Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (9): 3018-3028.doi: 10.11843/j.issn.0366-6964.2022.09.018
• ANIMAL NUTRITION AND FEEDS • Previous Articles Next Articles
HU Liping, SHEN Ziliang, WANG Quan, YU Zitong, ZHANG Qiqi, MAO Yongjiang, YANG Zhangping, ZHANG Huimin*
Received:
2021-12-09
Online:
2022-09-23
Published:
2022-09-23
CLC Number:
HU Liping, SHEN Ziliang, WANG Quan, YU Zitong, ZHANG Qiqi, MAO Yongjiang, YANG Zhangping, ZHANG Huimin. Changes of Rumen Microbe and Milk Fatty Acid Composition during Early Lactation[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3018-3028.
[1] | 蒋 涛.瘤胃微生物重塑对围产后期奶牛采食量和采食行为的影响[D].北京:中国农业大学, 2018.JIANG T.Influence of rumen microbial reshaping on feed intake and feeding behavior of Holstein Cows during the late perinatal period[D].Beijing:China Agricultural University, 2018.(in Chinese) |
[2] | 樊永亮.奶牛泌乳早期乳脂肪酸变化及乳腺组织转录调控分析[D].扬州:扬州大学, 2017.FAN Y L.Fatty acids changes of milk and transcriptional regulation analysis of mammary gland tissue in the early milk of dairy cows[D].Yangzhou:Yangzhou University, 2017.(in Chinese) |
[3] | JOUANY J P.Optimizing rumen functions in the close-up transition period and early lactation to drive dry matter intake and energy balance in cows[J].Anim Reprod Sci, 2006, 96(3-4):250-264. |
[4] | ELOLIMY A A, ARROYO J M, BATISTEL F, et al.Association of residual feed intake with abundance of ruminal bacteria and biopolymer hydrolyzing enzyme activities during the peripartal period and early lactation in Holstein dairy cows[J].J Anim Sci Biotechnol, 2018, 9:43. |
[5] | XU W, VERVOORT J, SACCENTI E, et al.Relationship between energy balance and metabolic profiles in plasma and milk of dairy cows in early lactation[J].J Dairy Sci, 2020, 103(5):4795-4805. |
[6] | POULSEN N A, HEIN L, KARGO M, et al.Realization of breeding values for milk fatty acids in relation to seasonal variation in organic milk[J].J Dairy Sci, 2020, 103(3):2434-2441. |
[7] | 陈美庆, 张养东, 郑 楠, 等.牛奶中脂肪酸的合成机理及影响因素研究进展[J].动物营养学报, 2021, 33(8):4244-4254.CHEN M Q, ZHANG Y D, ZHENG N, et al.Advance in synthesis mechanism and influencing factors of milk fatty acids[J].Chinese Journal of Animal Nutrition, 2021, 33(8):4244-4254.(in Chinese) |
[8] | MANGWE M, BRYANT R, GREGORINI P.Rumen fermentation and fatty acid composition of milk of mid lactating dairy cows grazing chicory and ryegrass[J].Animals (Basel), 2020, 10(1):169. |
[9] | SOULAT J, KNAPP E, MOULA N, et al.Effect of dry-period diet on the performance and metabolism of dairy cows in early lactation[J].Animals (Basel), 2020, 10(5):803. |
[10] | ZANFERARI F, VENDRAMINI T H A, RENTAS M F, et al.Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows[J].J Dairy Sci, 2018, 101(12):10939-10952. |
[11] | KAY J K, WEBER W J, MOORE C E, et al.Effects of week of lactation and genetic selection for milk yield on milk fatty acid composition in Holstein cows[J].J Dairy Sci, 2005, 88(11):3886-3893. |
[12] | 樊永亮, 张成龙, 张少卿, 等.中国荷斯坦牛一个完整泌乳期中乳脂肪酸变化规律研究[J].黑龙江畜牧兽医, 2016(8):95-97, 101.FAN Y L, ZHANG C L, ZHANG S Q, et al.Study on the change regularity of milk fatty acids in southern Holstein cattle in a complete lactation period[J].Heilongjiang Animal Science and Veterinary Medicine, 2016(15):95-97, 101.(in Chinese) |
[13] | 陈永华, 毛永江, 常玲玲.中国荷斯坦牛初乳、常乳与乳房炎乳乳成分及理化性质的比较研究[J].饲料广角, 2011(14):35-37.CHEN Y H, MAO Y J, CHANG L L.The Comparasion of milk composition and physical characteristics among colostrum, normal milk and mastitis of Chinese Holstein Cattle[J].Feed China, 2011(14):35-37.(in Chinese) |
[14] | 雷晓薇, 王根林, 韩兆玉.应用体细胞计数监测奶牛隐性乳房炎[J].畜牧与兽医, 2003, 35(12):35-37.LEI X W, WANG G L, HAN Z Y.Prediction of subclinical mastitis of dairy cows using milk somatic cell count[J].Animal Husbandry & Veterinary Medicine, 2003, 35(12):35-37.(in Chinese) |
[15] | WANG J X, HE Y T, PANG K, et al.Changes in milk yield and composition of colostrum and regular milk from four buffalo breeds in China during lactation[J].J Sci Food Agric, 2019, 99(13):5799-5807. |
[16] | 张慧敏, 王梦琦, 朱小瑞, 等.中国荷斯坦牛乳中尿素氮变化规律的研究[J].家畜生态学报, 2016, 37(11):36-41.ZHANG H M, WANG M Q, ZHU X R, et al.Study on variability of milk urea nitrogen of Chinese Holstein[J].Journal of Domestic Animal Ecology, 2016, 37(11):36-41.(in Chinese) |
