Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (3): 971-983.doi: 10.11843/j.issn.0366-6964.2024.03.011
• REVIEW • Previous Articles Next Articles
GAO Yuanji1,2,3, LIU Chang1,2,3, CHEN Miao1, CHEN Songbiao1,2,3, ZHANG Junfeng4, LI Jing1,2,3, JIA Yanyan1,2,3, LIAO Chengshui1,2,3, GUO Rongxian1,2,3, DING Ke1,2,3, YU Zuhua1,2,3*, SHANG Ke1,2,3*
Received:
2023-06-27
Online:
2024-03-23
Published:
2024-03-27
CLC Number:
GAO Yuanji, LIU Chang, CHEN Miao, CHEN Songbiao, ZHANG Junfeng, LI Jing, JIA Yanyan, LIAO Chengshui, GUO Rongxian, DING Ke, YU Zuhua, SHANG Ke. Structure, Secretory Characteristics, and Pathogenic Mechanism of Bacterial Outer Membrane Vesicles[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 971-983.
[1] 周舒扬, 张丕奇, 戴肖东, 等. 细菌外膜囊泡(OMV)研究进展[J]. 微生物学杂志, 2021, 41(6):83-89. ZHOU S Y, ZHANG P Q, DAI X D, et al. Advances in bacterial Outer Membrane Vesicles (OMV)[J]. Journal of Microbiology, 2021, 41(6):83-89. (in Chinese) [2] MACNAIR C R, TAN M W. The role of bacterial membrane vesicles in antibiotic resistance[J]. Ann New York Acad Sci, 2023, 1519:63-73. [3] LEE E Y, CHOI D Y, KIM D K, et al. Gram-positive bacteria produce membrane vesicles:proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles[J]. Proteomics, 2009, 9(24):5425-5436. [4] RIVERA J, CORDERO R J, NAKOUZI A S, et al. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins[J]. Proc Natl Acad Sci U S A, 2010, 107(44):19002-19007. [5] ELLIS T N, KUEHN M J. Virulence and immunomodulatory roles of bacterial outer membrane vesicles[J]. Microbiol Mol Biol Rev, 2010, 74(1):81-94. [6] TOYOFUKU M, SCHILD S, KAPARAKIS-LIASKOS M, et al. Composition and functions of bacterial membrane vesicles[J]. Nat Rev Microbiol, 2023, 21(7):415-430. [7] KULP A, KUEHN M J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles[J]. Ann Rev Microbiol, 2010, 64:163-184. [8] SCHWECHHEIMER C, KUEHN M J. Outer-membrane vesicles from Gram-negative bacteria:biogenesis and functions[J]. Nat Rev Microbiol, 2015, 13(10):605-619. [9] TOYOFUKU M, NOMURA N, EBERL L. Types and origins of bacterial membrane vesicles[J]. Nat Rev Microbiol, 2019, 17(1):13-24. [10] COSTA T R D, FELISBERTO-RODRIGUES C, MEIR A, et al. Secretion systems in Gram-negative bacteria:structural and mechanistic insights[J]. Nat Rev Microbiol, 2015, 13(6):343-359. [11] GUERRERO-MANDUJANO A, HERNÁNDEZ-CORTEZ C, IBARRA J A, et al. The outer membrane vesicles:Secretion system type zero[J]. Traffic, 2017, 18(7):425-432. [12] THAY B, DAMM A, KUFER T A, et al. Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1-and NOD2-dependent NF-κB activation[J]. Infect Immun, 2014, 82(10):4034-4046. [13] BISHOP D G, WORK E. An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions[J]. Biochem J, 1965, 96(2):567-576. [14] QING G, GONG N Q, CHEN X H, et al. Natural and engineered bacterial outer membrane vesicles[J]. Biophys Rep, 2019, 5(4):184-198. [15] COMBO S, MENDES S, NIELSEN K M, et al. The discovery of the role of outer membrane vesicles against bacteria[J]. Biomedicines, 2022, 10(10):2399. [16] KIM J Y, SUH J W, KANG J S, et al. Gram-negative bacteria's outer membrane vesicles[J]. Infect Chemother, 2023, 55(1):1-9. [17] MCMILLAN H M, KUEHN M