU Zhengkui, HOU Shuisheng, LIU Xiaolin. Genetic Parameter Estimation for Cervical and Thoracic Vertebrae Number Related Traits of Ducks [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(5): 939-946. |
[13] | DONG Yixin, LI Xiang, QI Jiangang, LUO Hanpeng, DOU Jinhuan, LIU Lin, LI Xizhi, WANG Yachun. Estimation of Genetic Parameters of Reproductive Diseases within 0-35 Days after Calving in Chinese Holsteins [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(2): 280-286. |
[14] | DONG Gang-hui, ZHANG Xu, WANG Ya-chun, WU Hong-jun, LIU Ai-rong, ZHANG Yi, WANG Dong-sheng, CUI Jiu-hui, YUAN Peng, JIANG Li-xin, ZHOU Lei, ZHAO Jian. Genetic Parameter Estimation of Body Size and Weight of Adult Sanhe Cows [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2017, 48(10): 1843-1854. |
[15] | NIU Hong,BAO Jin-shan,WU Yang,ZHU Bo,ZHANG Wen-gang,XIA Jiang-wei,SONG Yu-xin,GUO Peng,XU Ling-yang,CHEN Yan,GAO Xue,ZHANG Lu-pei,GAO Hui-jiang,LI Jun-ya. Estimation of Genetic Parameters for Economic Important Traits in Chinese Simmental Beef Cattle [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(9): 1817-1823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||