Acta Veterinaria et Zootechnica Sinica ›› 2021, Vol. 52 ›› Issue (3): 742-751.doi: 10.11843/j.issn.0366-6964.2021.03.018
• PREVENTIVE VETERINARY MEDICINE • Previous Articles Next Articles
SONG Xiangjun1, SHEN Xiao1, JIANG Huyan1, CHEN Zhe1, LIU Hua2, SHAO Ying1, TU Jian1, QI Kezong1*
Received:
2020-06-24
Online:
2021-03-23
Published:
2021-03-24
CLC Number:
SONG Xiangjun, SHEN Xiao, JIANG Huyan, CHEN Zhe, LIU Hua, SHAO Ying, TU Jian, QI Kezong. Effect of Avian Pathogenic Escherichia coli Hcp2b on the Cytokine-Cytokine Receptor Interaction Pathway in Chick Tracheal Mucosa[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 742-751.
[1] | DOU X H, GONG J S, HAN X G, et al. Characterization of avian pathogenic Escherichia coli isolated in eastern China[J]. Gene, 2016, 576(2):244-248. |
[2] | SONG X J, QIU M Y, JIANG H Y, et al. ybjX mutation regulated avian pathogenic Escherichia coli pathogenicity though stress-resistance pathway[J]. Avian Pathol, 2020, 49(2):144-152. |
[3] | MU X H, GAO R X, XIAO W H, et al. EntE, EntS and TolC synergistically contributed to the pathogenesis of APEC strain E058[J/OL]. Microb Pathog, 2020, 141:103990.[2020-06-01]. https://www.researchgate.net/publication/338722382_EntE_EntS_and_TolC_synergistically_contri-buted_to_the_pathogenesis_of_APEC_strain_E058. |
[4] | NAKAZATO G, DE CAMPOS T A, STEHLING E G, et al. Virulence factors of avian pathogenic Escherichia coli (APEC)[J]. Pesq Vet Bras, 2009, 29(7):479-486. |
[5] | HEJAIR H M A, MA J L, ZHU Y C, et al. Role of outer membrane protein T in pathogenicity of avian pathogenic Escherichia coli [J]. Res Vet Sci, 2017, 115:109-116. |
[6] | GUERRA P R, HERRERO-FRESNO A, PORS S E, et al. The membrane transporter PotE is required for virulence in avian pathogenic Escherichia coli (APEC) (APEC)[J]. Vet Microbiol, 2018, 216:38-44. |
[7] | VERMA R, ROJAS T C G, MALUTA R P, et al. Role of hypothetical protein YicS in the pathogenicity of avian pathogenic Escherichia coli in vivo and in vitro[J]. Microbiol Res, 2018, 214:28-36. |
[8] | YI Z F, WANG D, XIN S H, et al. The CpxR regulates type VI secretion system 2 expression and facilitates the interbacterial competition activity and virulence of avian pathogenic Escherichia coli [J]. Vet Res, 2019, 50(1):40. |
[9] | JOURENT L, CASCALES E. The Type VI secretion system in Escherichia coli and related species[J/OL]. EcoSal Plus, 2016, 7(1):doi:10.1128/ecosalplus.ESP-0009-2015.[2020-06-01]. https://hal-amu.archives-ouvertes.fr/hal-01778564/file/EcoSal-2016.pdf. |
[10] | GAYTÁN M O, MARTÍNEZ-SANTOS V I, SOTO E, et al. Type three secretion system in attaching and effacing pathogens[J/OL]. Front Cell Infect Microbiol, 2016, 6(129):doi:10.3389/fcimb.2016.00129.[2020-06-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5073101/. |
[11] | HACHANI A, WOOD T E, FILLOUX A. Type VI secretion and anti-host effectors[J]. Curr Opin Microbiol, 2016, 29:81-93. |
[12] | WEN H Y, GENG Z, GAO Z Q, et al. Characterization of the Pseudomonas aeruginosa T6SS PldB immunity proteins PA5086, PA5087 and PA5088 explains a novel stockpiling mechanism[J]. Acta Crystallogr F Struct Biol Commun, 2020, 76(5):222-227. |
[13] | ZONG B B, ZHANG Y Y, WANG X R, et al. Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli [J]. Virulence, 2019, 10(1):118-132. |
[14] | BASLER M, PILHOFER M, HENDERSON G P, et al. Type VI secretion requires a dynamic contractile phage tail-like structure[J]. Nature, 2012, 483(7388):182-186. |
[15] | HU T J, CHEN R, Zhang L Z, et al. Balanced role of T3SS and T6SS in contribution to the full virulence of Edwardsiella piscicida[J]. Fish Shellfish Immunol, 2019, 93:871-878. |
[16] | VETTIGER A, BASLER M. Type VI secretion system substrates are transferred and reused among sister cells[J]. Cell, 2016, 167(1):p. 99-110. |
[17] | JANA B, SALOMON D. Type VI secretion system:a modular toolkit for bacterial dominance[J]. Future Microbiol, 2019, 14:1451-1463. |