J. The extracellular vesicle generation paradox:a bacterial point of view[J]. EMBO J, 2021, 40(21):e108174. [18] FURUYAMA N, SIRCILI M P. Outer membrane vesicles (OMVs) produced by gram-negative bacteria:structure, functions, biogenesis, and vaccine application[J]. BioMed Res Int, 2021, 2021:1490732. [19] CHEN H Y, ZHOU M Y, ZENG Y T, et al. Recent advances in biomedical applications of bacterial outer membrane vesicles[J]. J Mater Chem B, 2022, 10(37):7384-7396. [20] BAUMGARTEN T, SPERLING S, SEIFERT J, et al. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation[J]. Appl Environ Microbiol, 2012, 78(17):6217-6224. [21] COLLINS S M, BROWN A C. Bacterial outer membrane vesicles as antibiotic delivery vehicles[J]. Front Immunol2021, 12:733064. [22] 程 谦, 吴 疆, 王 岱. 细菌外膜囊泡与抗生素相关的研究进展[J]. 中国抗生素杂志, 2019, 44(10):1119-1124. CHENG Q, WU J, WANG D, et al. Advances in the relationship of bacterial outer-membrane vesicles and antibiotics[J]. Chinese Journal of Antibiotics, 2019, 44(10):1119-1124. (in Chinese) [23] RUDNICKA M, NOSZCZYŃSKA M, MALICKA M, et al. Outer membrane vesicles as mediators of plant-bacterial interactions[J]. Front Microbiol, 2022, 13:902181. [24] TURNER L, BITTO N J, STEER D L, et al. Helicobacter pylori Outer membrane vesicle size determines their mechanisms of host cell entry and protein content[J]. Front Immunol, 2018, 9:1466. [25] JAN A T. Outer membrane vesicles (OMVs) of gram-negative bacteria:a perspective update[J]. Front Microbiol, 2017, 8:1053. [26] WAI S N, LINDMARK B, SÖDERBLOM T, et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin[J]. Cell, 2003, 115(1):25-35. [27] FERRARI G, GARAGUSO I, ADU-BOBIE J, et al. Outer membrane vesicles from group B Neisseria meningitidis Δgna33 mutant:proteomic and immunological comparison with detergent-derived outer membrane vesicles[J]. Proteomics, 2006, 6(6):1856-1866. [28] BEHRENS F, FUNK-HILSDORF T C, KUEBLER W M, et al. Bacterial membrane vesicles in pneumonia:from mediators of virulence to innovative vaccine candidates[J]. IntJ Mol Sci, 2021, 22(8):3858. [29] JUODEIKIS R, CARDING S R. Outer membrane vesicles:biogenesis, functions, and issues[J]. Microbiol Mol Biol Rev, 2022, 86(4):e00032-22. [30] ZINGL F G, KOHL P, CAKAR F, et al. Outer membrane vesiculation facilitates surface exchange and in vivo adaptation of vibrio cholerae[J]. Cell Host Microbe, 2020, 27(2):225-237. e8. [31] ZINGL F G, THAPA H B, SCHARF M, et al. Outer membrane vesicles of Vibrio cholerae protect and deliver active cholera toxin to host cells via porin-dependent uptake[J]. mBio, 2021, 12(3):e0053421. [32] NEVOT M, DERONCELÉ V, MESSNER P, et al. Characterization of outer membrane vesicles released by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3[J]. Environ Microbiol, 2006, 8(9):1523-1533. [33] DELL'ANNUNZIATA F, FOLLIERO V, GIUGLIANO R, et al. Gene transfer potential of outer membrane vesicles of gram-negative bacteria[J]. Int J Mol Sci, 2021, 22(11):5985. [34] JARZAB M, POSSELT G, MEISNER-KOBER N, et al. Helicobacter pylori-derived outer membrane vesicles (OMVs):role in bacterial pathogenesis?[J]. Microorganisms, 2020, 8(9):1328. [35] 陈桥桥, 涂仕娟, 夏修文, 等. 细菌外膜囊泡发生机制的研究进展[J]. 