[1] |
HIGHFIELD L D, WARD M P, LAFFAN S W, et al. Critical parameters for modelling the spread of foot-and-mouth disease in wildlife[J]. Epidemiol Infect, 2010, 138(01):125-138.
|
[2] |
LI D, ZHANG J, YANG W P, et al. Poly (rC) binding protein 2 interacts with VP0 and increases the replication of the foot-and-mouth disease virus[J]. Cell Death Dis, 2019, 10(7):516-529.
|
[3] |
LI K L, WANG C C, YANG F, et al. Virus-Host Interactions in Foot-and-Mouth Disease Virus Infection[J/OL]. Front Immunol, 2021, 12:571509.[2023-07-10]. https://www.frontiersin.org/articles/10.3389/fimmu.2021.571509/full.
|
[4] |
GORTÁZAR C, BARROSO P, NOVA R, et al. The role of wildlife in the epidemiology and control of foot-and-mouth-disease and similar transboundary (FAST) animal diseases:A review[J]. Transbound Emerg Dis, 2022, 69(5):2462-2473.
|
[5] |
BELSHAM G J, KRISTENSEN T, JACKSON T. Foot-and-mouth disease virus:Prospects for using knowledge of virus biology to improve control of this continuing global threat[J/OL]. Virus Res, 2020, 281:197909.[2023-07-10]. https://doi.org/10.1016/j.virusres.2020.197909.
|
[6] |
MEDINA G N, SEGUNDO F D, STENFELDT C, et al. The different tactics of foot-and-mouth disease virus to evade innate immunity[J/OL]. Front Microbiol, 2018, 9:2644.[2023-07-10]. https://www.frontiersin.org/articles/10.3389/fmicb.2018.02644/full.
|
[7] |
JAMAL S M, BELSHAM G J. Molecular epidemiology, evolution and phylogeny of foot-and-mouth disease virus[J]. Infect Genet Evol, 2018, 59:84-98.
|
[8] |
Ferrero K M, Koch W J. GRK2 in cardiovascular disease and its potential as a therapeutic target[J]. J Mol Cell Cardiol, 2022, 172:14-23.
|
[9] |
BENOVIC J L, STRASSER R H, CARON M G, et al. Beta-adrenergic receptor kinase:identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor[J]. Proc Natl Acad Sci U S A, 1986, 83(9):2797-2801.
|
[10] |
ZHAI R, SNYDER J, MONTGOMERY S, et al. Double life:How GRK2 and β-arrestin signaling participate in diseases[J/OL]. Cell Signal, 2022, 94:110333.[2023-07-10]. https://doi.org/10.1016/j.cellsig.2022.110333.
|
[11] |
KILPATRICK L E, HILL S J. Transactivation of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs):Recent insights using luminescence and fluorescence technologies[J]. Curr Opin Endocr Metab Res, 2021, 16:102-112.
|
[12] |
SULON S M, BENOVIC J L. Targeting G protein-coupled receptor kinases (GRKs) to G protein-coupled receptors[J]. Curr Opin Endocr Metab Res, 2021, 16:56-65.
|
[13] |
LE SOMMER C, BARROWS N J, BRADRICK S S, et al. G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication[J]. PLoS Negl Trop Dis, 2012, 6(9):e1820.
|
[14] |
YÁNGVEZ E, HUNZIKER A, DOBAY M P, et al. Phosphoproteomic-based kinase profiling early in influenza virus infection identifies GRK2 as antiviral drug target[J]. Nat Commun, 2018, 9(1):3679.
|
[15] |
KAWAI T, AKIRA S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5):373-384.
|
[16] |
KUMAR H, KAWAI T, AKIRA S. Pathogen recognition by the innate immune system[J]. Int Rev Immunol, 2011, 30(1):16-34.
|
[17] |
张向乐, 朱紫祥, 郑海学. 口蹄疫病毒抑制宿主天然免疫应答研究进展[J]. 中国动物传染病学报, 2018, 26(4):1-5.ZHANG X L, ZHU Z X, ZHENG H X. Recent advances in viral imuune suppression mechanism of foot-and-mouth disease virus[J]. Chinese Journal of Animal Infectious Diseases, 2018, 26(4):1-5. (in Chinese)
|
[18] |
李 显, 张富东, 张中旺, 等. 口蹄疫病毒利用自身蛋白逃逸宿主天然免疫应答的研究进展[J]. 畜牧兽医学报, 2020, 51(11):11:2622-2632.LI X, ZHANG F D, ZHANG Z W, et al. Recent advance of Foot-and-mouth disease virus utilizes self-proteins to evade innate immunity response of host[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(11):2622-2632. (in Chinese)
|
[19] |
YI J M, PENG J L, REN J J, et al. Degradation of host proteins and apoptosis induced by foot-and-mouth disease virus 3C Protease[J]. Pathogens, 2021, 10(12):1566-1576.
|
[20] |
LIU Y, ZHU Z, ZHANG M, et al. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses[J]. Vet Res, 2015, 46:127.
|
[21] |
BORDANO V, KINSELLA G K, CANNITO S, et al. G protein-coupled receptor 21 in macrophages:An in vitro study[J]. Eur J Pharmacol, 2022, 926:175018.
|
[22] |
STEURY M D, MCCABE L R, PARAMESWARAN N. G Protein-Coupled Receptor Kinases in the Inflammatory Response and Signaling[J]. Adv Immunol, 2017, 136:227-277.
|
[23] |
LONIEWSKI K, SHI Y, PESTKA J, et al. Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages[J]. Mol Immunol, 2008, 45(8):2312-2322.
|
[24] |
LIU Z, JIANG Y, LI Y, et al. TLR4 Signaling augments monocyte chemotaxis by regulating G protein-coupled receptor kinase 2 translocation[J]. J Immunol, 2013, 191(2):857-864.
|
[25] |
BIRTLEY J R, KNOX S R, JAULENT A M, et al. Crystal structure of foot-and-mouth disease virus 3C protease. New insights into catalytic mechanism and cleavage specificity[J]. J Biol Chem, 2005, 280(12):11520-11527.
|
[26] |
LI W, ROSS-SMITH N, PROUD C G, et al. Cleavage of translation initiation factor 4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease:identification of the eIF4AI cleavage site[J]. FEBS Lett, 2001, 507(1):1-5.
|
[27] |
STRONG R, BELSHAM G J. Sequential modification of translation initiation factor eIF4GI by two different foot-and-mouth disease virus proteases within infected baby hamster kidney cells:identification of the 3Cpro cleavage site[J]. J Gen Virol, 2004, 85(Pt 10):2953-2962.
|
[28] |
WANG D, FANG L, LI K, et al. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling[J]. J Virol, 2012, 86(17):9311-9322.
|
[29] |
ZHU Z X, LI C T, DU X L, et al. Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication[J]. Cell Death Dis, 2017, 8(4):e2747.
|
[30] |
DU Y J, BI J S, LIU J Y, et al. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation[J]. J Virol, 2014, 88(9):4908-4920.
|