[18] | ANDERSSON J A, SHA J, EROVA T E, et al. Identification of new virulence factors and vaccine candidates for Yersinia pestis[J/OL]. Front Cell Infect Microbiol, 2017, 7:448.[2020-06-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650977/pdf/fcimb-07-00448.pdf. |
[19] | GALLIQUE M, DECOIN V, BARBEY C, et al. Contribution of the Pseudomonas fluorescens MFE01 type VI secretion system to biofilm formation[J/OL]. PLoS One, 2017, 12(1):e0170770.[2020-06-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5256989/pdf/pone.0170770.pdf. |
[20] | PENG Y, WANG X R, SHOU J, et al. Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system[J/OL]. Sci Rep, 2016. 6:26816.[2020-06-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882540/pdf/srep26816.pdf. |
[21] | 彭颖. 猪源肠外致病性大肠杆菌六型分泌系统hcp基因缺失株的构建及功能研究[D]. 武汉:华中农业大学, 2015.PENG Y. Construction and function study of pig-derived extraintestinal pathogenic Escherichia coli type VI secretion system hcp gene deletion strain[D]. Wuhan:Huazhong Agricultural University, 2015. (in Chinese) |
[22] | DE PACE F, NAKAZATO G, PACHECO A, et al. The type VI secretion system plays a role in type 1 fimbria expression and pathogenesis of an avian pathogenic Escherichia coli strain[J]. Infect Immun, 2010, 78(12):4990-4998. |
[23] | RAMÍREZ M R, ALMANZA Y, GARCÍA S, et al. Adherence and invasion of avian pathogenic Escherichia coli to avian tracheal epithelial cells[J]. World J Microbiol Biotechnol, 2009, 25(6):1019-1023. |
[24] | POURBAKHSH S A, DHO-MOULIN M, BRÉE A, et al. Localization of the in vivo expression of P and F1 fimbriae in chickens experimentally inoculated with pathogenic Escherichia coli[J]. Microb Pathog, 1997, 22(6):331-341. |
[25] | WAICKMAN A T, KELLER H R, KIM T H, et al. The cytokine receptor IL-7Rα impairs IL-2 receptor signaling and constrains the in vitro differentiation of Foxp3+ Treg cells[J/OL]. iScience, 2020, 23(8):101421.[2020-06-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424196/. |
[26] | SONG X J, JIANG H Y, QI Z, et al. APEC infection affects cytokine-cytokine receptor interaction and cell cycle pathways in chicken trachea[J]. Res Vet Sci, 2020, 130:144-152. |
[27] | SONG X J, HOU M M, JIANG H Y, et al. Hcp2a of type VI secretion system contributes to IL8 and IL1β expression of chicken tracheal epithelium by affecting APEC colonization[J]. Res Vet Sci, 2020, 132:279-284. |
[28] | XUE M, RAHEEM M A, GU Y, et al. The KdpD/KdpE two-component system contributes to the motility and virulence of avian pathogenic Escherichia coli[J]. Res Vet Sci, 2020, 131:24-30. |
[29] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408. |
[30] | NAVARRO-GARCIA F, RUIZ-PEREZ F, CATALDI Á, et al. Type VI secretion system in pathogenic Escherichia coli:structure, role in virulence, and acquisition[J]. Front Microbiol, 2019, 10:1965. |
[31] | SI M R, WANG Y, ZHANG B, et al. The type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition[J]. Cell Rep, 2017, 20(4):949-959. |
[32] | 马家乐. Ⅵ型分泌系统参与大肠杆菌致病进程及细菌间竞争机制[D].南京:南京农业大学,2017.MA J L. Type Ⅵ secretion system participating in the pathogenic process of Escherichia coli and the competition mechanism between bacteria[D]. Nanjing:Nanjing Agricultural College, 2017. (in Chinese) |
[33] | DE PACE F, BOLDRIN DE PAIVA J, NAKAZATO G, et al. Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain[J]. Microbiology (Reading), 2011, 157(10):2954-2962. |
[34] | ZMRHAL V, SLAMA P. Current knowledge about interactions between avian dendritic cells and poultry pathogens[J/OL]. Dev Comp Immunol, 2020, 104:103565.[2020-06-01]. https://www.sciencedirect.com/science/article/pii/S0145305X19304914?via%3Dihub. |
[35] | 邓志文, 王泽平, 李倩文, 等. 禽致病性大肠杆菌双组分系统phoP/Q对鞭毛Ⅲ型分泌系统基因的调控预测[J]. 畜牧兽医学报, 2019, 50(4):821-829.DENG Z W, WANG Z P, LI Q W, et al. Prediction of the regulation of flagell in type Ⅲ secretion system genes by two-component system phoP/Q in avian pathogenic Escherichia coli[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(4):821-829. |
