Acta Veterinaria et Zootechnica Sinica ›› 2020, Vol. 51 ›› Issue (11): 2622-2632.doi: 10.11843/j.issn.0366-6964.2020.11.002
• REVIEW • Previous Articles Next Articles
LI Xian, ZHANG Fudong, ZHANG Zhongwang, ZHANG Yongguang*, PAN Li*
Received:
2019-11-27
Online:
2020-11-25
Published:
2020-11-20
CLC Number:
LI Xian, ZHANG Fudong, ZHANG Zhongwang, ZHANG Yongguang, PAN Li. Recent Advance on Foot-and-Mouth Disease Virus Utilizes Self-proteins to Evade Innate Immunity Response of Host[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(11): 2622-2632.
[1] | LI D, ZHANG J, YANG W P, et al. Poly (rC) binding protein 2 interacts with VP0 and increases the replication of the foot-and-mouth disease virus[J]. Cell Death Dis, 2019, 10(7):516. |
[2] | KNOWLES N J, SAMUEL A R. Molecular epidemiology of foot-and-mouth disease virus[J]. Virus Res, 2003, 91(1):65-80. |
[3] | MEDINA G N, SEGUNDO F D S, STENFELDT C, et al. The different tactics of foot-and-mouth disease virus to evade innate immunity[J]. Front Microbiol, 2018, 9:2644. |
[4] | KAWAI T, AKIRA S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5):373-384. |
[5] | KUMAR H, KAWAI T, AKIRA S. Pathogen recognition by the innate immune system[J]. Int Rev Immunol, 2011, 30(1):16-34. |
[6] | PODRALSKA M, CIESIELSKA S, KLUIVER J, et al. Non-coding RNAs in cancer radiosensitivity:MicroRNAs and lncRNAs as regulators of radiation-induced signaling pathways[J]. Cancers, 2020, 12(6):1662. |
[7] | SCHMEISSER H, BEKISZ J, ZOON K C. New function of type I IFN:induction of autophagy[J]. J Interf Cytok Res, 2014, 34(2):71-78. |
[8] | SHI C S, KEHRL J H. MyD88 and trif target beclin 1 to trigger autophagy in macrophages[J]. J Biol Chem, 2008, 283(48):33175-33182. |
[9] | JONES S A, MILLS K H G, HARRIS J. Autophagy and inflammatory diseases[J]. Immunol Cell Biol, 2013, 91(3):250-258. |
[10] | GOVINDARAJAN S, VERHEUGEN E, VENKEN K, et al. ER stress in antigen-resenting cells promotes NKT cell activation through endogenous neutral lipids[J]. EMBO Rep, 2020, 21(6):e48927. |
[11] | HAN S C, MAO L J, LIAO Y, et al. Sec62 suppresses foot-and-mouth disease virus proliferation by promotion of IRE1α-RIG-I antiviral signaling[J]. J Immunol, 2019, 203(2):429-440. |
[12] | RANJITHA H B, AMMANATHAN V, GULERIA N, et al. Foot-and-mouth disease virus induces PERK-mediated autophagy to suppress the antiviral interferon response[J]. J Cell Sci, 2021, 134(5):jcs240622. |
[13] | SUN P, ZHANG S M, QIN X D, et al. Foot-and-mouth disease virus capsid protein VP2 activates the cellular EIF2S1-ATF4 pathway and induces autophagy via HSPB1[J]. Autophagy, 2018, 14(2):336-346. |
[14] | YANG W P, LI D, RU Y, et al. Foot-and-mouth disease virus 3A protein causes upregulation of autophagy-related protein LRRC25 to inhibit the G3BP1-mediated RIG-like Helicase-signaling pathway[J]. J Virol, 2020, 94(8):e02086-19. |
[15] | VISSER L J, MEDINA G N, RABOUW H H, et al. Foot-and-mouth disease virus leader protease cleaves G3BP1 and G3BP2 and inhibits stress granule formation[J]. J Virol, 2019, 93(2):e00922-18. |
[16] | YE X, PAN T, WANG D, et al. Foot-and-mouth disease virus counteracts on internal ribosome entry site suppression by G3BP1 and inhibits G3BP1-mediated stress granule assembly via post-translational mechanisms[J]. Front Immunol, 2018, 9:1142. |
