Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (4): 1456-1466.doi: 10.11843/j.issn.0366-6964.2024.04.011
• REVIEW • Previous Articles Next Articles
LUO Tongwang, WU Ya, WANG Shujie, SONG Houhui*, SHAO Chunyan*
Received:
2023-07-18
Online:
2024-04-23
Published:
2024-04-26
CLC Number:
LUO Tongwang, WU Ya, WANG Shujie, SONG Houhui, SHAO Chunyan. Research Progress on the Mechanism of Cadmium Induced Liver Damage and Selenium Antagonizing Cadmium Hepatotoxicity[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1456-1466.
[1] LI W X, TAN M X, WANG H Q, et al. METTL3-mediated m6A mRNA modification was involved in cadmium-induced liver injury[J]. Environ Pollut, 2023, 331:121887. [2] WU J, ZHOU X H, ZHANG M, et al. Study of the change of madlondialdehyde contents and superoxide dismutase activities during Cadium induced apoptosis of mouse granulosa cells[J]. Chinese Journal of Veterinary Medicine, 2008, 44(6):24-25. (in Chinese) 邬静, 周新华, 张明, 等. 镉诱导小鼠卵巢颗粒细胞凋亡时MDA含量及SOD活性变化[J]. 中国兽医杂志, 2008, 44(6):24-25. [3] ZHANG H, REYNOLDS M. Cadmium exposure in living organisms:a short review[J]. Sci Total Environ, 2019, 678:761-767. [4] JIA Y Z, YIN C Z, KE W B, et al. Alpha-ketoglutarate alleviates cadmium-induced inflammation by inhibiting the HIF1A-TNFAIP3 pathway in hepatocytes[J]. Sci Total Environ, 2023, 878:163069. [5] CHOU X, LI X H, MIN Z, et al. Sirtuin-1 attenuates cadmium-induced renal cell senescence through p53 deacetylation[J]. Ecotoxicol Environ Saf, 2022, 245:114098. [6] ZHANG X Q, TONG X S, WANG G S, et al. Puerarin alleviates the inhibitory effect of cadmium on the femoral and tibial osteoblast differentiation of rat[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2):628-636. (in Chinese) 张雪晴, 仝锡帅, 王果帅, 等. 葛根素缓解镉对大鼠股骨胫骨中成骨细胞分化的抑制作用[J]. 畜牧兽医学报, 2022, 53(2):628-636. [7] YUAN J Z, HUANG X Q, GU J H, et al. Honokiol reduces cadmium-induced oxidative injury and endosomal/lysosomal vacuolation via protecting mitochondrial function in quail (Coturnix japonica) liver tissues[J]. Sci Total Environ, 2023, 857:159626. [8] PECORARO B M, LEAL D F, FRIAS-DE-DIEGO A, et al. The health benefits of selenium in food animals:a review[J]. J Anim Sci Biotechnol, 2022, 13(1):58. [9] ZHANG F, LI X L, WEI Y M. Selenium and selenoproteins in health[J]. Biomolecules, 2023, 13(5):799. [10] DU H, ZHENG Y L, ZHANG W, et al. Nano-selenium alleviates cadmium-induced acute hepatic toxicity by decreasing oxidative stress and activating the Nrf2 pathway in male Kunming mice[J]. Front Vet Sci, 2022, 9:942189. [11] NITURE S, LIN M H, QI Q, et al. Role of autophagy in cadmium-induced hepatotoxicity and liver diseases[J]. J Toxicol, 2021, 2021:9564297. [12] FANG J, YIN H, YANG Z Z, et al. Vitamin E protects against cadmium-induced sub-chronic liver injury associated with the inhibition of oxidative stress and activation of Nrf2 pathway[J]. Ecotoxicol Environ Saf, 2021, 208:111610. [13] OKOYE C N, MACDONALD-JAY N, KAMUNDE C. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption[J]. Aquat Toxicol, 2019, 214:105264. [14] HU W, ZHU Q L, ZHENG J L, et al. Cadmium induced oxidative stress, endoplasmic reticulum (ER) stress and apoptosis with compensative responses towards the up-regulation of ribosome, protein processing in the ER, and protein export pathways in the liver of zebrafish[J]. Aquat Toxicol, 2022, 242:106023. [15] RANI A, KUMAR A, LAL A, et al. Cellular mechanisms of cadmium-induced toxicity:a review[J]. Int J Environ Health Res, 2014, 24(4):378-399. [16] WANG Y, WU J, ZHANG M M, et al. Cadmium exposure during puberty damages testicular development and spermatogenesis via ferroptosis caused by intracellular iron overload and oxidative stress in mice[J]. Environ Pollut, 2023, 15(325):121434. [17] DUAN Y T, ZHAO Y M, WANG T, et al. Taurine alleviates cadmium-induced hepatotoxicity by regulating autophagy flux[J]. Int J Mol Sci, 2023, 24(2):1205. [18] WEN S Q, WANG L, ZHANG W H, et al. Effects of Fas on autophagosomes formation induced by cadmium exposure in rat cerebral cortex[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5):1608-1614. (in Chinese) 闻双全, 王莉, 张文华, 等. Fas对镉暴露致大鼠大脑皮质自噬体形成的影响[J]. 畜牧兽医学报, 2022, 53(5):1608-1614. [19] NODA N N. Cytoskeleton grows p62 condensates for autophagy[J]. Cell Res, 2022, 32(7):607-608. [20] QIAN H, CHAO X J, WILLIAMS J, et al. Autophagy in liver diseases:a review[J]. Mol Aspects Med, 2021, 82:100973. [21] ZHAO Y, LI Z F, ZHANG D, et al. Quercetin alleviates Cadmium-induced autophagy inhibition via TFEB-dependent lysosomal restoration in primary proximal tubular cells[J]. Ecotoxicol Environ Saf, 2021, 208:111743. [22] WANG H, WANG A Q, WANG X Q, et al. AMPK/PPAR-γ/NF-κB axis participates in ROS-mediated apoptosis and autophagy caused by cadmium in pig liver[J]. Environ Pollut, 2022, 294:118659. [23] SUN J, YU F, WANG T, et al. The role of DRP1- PINK1-Parkin-mediated mitophagy in early cadmium-induced liver damage[J]. Toxicology, 2022, 466:153082. [24] BRANCA J J V, FIORILLO C, CARRINO D, et al. Cadmium-induced oxidative stress:focus on the central nervous system[J]. Antioxidants (Basel), 2020, 9(6):492. [25] GAO M L, YANG Y J, LV M T, et al. Oxidative stress and DNA damage in zebrafish liver due to hydroxyapatite nanoparticles-loaded cadmium[J]. Chemosphere, 2018, 202:498-505. [26] SKIPPER A, SIMS J N, YEDJOU C G, et al. Cadmium chloride induces DNA damage and apoptosis of human liver carcinoma cells via oxidative stress[J]. Int J Environ Res Public Health, 2016, 13(1):88. [27] ZANI A P, ZANI C P, DIN Z U, et al. Dibenzylideneacetone induces apoptosis in cervical cancer cells through Ros-Mediated mitochondrial damage[J]. Antioxidants (Basel), 2023, 12(2):317. [28] SOUZA-ARROYO V, FABIÁN J J, BUCIO-ORTIZ L, et al. The mechanism of the cadmium-induced toxicity and cellular response in the liver[J]. Toxicology, 2022, 480:153339. [29] SAMARGHANDIAN S, AZIMI-NEZHAD M, SHABESTARI M M, et al. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats[J]. Interdiscip Toxicol, 2015, 8(3):151-154. [30] WANG Y W, JI X Q, DAI S Y, et al. Cadmium induced redistribution of cholesterol by upregulating ABCA1 and downregulating OSBP[J]. J Inorg Biochem, 2018, 189:199-207. [31] GU J, KONG A Q, GUO C Z, et al. Cadmium perturbed lipid profile and induced liver dysfunction in mice through phosphatidylcholine remodeling and promoting arachidonic acid synthesis and metabolism[J]. Ecotoxicol Environ Saf, 2022, 247:114254. [32] ALSHEHRI A S, EL-KOTT A F, EL-KENAWY A E, et al. Cadmium chloride induces non-alcoholic fatty liver disease in rats by stimulating miR-34a/SIRT1/FXR/p53 axis[J]. Sci Total Environ, 2021, 784:147182. [33] OBENG E. Apoptosis (programmed cell death) and its signals-A review[J]. Braz J Biol, 2021, 81(4):1133-1143. [34] WANG J C, ZHU H L, LIU X Z, et al. Oxidative stress and Ca2+ signals involved on cadmium-induced apoptosis in rat hepatocyte[J]. Biol Trace Elem Res, 2014, 161(2):180-189. [35] LI K D, GUO C Z, RUAN J C, et al. Cadmium disrupted ER Ca2+ homeostasis by inhibiting SERCA2 expression and activity to induce apoptosis in renal proximal tubular cells[J]. Int J Mol Sci, 2023, 24(6):5979. [36] WANG J C, DING L L, WANG K, et al. Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin[J]. Ecotoxicol Environ Saf, 2022, 241:113772. [37] AHAMED M, AKHTAR M J, ALHADLAQ H A. Influence of silica nanoparticles on cadmium-induced cytotoxicity, oxidative stress, and apoptosis in human liver HepG2 cells[J]. Environ Toxicol, 2020, 35(5):599-608. [38] ZHANG R X, YI R, BI Y J, et al. The effect of selenium on the Cd-induced apoptosis via NO-mediated mitochondrial apoptosis pathway in chicken liver[J]. Biol Trace Elem Res, 2017, 178(2):310-319. [39] ARAB-NOZARI M, MOHAMMADI E, SHOKRZADEH M, et al. Co-exposure to non-toxic levels of cadmium and fluoride induces hepatotoxicity in rats via triggering mitochondrial oxidative damage, apoptosis, and NF-κB pathways[J]. Environ Sci Pollut Res Int, 2020, 27(19):24048-24058. [40] LIU C, ZHU Y H, LU Z X, et al. Cadmium Induces Acute Liver Injury by Inhibiting Nrf2 and the Role of NF-κB, NLRP3, and MAPKs Signaling Pathway[J]. Int J Environ Res Public Health, 2019, 17(1):138. [41] HAO R L, GE J L, REN Y F, et al. Caffeic acid phenethyl ester mitigates cadmium-induced hepatotoxicity in mice:role of miR-182-5p/TLR4 axis[J]. Ecotoxicol Environ Saf, 2021, 207:111578. [42] WANG C C, SI L F, GUO S N, et al. Negative effects of acute cadmium on stress defense, immunity, and metal homeostasis in liver of zebrafish:The protective role of environmental zinc dpre-exposure[J]. Chemosphere, 2019, 222:91-97. [43] GERASIMENKO T N, SENYAVINA N V, ANISIMOV N U, et al. A model of cadmium uptake and transport in caco-2 cells[J]. Bull Exp Biol Med, 2016, 161(1):187-192. [44] FUJIE T, ITO K, OZAKI Y, et al. Induction of ZIP8, a ZIP transporter, via NF-κB signaling by the activation of IκBα and JNK signaling in cultured vascular endothelial cells exposed to cadmium[J]. Toxicol Appl Pharmacol, 2022, 434:115802. [45] KWOK M L, LI Z P, LAW T Y S, et al. Promotion of cadmium uptake and cadmium-induced toxicity by the copper transporter CTR1 in HepG2 and ZFL cells[J]. Toxicol Rep, 2020, 7:1564-1570. [46] HIRAO-SUZUKI M, TAKEDA S, SAKAI G, et al. Cadmium-stimulated invasion of rat liver cells during malignant transformation:Evidence of the involvement of oxidative stress/TET1-sensitive machinery[J]. Toxicology, 2021, 447:152631. [47] STOCKWELL B R. Ferroptosis turns 10:emerging mechanisms, physiological functions, and therapeutic applications[J]. Cell, 2022, 185(14):2401-2421. [48] LIN F Y, CHEN W Y, ZHOU J H, et al. Mesenchymal stem cells protect against ferroptosis via exosome-mediated stabilization of SLC7A11 in acute liver injury[J]. Cell Death Dis, 2022, 13(3):271. [49] LI K, XU K, HE Y, et al. Functionalized Tumor-targeting nanosheets exhibiting Fe(Ⅱ) overloading and GSH consumption for Ferroptosis activation in liver tumor[J]. Small, 2021, 17(40):2102046. [50] CHEN J Y, YU M, ZHANG J Y, et al. Study on the involvement of Ferroptosis in liver injury of cadmium-exposed chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2):787-802. (in Chinese) 陈敬宜, 于淼, 张金洋, 等. 