[17] | BIONAZ M, LOOR J.ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation[J].J Nutr, 2008, 138(6):1019-1024. |
[18] | 高学军, 徐诗瑶, 王小艳, 等.泌乳中期不同乳品质奶牛乳中脂肪酸含量差异分析[J].东北农业大学学报, 2013, 44(9):7-11.GAO X J, XU S Y, WANG X Y, et al.Difference analysis of fatty acid contents on milk from different qualities of cows in mid-lactation period[J].Journal of Northeast Agricultural University, 2013, 44(9):7-11.(in Chinese) |
[19] | BELIDE S, SHRESTHA P, KENNEDY Y, et al.Engineering docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in Brassica juncea[J].Plant Biotechnol J, 2022, 20(1):19-21. |
[20] | 付力立.基于代谢组学研究奶牛初乳与常乳组分差异及补饲酵母硒的影响[D].雅安:四川农业大学, 2019.FU L L.Differential metabolome between colostrum and normal milk in dairy cows and effects of supplementary yeast selenium-based on metabonomics[D].Ya'an:Sichuan Agricultural University, 2019.(in Chinese) |
[21] | DERAKHSHANI H, TUN H M, CARDOSO F C, et al.Linking peripartal dynamics of ruminal microbiota to dietary changes and production parameters[J].Front Microbiol, 2017, 7:2143. |
[22] | 高 凤.奶牛肠道微生物群落结构与多样性研究[D].邯郸:河北工程大学, 2017.GAO F.The study on intestinal microbial community structure and diversity of dairy cows[D].Handan:Hebei University of Engineering, 2017.(in Chinese) |
[23] | BACH A, LÓPEZ-GARCÍA A, GONZÁLEZ-RECIO O, et al.Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows[J].J Dairy Sci, 2019, 102(7):6180-6198. |
[24] | TONG J J, ZHANG H, YANG D L, et al.Illumina sequencing analysis of the ruminal microbiota in high-yield and low-yield lactating dairy cows[J].PLoS One, 2018, 13(11):e0198225. |
[25] | JAMI E, WHITE B A, MIZRAHI I.Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency[J].PLoS One, 2014, 9(1):e85423. |
[26] | WANG Y P, NAN X M, ZHAO Y G, et al.Ruminal degradation of rumen-protected glucose influences the ruminal microbiota and metabolites in early-lactation dairy cows[J].Appl Environ Microbiol, 2021, 87(2):e01908-20. |
[27] | 刘可园.奇数和支链脂肪酸与奶牛瘤胃微生物及其发酵指标的关系[D].哈尔滨:东北农业大学, 2016.LIU K Y.Odd-and Branched-Chain Fatty Acids profilesin relation to rumen microbial populations and fermentation patterns in dairy cows[D].Harbin:Northeast Agricultural University, 2016.(in Chinese) |
[28] | SAWANON S, KOIKE S, KOBAYASHI Y.Evidence for the possible involvement of Selenomonas ruminantium in rumen fiber digestion[J].FEMS Microbiol Lett, 2011, 325(2):170-179. |
[29] | 王晓旭, 赵晨旭, 陈 灰, 等.围产期奶牛瘤胃微生物区系的变化及其对瘤胃挥发性脂酸含量的影响[C]//中国畜牧兽医学会——第三届中国兽医临床大会论文集.兰州:中国畜牧兽医学会, 2012:106-110.WANG X X, ZHAO C X, CHEN H, et al.Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows[C]//Proceedings of the 3rd Chinese Veterinary Clinical Congress of Chinese Association of Animal Husbandry and Veterinary Medicine.Lanzhou:Chinese Association of Animal Science and Veterinary Medicine, 2012:106-110.(in Chinese) |
[30] | CERSOSIMO L M, BAINBRIDGE M L, KRAFT J, et al.Influence of periparturient and postpartum diets on rumen methanogen communities in three breeds of primiparous dairy cows[J].BMC Microbiol, 2016, 16:78. |
[31] | ZHAO L P, MENG Q X, REN L P, et al.Effects of nitrate addition on rumen fermentation, bacterial biodiversity and abundance[J].Asian-Australas J Anim Sci, 2015, 28(10):1433-1441. |
[32] | AUFFRET M D, STEWART R D, DEWHURST R J, et al.Identification of microbial genetic capacities and potential mechanisms within the rumen microbiome explaining differences in beef cattle feed efficiency[J].Front Microbiol, 2020, 11:1229. |
[33] | HUANG S, JI S K, WANG F R, et al.Dynamic changes of the fecal bacterial community in dairy cows during early lactation[J].AMB Expr, 2020, 10(1):167. |
[34] | BUITENHUIS B, LASSEN J, NOEL S J, et al.Impact of the rumen microbiome on milk fatty acid composition of Holstein cattle[J].Genet Sel Evol, 2019, 51(1):23. |
[35] | VLAEMINCK B, FIEVEZ V, CABRITA A R J, et al.Factors affecting odd- and branched-chain fatty acids in milk:a review[J].Anim Feed Sci Technol, 2006, 131(3-4):389-417. |
[36] | LIU C, WU H, LIU S J, et al.Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type[J].Front Microbiol, 2019, 10:1116. |