[17] | DUBUISSON J, COSSET F L. Virology and cell biology of the hepatitis C virus life cycle-an update[J]. J Hepatol, 2014, 61(1S):S3-S13. |
[18] | LINDENBACH B D. Virion assembly and release[J]. Curr Top Microbiol Immunol, 2013, 369:199-218. |
[19] | BARTENSCHLAGER R, PENIN F, LOHMANN V, et al. Assembly of infectious hepatitis C virus particles[J]. Trends Microbiol, 2011, 19(2):95-103. |
[20] | WALTER P, RON D. The unfolded protein response:from stress pathway to homeostatic regulation[J]. Science, 2011, 334(6059):1081-1086. |
[21] | DICKS N, GUTIERREZ K, MICHALAK M, et al. Endoplasmic reticulum stress, genome damage, and cancer[J]. Front Oncol, 2015, 5:11. |
[22] | RON D, WALTER P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol, 2007, 8(7):519-529. |
[23] | DASH S, AYDIN Y, WU T. Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy:a novel mechanism for host-microbe survival and HCC development in liver cirrhosis[J]. Semin Cell Dev Biol, 2020, 101:20-35. |
[24] | MEYER H A, GRAU H, KRAFT R, et al. Mammalian Sec61 is associated with Sec62 and Sec63[J]. J Biol Chem, 2000, 275(19):14550-14557. |
[25] | TYEDMERS J, LERNER M, WIEDMANN M, et al. Polypeptide-binding proteins mediate completion of co-translational protein translocation into the mammalian endoplasmic reticulum[J]. EMBO Rep, 2003, 4(5):505-510. |
[26] | LINXWEILER M, SCHICK B, ZIMMERMANN R. Let's talk about Secs:Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine[J]. Signal Transd Target Ther, 2017, 2(2):17002. |
[27] | BIRGISDOTTIR Å B, LAMARK T, JOHANSEN T. The LIR motif-crucial for selective autophagy[J]. J Cell Sci, 2013, 126(15):3237-3247. |
[28] | FUMAGALLI F, NOACK J, BERGMANN T J, et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery[J]. Nat Cell Biol, 2016, 18(11):1173-1184. |
[29] | GUO H C, JIN Y, HAN S C, et al. Quantitative proteomic analysis of BHK-21 cells infected with Foot-and-Mouth Disease Virus serotype Asia 1[J]. PLoS One, 2015, 10(7):e0132384. |
[30] | KHAN T, RELITTI N, BRINDISI M, et al. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas[J]. Med Res Rev, 2020, 40(3):1002-1060. |
[31] | KAUR J, DEBNATH J. Autophagy at the crossroads of catabolism and anabolism[J]. Nat Rev Mol Cell Biol, 2015, 16(8):461-472. |
[32] | LEE H K, LUND J M, RAMANATHAN B, et al. Autophagy-dependent viral recognition by plasmacytoid dendritic cells[J]. Science, 2007, 315(5817):1398-1401. |
[33] | CHIRAMEL A I, BRADY N R, BARTENSCHLAGER R. Divergent roles of autophagy in virus infection[J]. Cells, 2013, 2(1):83-104. |
[34] | SCHLEGEL A, GIDDINGS T H Jr, LADINSKY M S, et al. Cellular origin and ultrastructure of membranes induced during poliovirus infection[J]. J Virol, 1996, 70(10):6576-6588. |
[35] | MCCORMICK C, KHAPERSKYY D A. Translation inhibition and stress granules in the antiviral immune response[J]. Nat Rev Immunol, 2017, 17(10):647-660. |
[36] | KEDERSHA N, IVANOV P, ANDERSON P. Stress granules and cell signaling:more than just a passing phase?[J]. Trends Biochem Sci, 2013, 38(10):494-506. |
[37] | REINEKE L C, DOUGHERTY J D, PIERRE P, et al. Large G3BP-induced granules trigger eIF2α phosphorylation[J]. Mol Biol Cell, 2012, 23(18):3499-3510. |
[38] | ONOMOTO K, JOGI M, YOO J S, et al. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity[J]. PLoS One, 2012, 7(8):e43031. |
[39] | LANGEREIS M A, FENG Q, VAN KUPPEVELD F J. MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon[J]. J Virol, 2013, 87(11):6314-6325. |