铁死亡参与镉暴露鸡肝损伤的研究[J]. 畜牧兽医学报, 2023, 54(2):787-802. [51] HE Z Q, SHEN P, FENG L J, et al. Cadmium induces liver dysfunction and ferroptosis through the endoplasmic stress-ferritinophagy axis[J]. Ecotoxicol Environ Saf, 2022, 245:114123. [52] WU Q B, CHEN Z H, DING Y, et al. Protective effect of traditional Chinese medicine on non-alcoholic fatty liver disease and liver cancer by targeting ferroptosis[J]. Front Nutr, 2022, 9:1033129. [53] FU Y T, ZHANG J, LIU W B, et al. Gestational cadmium exposure disrupts fetal liver development via repressing estrogen biosynthesis in placental trophoblasts[J]. Food Chem Toxicol, 2023, 176:113807. [54] ZHANG H L, YAN J, XIE Y, et al. Dual role of cadmium in rat liver:inducing liver injury and inhibiting the progression of early liver cancer[J]. Toxicol Lett, 2022, 355:62-81. [55] SUN X H, LV M W, ZHAO Y X, et al. Nano-selenium antagonized cadmium-induced liver fibrosis in chicken[J]. J Agric Food Chem, 2023, 71(1):846-856. [56] ZHANG C, LIN J, GE J, et al. Selenium triggers Nrf2-mediated protection against cadmium-induced chicken hepatocyte autophagy and apoptosis[J]. Toxicol in Vitro, 2017, 44:349-356. [57] XIONG Z W, YANG F, XU T F, et al. Selenium alleviates cadmium-induced aging via mitochondrial quality control in the livers of sheep[J]. J Inorg Biochem, 2022, 232:111818. [58] ZHANG L W, YANG F, LI Y, et al. The protection of selenium against cadmium-induced mitophagy via modulating nuclear xenobiotic receptors response and oxidative stress in the liver of rabbits[J]. Environ Pollut, 2021, 285:117301. [59] CAO Z Y, YANG F, LIN Y Q, et al. Selenium antagonizes cadmium-induced inflammation and oxidative stress via suppressing the interplay between NLRP3 inflammasome and HMGB1/NF-κB pathway in duck hepatocytes[J]. Int J Mol Sci, 2022, 23(11):6252. [60] NADERI M, PUAR P, ZONOUZI-MARAND M, et al. A comprehensive review on the neuropathophysiology of selenium[J]. Sci Total Environ, 2021, 767:144329. [61] KAYROUZ C M, HUANG J, HAUSER N, et al. Biosynthesis of selenium-containing small molecules in diverse microorganisms[J]. Nature, 2022, 610(7930):199-204. [62] ZWOLAK I, ZAPOROWSKA H. Selenium interactions and toxicity:a review[J]. Cell Biol Toxicol, 2012, 28(1):31-46. [63] ZHANG J Q, ZHENG S F, WANG S C, et al. Cadmium-induced oxidative stress promotes apoptosis and necrosis through the regulation of the miR-216a-PI3K/AKT axis in common carp lymphocytes and antagonized by selenium[J]. Chemosphere, 2020, 258:127341. [64] ALI H F H, EL-SAYED N M, KHODEER D M, et al. Nano selenium ameliorates oxidative stress and inflammatory response associated with cypermethrin-induced neurotoxicity in rats[J]. Ecotoxicol Environ Saf, 2020, 195:110479. [65] AL-KAHTANI M, MORSY K. Ameliorative effect of selenium nanoparticles against aluminum chloride-induced hepatorenal toxicity in rats[J]. Environ Sci Pollut Res Int, 2019, 26(31):32189-32197. [66] VICAS S I, LASLO V, TIMAR A V, et al. Nano selenium-enriched probiotics as functional food products against cadmium liver toxicity[J]. Materials (Basel), 2021, 14(9):2257. [67] JIHEN E H, IMED M, FATIMA H, et al. Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver of the rat:effects on the oxidative stress[J]. Ecotoxicol Environ Saf, 2009, 72(5):1559-1564. [68] ALIM I, CAULFIELD J T, CHEN Y X, et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke[J]. Cell, 2019, 177(5):1262-1279.e25. [69] INGOLD I, BERNDT C, SCHMITT S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3):409-422.e21. [70] CONG Y M, CHI Q R, TENG X H, et al. The protection of selenium against cadmium-induced mitochondrial damage via the cytochrome P450 in the livers of chicken[J]. Biol Trace Elem Res, 2019, 190(2):484-492. [71] YIIN S J, CHERN C L, SHEU J Y, et al. Cadmium-induced liver, heart, and spleen lipid peroxidation in rats and protection by selenium[J]. Biol Trace Elem Res, 2000, 78(1/3):219-230. [72] EL-BOSHY M E, RISHA E F, ABDELHAMID F M, et al. Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats[J]. J Trace Elem Med Biol, 2015, 29:104-110. [73] WANG Y, CHEN H W, CHANG W H, et al. Protective effects of selenium yeast against cadmium-induced necroptosis via inhibition of oxidative stress and MAPK pathway in chicken liver[J]. Ecotoxicol Environ Saf, 2020, 206:111329. [74] WANG Y. Selenium-enriched yeast combined with vitamin E attenuates cadmium-induced liver injury in mice[D]. Yichun:Yichun University, 2022:1-26. (in Chinese) 王跃. 富硒酵母联合维生素E减轻镉诱导小鼠肝损伤的研究[D]. 宜春:宜春学院, 2022:1-26. [75] ZHAO M F. Synthesis of curcumin-selenium coordination compound and intervention on liver injury exposed to Cadmiun in rats[D]. Tangshan:North China University of Science and Technology, 2015:1-40. (in Chinese) 赵鸣飞. 姜黄素-硒配合物的合成及对镉染毒大鼠肝损伤的干预作用[D]. 唐山:华北理工大学, 2015:1-40. [76] LI J L, JIANG C Y, LI S, et al. Cadmium induced hepatotoxicity in chickens (Gallus domesticus) and ameliorative effect by selenium[J]. Ecotoxicol Environ Saf, 2013, 96:103-109. [77] SLENCU B G, CIOBANU C, CUCIUREANU R, et al. Protective effects of selenium on hepatotoxicity caused by subacute experimental combined exposure to cadmium and lead in rats[J]. Farmacia, 2018, 66(5):866-876. [78] ZHANG C, GE J, LV M W, et al. Selenium prevent cadmium-induced hepatotoxicity through modulation of endoplasmic reticulum-resident selenoproteins and attenuation of endoplasmic reticulum stress[J]. Environ Pollut, 2020, 260:113873. [79] ZHANG R X, LIU Y H, XING L, et al. The protective role of selenium against cadmium-induced hepatotoxicity in laying hens:Expression of Hsps and inflammation-related genes and modulation of elements homeostasis[J]. Ecotoxicol Environ Saf, 2018, 159:205-212. [80] ABU-EL-ZAHAB H S H, HAMZA R Z, MONTASER M M, et al. Antioxidant, antiapoptotic, antigenotoxic, and hepatic ameliorative effects of L-carnitine and selenium on cadmium-induced hepatotoxicity and alterations in liver cell structure in male mice[J]. Ecotoxicol Environ Saf, 2019, 173:419-428. [81] WANG Y, LIU J F, CHEN R, et al. The antagonistic effects of selenium yeast (SeY) on cadmium-induced inflammatory factors and the heat shock protein expression levels in chicken livers[J]. Biol Trace Elem Res, 2020, 198(1):260-268. [82] ZOIDIS E, PAPADOMICHELAKIS G, PAPPAS A C, et al. Effects of selenium and cadmium on breast muscle fatty-acid composition and gene expression of liver antioxidant proteins in broilers[J]. Antioxidants (Basel), 2019, 8(5):147. |
[1] | NIU Jiajia, XU Dan, LIU Yang, ZHAO Xiaoling. Research Progress on Genetic Regulation Mechanism of Barring Feather Trait in Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1883-1892. |