[37] | LIU K Y, LI Y, LUO G B, et al.Relations of ruminal fermentation parameters and microbial matters to odd- and branched-chain fatty acids in rumen fluid of dairy cows at different milk stages[J].Animals (Basel), 2019, 9(12):1019. |
[38] | KENNELLY J J, ROBINSON B, KHORASANI G R.Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in early-lactation Holstein cows[J].J Dairy Sci, 1999, 82(11):2486-2496. |
[39] | DEWANCKELE L, TORAL P G, VLAEMINCK B, et al.Invited review:role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression:an update[J].J Dairy Sci, 2020, 103(9):7655-7681. |
[40] | HUWS S A, KIM E J, LEE M R F, et al.As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation[J].Environ Microbiol, 2011, 13(6):1500-1512. |
[1] | XIANG Hui, GUI Linsen, YANG Di, WEI Shihao, GONG Yanbin, SHI Yuangang, MA Yun, DAN Xingang. Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1412-1422. |
[2] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[3] | MENG Lu, HU Haiyan, DONG Lei, ZHENG Nan, WANG Jiaqi. Influence of Dairy Farm Environment on Mastitis Milk Microbiota via SourceTracker [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3872-3883. |
[4] | ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Research Progress on the Mechanism of Heat Stress Affecting the Development of Dairy Cow Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2692-2700. |
[5] | ZHAO Wanli, CAO Qiqi, YANG Yue, DENG Zhaoju, XU Chuang. The Interaction between Gastrointestinal Microbiota and Mucosal Immunity in Health of Perinatal Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2751-2760. |
[6] | SHAO Yuexin, ZHANG Xinyu, GE Liyan, SHI Huaiping. Cloning and RNA Interference Analysis of ATF4 Gene in Xinong Saanen Dairy Goat [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2353-2364. |
[7] | HUANG Shangzhen, MA Longgang, LOU Wenqi, NING Jingyang, ZHANG Hailiang, HU Lirong, ZHA Qiong, LI Bin, XU Qing, BASANG Luobu, WANG Yachun. Analysis of Influencing Factors on Blood Indicators of Dairy Cows at High-altitude Area [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1964-1978. |
[8] | BI Yazhen, SHANG Mingyu, HU Wenping, ZHANG Li. Correlation and Regression Analysis among Growth Traits and Association Analysis of TRHDE Gene Polymorphism with Growth Traits in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1415-1428. |
[9] | FENG Xiaoyi, YANG Baigao, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Mechanism and Solution of Heat Stress Induced Embryo Quality Decline in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 868-876. |
[10] | YU Shiqiang, LI Liuxue, ZHAO Xiaobo, ZHAO Huiying, TU Yan, ZHAO Yuchao, JIANG Linshu. Differences and Correlations of Lactation Performance in Chinese Holstein Dairy Cows at Different Lactation Stages and Somatic Levels [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1003-1014. |
[11] | PAN Chanyuan, ZHAO Zixuan, DUAN Mingjie, JIANG Linshu, TONG Jinjin. The Mechanism of Artemisia carvifolia Alleviating Dairy Cow Oxidative Stress Predicted by Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1071-1084. |
[12] | FAN Lei, SHEN Yu, YOU Liuchao, TIAN Xinyu, LUO Hao, WANG Xin, ZHANG Tingting, SHEN Liuhong. Research Progress on Abnormal Glucose and Lipid Metabolism in Dairy Cows Induced by Lipopolysaccharide (LPS) [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 484-493. |
[13] | SHAN Qiang, WANG Xue, ZHU Yaohong, WANG Jiufeng. Application Prospect of Anti-inflammatory Mechanism of Lactobacillus rhamnosus and Its Prevention and Treatment in Livestock Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4537-4550. |
[14] | SHI Rui, SU Guosheng, CHEN Ziwei, LI Xiang, LUO Hanpeng, LIU Lin, GUO Gang, ZHANG Yi, WANG Yachun, ZHANG Shengli, ZHANG Qin. Comparisons of Genomic Predictions for Fertility Traits in Chinese Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2944-2954. |
[15] | ZHOU Fuzhen, ZHOU Bu, DAI Xu, WANG Haiyang, GUO Mengling, LIANG Yan, YANG Zhangping, MAO Yongjiang. Analysis on the Change of BCS in Early Lactation and Its Effects on Production Performance and Productive Lifespan in Holstein Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2955-2969. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||