[40] | KIM W J, BACK S H, KIM V, et al. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions[J]. Mol Cell Biol, 2005, 25(6):2450-2462. |
[41] | REINEKE L C, LLOYD R E. The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses[J]. J Virol, 2015, 89(5):2575-2589. |
[42] | LI X Y, WANG J C, LIU J, et al. Engagement of soluble resistance-related calcium binding protein (sorcin) with foot-and-mouth disease virus (FMDV) VP1 inhibits type I interferon response in cells[J]. Vet Microbiol, 2013, 166(1-2):35-46. |
[43] | ZHANG W, YANG F, ZHU Z X, et al. Cellular DNAJA3, a novel VP1-interacting protein, inhibits foot-and-mouth disease virus replication by inducing lysosomal degradation of VP1 and attenuating its antagonistic role in the Beta interferon signaling pathway[J]. J Virol, 2019, 93(13):e00588-19. |
[44] | LI D, YANG W P, YANG F, et al. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway[J]. FASEB J, 2016, 30(5):1757-1766. |
[45] | LI D, WEI J, YANG F, et al. Foot-and-mouth disease virus structural protein VP3 degrades Janus kinase 1 to inhibit IFN-γ signal transduction pathways[J]. Cell Cycle, 2016, 15(6):850-860. |
[46] | RODRÍGUEZ PULIDO M, SÁNCHEZ-APARICIO M T, MARTÍNEZ-SALAS E, et al. Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus[J]. PLoS Pathog, 2018, 14(6):e1007135. |
[47] | SWATEK K N, AUMAYR M, PRUNEDA J N, et al. Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies[J]. Proc Natl Acad Sci U S A, 2018, 115(10):2371-2376. |
[48] | LI D, LEI C Q, XU Z S, et al. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway[J]. Sci Rep, 2016, 6(1):21888. |
[49] | FU S Z, YANG W P, RU Y, et al. DDX56 cooperates with FMDV 3A to enhance FMDV replication by inhibiting the phosphorylation of IRF3[J]. Cell Signal, 2019, 64:109393. |
[50] | ZHU Z X, LI C T, DU X L, et al. Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication[J]. Cell Death Dis, 2017, 8(4):e2747. |
[51] | ZHU Z X, WANG G Q, YANG F, et al. Foot-and-Mouth Disease Virus viroporin 2B antagonizes RIG-I-mediated antiviral effects by inhibition of its protein expression[J]. J Virol, 2016, 90(24):11106-11121. |
[52] | LIU H S, XUE Q, CAO W J, et al. Foot-and-mouth disease virus nonstructural protein 2B interacts with cyclophilin A, modulating virus replication[J]. FASEB J, 2018, 32(12):6706-6723. |
[53] | LI C T, ZHU Z X, DU X L, et al. Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication[J]. Virology, 2017, 509:222-231. |
[54] | FAN X X, HAN S C, YAN D, et al. Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3Cpro[J]. Cell Death Dis, 2017, 8(1):e2561. |
[55] | LIU H S, ZHU Z X, XUE Q, et al. Foot-and-mouth disease virus antagonizes NOD2-mediated antiviral effects by inhibiting NOD2 protein expression[J]. J Virol, 2019, 93(11):e00124-19. |
[56] | GRUBMAN M J, BAXT B. Foot-and-mouth disease[J]. Clin Microbiol Rev, 2004, 17(2):465-493. |
[57] | BERINSTEIN A, ROIVAINEN M, HOVI T, et al. Antibodies to the Vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells[J]. J Virol, 1995, 69(4):2664-2666. |
[58] | NEFF S, SÁ-CARVALHO D, RIEDE E, et al. Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor[J]. J Virol, 1998, 72(5):3587-3594. |
[59] | SETH R B, SUN L J, EA C K, et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3[J]. Cell, 2005, 122(5):669-682. |