[2] | YU Zuhua, GAO Mengru, QI Zhiying, ZHANG Jingyu, HE Lei, CHEN Jian, DING Ke. Research Progress on the Function of RNA Binding Protein ELAVL1 and Its Regulation of Viral Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1914-1925. |
[3] | ZHANG Jixian, FAN Dingkun, FU Yuze, JIAO Shuai, MA Tao, BI Yanliang, ZHANG Naifeng. Research Progress on Mechanism and Application of Postbiotics in Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1926-1935. |
[4] | WEI Yating, XU Zejun, CHEN Hongyu, WANG Xianwei, CHEN Qixin, LIU Shenhe. Research Progress of Exogenous Vitamin E and Selenium Regulating Semen Quality in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1389-1400. |
[5] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[6] | HE Xiaolan, ZHAO Yankun, MENG Lu, LIU Huimin, GAO Jiaojiao, ZHENG Nan. Research Progress in Heteroresistance of Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1432-1445. |
[7] | WANG Xiao, ZHANG Hao, LUAN Qingjiang, LI Hui, YANG Ding, WANG Tingyue, TIAN Jing, ZHAO Meng, CHEN Lu, TIAN Rugang. A Comprehensive Review of the Impact of Cold and Heat Stress on the Physiological Parameters and Gene Expression in Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 894-904. |
[8] | FU Xuezhen, LI Xincan, QIAN Hongyu, LÜ Hong, WU Chanyu, WANG Xiaohan, WANG Xiaohua, WANG Zhiying, ZHOU Zuoyong. Antibacterial Effect and Mechanism of Bergamot Essential Oil on Corynebacterium pseudotuberculosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1217-1227. |
[9] | WANG Hao, XIAO Jinlong, SHEN Jue, ZHAO Jingang, WANG Shuai, LIU Gen, ZHAO Ru, XIAO Peng, GAO Hong. New Ways of Cell Death—Ferroptosis and Cuproptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 461-470. |
[10] | ZHOU Mengting, SONG Yinjuan, XU Jian, LI Bin, RAN Duoliang, CHU Yuefeng. Advances in Carbohydrate-based Adjuvant Mechanisms of Action [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 491-501. |
[11] | LIU Yuanhong, HU Yuhuan, ZHANG Li, YANG Pingrui, HU Weidong, MA Qi, BI Shicheng. Network Pharmacologic Analysis and Experimental Verification of Atractylodes Macrocephala-Cistanche Deserticola in the Treatment of Constipation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 834-845. |
[12] | WANG Siying, ZOU Hong, SONG Zhenhui. The Role of Na+/H+ Exchanger Isoform 3 in Infectious Diarrhea and Its Activity Regulation Mechanism [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3230-3241. |
[13] | ZHANG Xumei, WEI Yurong, XU Chenghui, YANG Tong, SHI Huijun, FU Qiang, YANG Li. To Analyze the Mechanism of Berberine in the Treatment of Salmonella Gallinarum Infection Based on Network Pharmacology and Experimental Verification [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3557-3570. |
[14] | ZHOU Weiwei, WANG Xuefeng, ZHANG Mengjie, YANG Juan, SUN Yuelong, ZHANG Zufeng, ZHANG Yuxin, DOU Jiahong, WANG Ziying, DAI Xiaofeng, LI Xiumei. Analysing the Mechanism of Sihuang Zhili Granule in the Treatment of Piglet Diarrhea Based on Biological Network Function Modules and Compatibility Rules [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3031-3043. |
[15] | AN Zongqi, ZHAN Siyuan, LI Li, ZHANG Hongping. ceRNA-mediated Function of CircRNA on Critical Economic Traits in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2215-2222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||