泰山医学院学报, 2019, 40(12):980-982. CHEN Q Q, TU S J, XIA X W, et al. Research progress on the mechanism of bacterial outer membrane vesicles[J]. Journal of Mount Taishan Medical College, 2019, 40(12):980-982. (in Chinese) [36] AVILA-CALDERÓN E D, RUIZ-PALMA M D S, AGUILERA-ARREOLA M G, et al. Outer membrane vesicles of gram-negative bacteria:an outlook on biogenesis[J]. Front Microbiol, 2021, 12:557902. [37] RENELLI M, MATIAS V, LO R Y, et al. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential[J]. Microbiology, 2004, 150(Pt 7):2161-2169. [38] BAQUERO F. Environmental stress and evolvability in microbial systems[J]. Clinical Microbiology and Infection, 2009, 15(Suppl 1):5-10. [39] TOUSSAINT A, CHANDLER M. Prokaryote genome fluidity:toward a system approach of the mobilome[M]//HELDEN J, TOUSSAINT A, THIEFFRY D. Bacterial Molecular Networks. New York:Springer, 2012:57-80. [40] LI M, ZHOU H, YANG C, et al. Bacterial outer membrane vesicles as a platform for biomedical applications:An update[J]. J Control Release, 2020, 323:253-268. [41] BEGIĆ M, JOSIĆ D. Biofilm formation and extracellular microvesicles-The way of foodborne pathogens toward resistance[J]. Electrophoresis, 2020, 41(20):1718-1739. [42] HUANG Y K, NIEH M P, CHEN W, et al. Outer membrane vesicles (OMVs) enabled bio-applications:A critical review[J]. Biotechnol Bioeng, 2022, 119(1):34-47. [43] MCBROOM A J, KUEHN M J. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response[J]. Mol Microbiol, 2007, 63(2):545-558. [44] SABRA W, LVNSDORF H, ZENG A P. Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions[J]. Microbiology (Reading), 2003, 149(Pt 10):2789-2795. [45] KUEHN M J, KESTY N C. Bacterial outer membrane vesicles and the host-pathogen interaction[J]. Genes Dev, 2005, 19(22):2645-2655. [46] MANNING A J, KUEHN M J. Contribution of bacterial outer membrane vesicles to innate bacterial defense[J]. BMC Microbiol, 2011, 11:258. [47] HOSSEINI-GIV N, BASAS A, HICKS C, et al. Bacterial extracellular vesicles and their novel therapeutic applications in health and cancer[J]. Front Cell Infect Microbiol, 2022, 12:962216. [48] MASHBURN-WARREN L M, WHITELEY M. Special delivery:vesicle trafficking in prokaryotes[J]. Mol Microbiol, 2006, 61(4):839-846. [49] DORWARD D W, GARON C F, JUDD R C. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae[J]. J Bacteriol, 1989, 171(5):2499-2505. [50] SJöSTRöM A E, SANDBLAD L, UHLIN B E, et al. Membrane vesicle-mediated release of bacterial RNA[J]. Sci Rep, 2015, 5:15329. [51] CHEN J W, ZHANG H F, WANG S Q, et al. Inhibitors of bacterial extracellular vesicles[J]. Front Microbiol, 2022, 13:835058. [52] MICOLI F, MACLENNAN C A. Outer membrane vesicle vaccines[J]. Seminars Immunol, 2020, 50:101433. [53] MIRZAEI R, MOHAMMADZADEH R, ALIKHANI M Y, et al. The biofilm-associated bacterial infections unrelated to indwelling devices[J]. IUBMB life, 2020, 72(7):1271-1285. [54] YONEZAWA H, OSAKI T, WOO T, et al. Analysis of outer membrane vesicle protein involved in biofilm formation of Helicobacter pylori[J]. Anaerobe, 2011, 17(6):388-390. [55] DEO P, CHOW S H, HAY I D, et al. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis[J]. PLoS Pathog, 2018, 14(3):e1006945. [56] DAVID L, TAIEB F, PÉNARY M, et al. Outer membrane vesicles produced by pathogenic strains of Escherichia coli block autophagic flux and exacerbate inflammasome activation[J]. Autophagy, 2022, 18(12):2913-2925. [57] LIEBERMAN L A. Outer membrane vesicles:A bacterial-derived vaccination system[J]. Front Microbiol, 2022, 13:1029146. [58] WEYANT K B, OLOYEDE A, PAL S, et al. A modular vaccine platform enabled by decoration of bacterial outer membrane vesicles with biotinylated antigens[J]. Nat Commun, 2023, 14(1):464. [59] 张蒙蒙, 王桂琴, 徐 飞. 革兰阴性菌外膜囊泡及其作用机制的研究进展[J]. 中国兽医科学, 2021, 51(9):1182-1189. ZHANG M M, WANG G Q, XU F. Research progress on outer membrane vesicles of gram-negative and its mechanism[J]. Chinese Veterinary Science, 2021, 51(9):1182-1189. (in Chinese) [60] JALALIFAR S, MOROVATI KHAMSI H, HOSSEINI-FARD S R, et al. Emerging role of microbiota derived outer membrane vesicles to preventive, therapeutic and diagnostic proposes[J]. Infect Agents Cancer, 2023, 18(1):3. [61] TASHIRO Y, YAWATA Y, TOYOFUKU M, et al. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms[J]. Microbes Environ, 2013, 28(1):13-24. [62] BALHUIZEN M D, VELDHUIZEN E J A, HAAGSMAN H P. Outer membrane vesicle induction and isolation for vaccine development[J]. Front Microbiol, 2021, 12:629090. [63] RICE K C, BAYLES K W. Molecular control of bacterial death and lysis[J]. Microbiol Mol Biol Rev, 2008, 72(1):85-109. [64] KAPARAKIS-LIASKOS M, FERRERO R L. Immune modulation by bacterial outer membrane vesicles[J]. Nat Rev Immunol, 2015, 15(6):375-387. [65] JAHROMI L P, FUHRMANN G. Bacterial extracellular vesicles:Understanding biology promotes applications as nanopharmaceuticals[J]. Adv Drug Deliv Rev, 2021, 173:125-140. [66] ROSSI O, CITIULO F, MANCINI F. Outer membrane vesicles:moving within the intricate labyrinth of assays that can predict risks of reactogenicity in humans[J]. Human Vacc Immunotherapeut, 2021, 17(2):601-613. [67] GILMORE W J, JOHNSTON E L, ZAVAN L, et al. Immunomodulatory roles and novel applications of bacterial membrane vesicles[J]. Mol Immunol, 2021, 134:72-85. [68] SPENCER N, YERUVA L. Role of bacterial infections in extracellular vesicles release and impact on immune response[J]. Biomed J, 2021, 44(2):157-164. [69] LIANG X, DAI N N, SHENG K L, et al. Gut bacterial extracellular vesicles:important players in regulating intestinal microenvironment[J]. Gut Microbes, 2022, 14(1):2134689. [70] WANG S M, GUO J Y, BAI Y, et al. Bacterial outer membrane vesicles as a candidate tumor vaccine platform[J]. Front Immunol, 2022, 13:987419. [71] DHITAL S, DEO P, STUART I, et al. Bacterial outer membrane vesicles and host cell death signaling[J]. Trends Microbiol, 2021, 29(12):1106-1116. [72] CARUANA J C, WALPER S A. Bacterial membrane vesicles as mediators of microbe-microbe and microbe-host community interactions[J]. Front Microbiol, 2020, 11:432. [73] SARTORIO M G, PARDUE E J, FELDMAN M F, et al. Bacterial outer membrane vesicles:from discovery to applications[J]. Ann Rev Microbiol, 2021, 75:609-630. [74] ROSALES-REYES R, PÉREZ-LÓPEZ A, SÁNCHEZ-GÓMEZ C, et al. Salmonella infects B cells by macropinocytosis and formation of spacious phagosomes but does not induce pyroptosis in favor of its survival[J]. Microb Pathogen, 2012, 52(6):367-374. [75] CZUCZMAN M A, FATTOUH R, VAN RIJN J M, et al. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread[J]. Nature, 2014, 509(7499):230-234. [76] AMANO A, TAKEUCHI H, FURUTA N. Outer membrane vesicles function as offensive weapons in host-parasite interactions[J]. Microbes Infect, 2010, 12(11):791-798. [77] 姚鹏程, 叶恭银. 网格蛋白介导的内吞作用机制[J]. 生命科学研究, 2003, 7(S1):22-25, 69. YAO P C, YE G Y. The mechanism of clathrin-mediated endocytosis[J]. Life Science Research, 2003, 7(S1):22-25, 69. (in Chinese) [78] O'DONOGHUE E J, KRACHLER A M. Mechanisms of outer membrane vesicle entry into host cells[J]. Cell Microbiol, 2016, 18(11):1508-1517. [79] MULCAHY L A, PINK R C, CARTER D R. Routes and mechanisms of extracellular vesicle uptake[J]. J Extracell Vesicles, 2014, 3(1):24641. [80] DEMUTH D R, JAMES D, KOWASHI Y, et al. Interaction of Actinobacillus actinomycetemcomitans outer membrane vesicles with HL60 cells does not require leukotoxin[J]. Cell Microbiol, 2003, 5(2):111-121. [81] GALKA F, WAI S N, KUSCH H, et al. Proteomic characterization of the whole secretome of Legionella pneumophila and functional analysis of outer membrane vesicles[J]. Infect Immun, 2008, 76(5):1825-1836. [82] PALOMINO R A Ñ, VANPOUILLE C, COSTANTINI P E, et al. Microbiota-host communications:bacterial extracellular vesicles as a common language[J]. PLoS Pathog, 2021, 17(5):e1009508. [83] DEHINWAL R, COOLEY D, RAKOV A V, et al. Increased production of outer membrane vesicles by Salmonella interferes with complement-mediated innate immune attack[J]. mBio, 2021, 12(3):e0086921. [84] GIORDANO N P, CIAN M B, DALEBROUX Z D. Outer membrane lipid secretion and the innate immune response to gram-negative bacteria[J]. Infect Immun, 2020, 88(7):e00920-19. [85] SIMPSON B W, TRENT M S. Pushing the envelope:LPS modifications and their consequences[J]. Nat Rev Microbiol, 2019, 17(7):403-416. [86] CHOI J, KIM Y K, HAN P L. Extracellular vesicles derived from Lactobacillus plantarum Increase BDNF expression in cultured hippocampal neurons and produce antidepressant-like effects in mice[J]. Exp Neurobiol, 2019, 28(2):158-171. [87] FINETHY R, DOCKTERMAN J, KUTSCH M, et al. Dynamin-related irgm proteins modulate LPS-induced caspase-11 activation and septic shock[J]. EMBO Rep, 2020, 21(11):e50830. [88] 尚 珂. 家禽中多重耐药性沙门菌的传播和外膜囊泡疫苗的评价[D]. 全州:全北国立大学, 2021. (in English) SHANG K. Transmission of multidrug-resistant (MDR) Salmonella Enterica and evaluation of outer membrane vesicle (OMV) vaccines in poultry[D]. Jeonju:Jeonbuk National University, 2021. |
[1] | TU Yun, ZENG Yanan, ZHANG Zhenghao, HONG Rui, WANG Zhen, WU Ping, ZHOU Zeyang, YE Yiru, DU Yanan, ZUO Fuyuan, ZHANG Gongwei. Genetic Structure and Runs of Homozygosity Analysis of Fuling Buffalo and Southwest Buffalo Breeds [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1989-1998. |
[2] | LONG Tanghui, ZHAN Yanbo, LIAO Guanxiang, CHEN Xinfeng, ZHANG Jian, LI Yanjiao, OUYANG Kehui, QIU Qinghua. Effects of Dietary Lysine Supplementation on Fecal Fermentation Parameters and Microbial Flora Structure of Beef Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2042-2049. |