[60] | LIU S Q, CAI X, WU J X, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation[J]. Science, 2015, 347(6227):aaa2630. |
[61] | STEINBERGER J, SKERN T. The leader proteinase of foot-and-mouth disease virus:structure-function relationships in a proteolytic virulence factor[J]. Biol Chem, 2014, 395(10):1179-1185. |
[62] | FREIMANIS G L, DI NARDO A, BANKOWSKA K, et al. Genomics and outbreaks:foot and mouth disease[J]. Rev Sci Tech, 2016, 35(1):175-189. |
[63] | RODRÍGUEZ PULIDO M, SÁIZ M. Molecular mechanisms of foot-and-mouth disease virus targeting the host antiviral response[J]. Front Cell Infect Microbiol, 2017, 7:252. |
[64] | LIU Y Q, ZHU Z X, ZHNAG M T, et al. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses[J]. Vet Res, 2015, 46(1):127. |
[65] | FALK M M, GRIGERA P R, BERGMANN I E, et al. Foot-and-mouth disease virus protease 3C induces specific Proteolytic cleavage of host cell histone H3[J]. J Virol, 1990, 64(2):748-756. |
[66] | BELSHAM G J, MCINERNEY G M, ROSS-SMITH N. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells[J]. J Virol, 2000, 74(1):272-280. |
[67] | WANG D, FANG L R, LI K, et al. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling[J]. J Virol, 2012, 86(17):9311-9322. |
[68] | LAWRENCE P, SCHAFER E A, RIEDER E. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells[J]. Virology, 2012, 425(1):40-52. |
[69] | DU Y J, BI J S, LIU J Y, et al. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation[J]. J Virol, 2014, 88(9):4908-4920. |
[70] | GLADUE D P, LARGO E, DE LA ARADA I, et al. Molecular characterization of the viroporin function of foot-and-mouth disease virus nonstructural protein 2B[J]. J Virol, 2018, 92(23):e01360-18. |
[71] | AO D, GUO H C, SUN S Q, et al. Viroporin activity of the foot-and-mouth disease virus non-structural 2B protein[J]. PLoS One, 2015, 10(5):e0125828. |
[72] | ISAACSON M K, PLOEGH H L. Ubiquitination, ubiquitin-like modifiers, and Deubiquitination in viral infection[J]. Cell Host Microbe, 2009, 5(6):559-570. |
[73] | HEATON S M, BORG N A, DIXIT V M. Ubiquitin in the activation and attenuation of innate antiviral immunity[J]. J Exp Med, 2016, 213(1):1-13. |
[74] | ZHAO C, COLLINS M N, HSIANG T Y, et al. Interferon-induced ISG15 pathway:an ongoing virus-host battle[J]. Trends Microbiol, 2013, 21(4):181-186. |
[75] | DURFEE L A, LYON N, SEO K, et al. The ISG15 conjugation system broadly targets newly synthesized proteins:implications for the antiviral function of ISG15[J]. Mol Cell, 2010, 38(5):722-732. |
[76] | SUNG Y Y, KIM H K. Illicium verum extract suppresses IFN-γ-induced ICAM-1 expression via blockade of JAK/STAT pathway in HaCaT human keratinocytes[J]. J Ethnopharmacol, 2013, 149(3):626-632. |
[77] | RAGHAVAN B, COOK C H, TRGOVCICH J. The Carboxy terminal region of the human cytomegalovirus Immediate Early 1(IE1) protein disrupts Type II Inteferon signaling[J]. Viruses, 2014, 6(4):1502-1524. |
[78] | GOODBOURN S, DIDCOCK L, RANDALL R E. Interferons:cell signalling, immune modulation, antiviral response and virus countermeasures[J]. J Gen Virol, 2000, 81(10):2341-2364. |
[1] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[2] | ZHOU Guangqing, LIU Xiaoqing, SHI Xijuan, YANG Dapeng, YUAN Ligang, CHANG Huiyun. Establishment of a Rapid Detection SA-ELISA Method for Anti Foot-and-Mouth Disease Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2020-2029. |