[3] | GAO Jie, LI Xiaocheng, MU Yang, ZHANG Hui, WEI Rong, LI Jie. Biological Characteristics and Immune Effect Evaluation of Outer Membrane Vesicles of Capsular Type B Pasteurella multocida [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2168-2175. |
[4] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[5] | SONG Kelin, YAN Zunqiang, WANG Pengfei, CHENG Wenhao, LI Jie, BAI Yaqin, SUN Guohu, GUN Shuangbao. Analysis on Genetic Diversity and Genetic Structure Based on SNP Chips of Huixian Qingni Black Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 995-1006. |
[6] | WANG Kang, LIU Geyan, WANG Yu, YANG Zhen, TANG Xinwei, CAO Sanjie, HUANG Xiaobo, YAN Qigui, WU Rui, ZHAO Qin, DU Senyan, WEN Xintian, WEN Yiping. Preparation of Glaesserella parasuis Ghosts Vaccine Delivering Porcine Circovirus Type 2 DNA Vaccine and Evaluation of Its Immunoprotective Effect in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1179-1191. |
[7] | FU Xuezhen, LI Xincan, QIAN Hongyu, LÜ Hong, WU Chanyu, WANG Xiaohan, WANG Xiaohua, WANG Zhiying, ZHOU Zuoyong. Antibacterial Effect and Mechanism of Bergamot Essential Oil on Corynebacterium pseudotuberculosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1217-1227. |
[8] | WANG Ruiling, WANG Xueyan, WANG Feifei, KONG Weiyi, MAO Yongxia, LIU Xin, DING Hui, XU Lihua, GUO Yansheng. Study on the Changes of Blood Oxidized Lipid Group in Postpartum Dairy Cows with Acute Endometritis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 373-387. |
[9] | HE Chenpeng, LI Baizhen, LIU Jie, HE Jianhua, WU Shusong. Research Progress on Main Causes and Mechanism of Sow Reproductive Disorder Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3139-3151. |
[10] | HE Qifu, GAO Feng, WU Shenghui, ZHANG Yong, QUAN Fusheng. Advances in Ion Channels Involved in the Regulation of Mammalian Sperm Motility [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2708-2722. |
[11] | WANG Jinglin, LIU Yangguang, XU Qilong, CHEN Shuo, DENG Zaishuang, CHENG Shiyu, DING Yueyun, ZHENG Xianrui, YIN Zongjun, ZHANG Xiaodong. Genome Structures Variant Analysis and Feature SNPs Screening of Wanyue Black Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2783-2793. |
[12] | ZHANG Renbao, ZHOU Donghui, ZHOU Lisheng, GAO Xiaoxiao, LIU Nan, HE Jianning. Analysis of Genetic Structure of Conservation Population in Jining Gray Goats Based on 70 K SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2836-2847. |
[13] | XIONG Chengkun, ZHANG Daoliang, YANG Yue, DING Hongyan, ZHAO Jie, LI Yu, WANG Xichun, FENG Shibin, ZHAO Chang, TANG Jishun, WU Jinjie. Effect of Rutin on Rumen Fermentation, Rumen Flora Structure and Antioxidant Properties in Perinatal Hu Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2898-2909. |
[14] | MI Hui, PENG Can, HE Zhixiong, TAN Zhiliang. Separation of Sheep Secretory Immunoglobulin A Coated Bacteria by Flow Cytometry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2924-2931. |
[15] | MAO Peng, WANG Zhihao, LI Jianji, CUI Luying, ZHU Guoqiang, MENG Xia, DONG Junsheng, WANG Heng. Research Progress of Ferroptosis in Bacterial Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2280-2287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||