[3] | LI Shuo, ZHANG Yun, BAI Manyuan, ZHAO Ruichong, SONG Hetao, MU Suyu, TENG Zhidong, DONG Hu, MA E'ning, SUN Shiqi, GUO Huichen, YIN Shuanghui. Immunogenicity Evaluation of Biomineralized Foot-and-mouth Disease Virus-like Particles Vaccine [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1598-1607. |
[4] | GUO Zijing, CHEN Fei, ZHANG Zhixiong, BAI Ling, ZHANG Zhidong, LI Yanmin. Effects of Interleukin-10 on T Cell Proliferation and Its Expression of TNF-α, IFN-γ and IL-2 in Mice Infected with Foot-and-Mouth Disease Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 694-705. |
[5] | FAN Jinquan, ZHANG Yuhang, TANG Wuyang, ZHAO Xinyu, LI Pishun, ZHENG Xiaofeng. Inhibitory Effect of Decitabine on Porcine Circovirus Type 2 in vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5134-5142. |
[6] | CHEN Wenzhe, ZHANG Xiangle, GU Fengxing, ZHAO Zhenxiang, LI Kangli, XUE Zhaoning, ZHENG Haixue, ZHANG Xiaoli, ZHU Zixiang. Evaluation of the Antiviral Effect of Porcine GRK2 against Foot-and-mouth Disease Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4350-4361. |
[7] | HAN Weijian, ZHANG Junjuan, ZHANG Yiming, WANG Jiaxin, LI Limin. Cytokine Responses of Bone Marrow-derived Mast Cells to FMDV-VLPs via Mannose Receptors [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3917-3926. |
[8] | ZHANG Zhidong, RYAN Eoin, LI Yanmin. Quantitative Analysis of FMDV Receptor Integrin mRNA Levels in Ovine Tissues at Different Developmental Stages [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2626-2632. |
[9] | LI Xin, SUN Yanyan, LIN Mi, CHEN Xiahui, LI Fengsong, BAO Yanfang, YANG Guang, JIANG Tao. Establishment of Colloidal Gold Immunochromatographic Assay for Quantitative Detection of Foot-and-mouth Disease Virus Serotype O, A and Asia 1 [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 1042-1052. |
[10] | SONG Yinjuan, LIAO Yi, ZHOU Xiangmei. The Role of Mitochondrial DNA in Innate Immunity [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 286-299. |
[11] | ZHAI Yunyun, LI Jiajia, ZHANG Shuang, REN Ziyu, JIN Qianyue, DU Yongkun, WAN Bo. Establishment of Apoptosis Associated Dot Like Protein Knockout PK-15 Cell Line and Its Effect on Porcine Pseudorabies Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 478-487. |
[12] | YAN Minghao, HAO Junhong, ZHANG Dajun, SHEN Chaochao, XU Guowei, HOU Jing, ZHANG Keshan, ZHENG Haixue, LIU Xiangtao. TPL2 Gene Knockout in PK-15 Cells Facilitates Replication of Foot-and-mouth Disease Virus and Seneca Valley Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 1060-1073. |
[13] | WANG Zhifang, ZHANG Wei, YANG Fan, WEI Ting, ZHENG Haixue. Gα12 Suppresses the Replication of Foot-and-mouth Disease Virus in PK-15 Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 556-564. |
[14] | SONG Gaoyuan, YANG Fan, HAO Rongzeng, LI Yu, ZHENG Haixue. Construction and Identification of Recombinant Seneca Virus A of Chimeric Foot-and-mouth Disease Virus Antigenic Epitope [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 565-573. |
[15] | FU Shaozu, LI Lulu, ZHANG Jing, LI Dan, ZHENG Haixue. Porcine DDX56 Regulates the Foot and Mouth Disease Virus Replication and the Virus-triggered RLR Pathway [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(9): 1849-1856. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||