[36] | DING X Y, ZHANG Q, WANG H, et al. The different roles of hcp1 and hcp2 of the type VI secretion system in Escherichia coli strain CE129[J]. J Basic Microbiol, 2018, 58(11):938-946. |
[37] | HARADA T, YOSHIOKA H, YOSHIDA S, et al. Increased interleukin-6 levels in peritoneal fluid of infertile patients with active endometriosis[J]. Am J Obstet Gynecol, 1997, 176(3):593-597. |
[38] | LI L, WANG Y N, JIA H B, et al. The type VI secretion system protein AsaA in Acinetobacter baumannii is a periplasmic protein physically interacting with TssM and required for T6SS assembly[J/OL]. Sci Rep, 2019, 9(1):9438.[2020-06-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6602968/. |
[39] | MOL N, PENG L, ESNAULT E, et al. Avian pathogenic Escherichia coli infection of a chicken lung epithelial cell line[J]. Vet Immunol Immunopathol, 2019, 210:55-59. |
[40] | 范海涛,李恒,郭磊,等.白细胞介素1受体1和白细胞介素6双基因敲除小鼠的构建及基因型鉴定[J].国际免疫学杂志, 2018, 41(3):251-255.FAN H T, LI H, GUO L, et al. Construction and genotype identification of double gene knockout mice of interleukin 1 receptor 1 and interleukin 6[J]. International Immunology, 2018, 41(3):p.251-255. |
[41] | AKDIS M, BURGLER S, CRAMERI R, et al. Interleukins, from 1 to 37, and interferon-γ:receptors, functions, and roles in diseases[J]. J Allergy Clin Immunol, 2011, 127(3):701-721. |
[42] | UMEHARA H, BOLLM E, OKAZAKI T, et al. Fractalkine and vascular injury[J]. Trends Immunol, 2001, 22(11):602-607. |
[1] | CHEN Zhe, QU Xiaolu, GUO Binbin, SUN Xuefeng, YAN Leyan. Study on Candidate Genes for Green Light Affecting Early Development of Goose Embryo Heart Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1978-1988. |
[2] | XU Junjie, ZHANG Lutong, WANG Jinjie, CHEN Xiaochen, HE Weixian, CAI Chuanjiang, CHU Guiyan, YANG Gongshe. Exploring the Effect of Epimedium on Estrus of Gilts Based on Multiomics and Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1615-1628. |
[3] | WANG Xin, NIE Tong, LI Aqun, MA Jun. Hesperidin Alleviates High-fat-diet Induced Hepatic Oxidative Stress in Mice via Oxidative Phosphorylation Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1302-1313. |
[4] | GAO Yawei, PENG Di, SUN Zhaoyang, YAN Ziyue, CUI Kai, MA Zefang. Mining the Molecular Mechanism of Exogenous Melatonin Affecting the Development of Mink Ovary Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 607-618. |
[5] | LIU Yili, TANG Jiao, MIN Qi, YANG Lu, WANG Zening, HU Lian, ZHAO Di, JIANG Mingfeng. Mining Key Candidate Genes of Development and Metabolism in Yak Abomasum Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 153-168. |
[6] | HU Ting, ZHANG Yonghong, HOU Xiaolin, YAO Hua, CUI Defeng, PAN Zaozao, ZHANG Lingyu, ZHANG Jiaxi, WU Qiong. The Effects of Bisphenol A on Inflammation and Amino Acid Metabolism Pathways in Porcine Testis Sertoli Cells Based on Transcriptome Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2858-2871. |
[7] | LIU Hang, WANG Huanhuan, GE Ying, ZHANG Lei, ZHANG Weiwu, WEI Yinghui, LI Qinghai, FAN Jinghui, ZHANG Xuedong. Screening of Candidate Genes of Skin Color of Black-Bone Chicken Based on Transcriptome and Proteome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2320-2329. |
[8] | BAI Lu, WANG Mengjie, MA Xiaochun, HE Zhengxiao, KONG Fuli, LIU Dawei, YING Fan, ZHU Dan, ZHAO Guiping, WEN Jie, LIU Ranran. Study of the Alteration of Wooden Breast Histological and Molecular Regulatory Pathways in Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1915-1926. |
[9] | WANG Meihui, ZHONG Zhenyu, BAI Jiade, SHAN Yunfang, CHENG Zhibin, ZHANG Qingxun, MENG Yuping, DONG Yulan, GUO Qingyun. Transcriptomic Analysis of Key Genes and Pathways in Deer Gut Infected by Clostridium perfringens Type C [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2147-2157. |
[10] | SUN Meijie, CAO Liwen, ZHENG Wenjin, SHEN Junshi, ZHU Weiyun. Effect of Dietary Urea Supplementation on Liver Ammonia Metabolism in Fattening Hu Lambs Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1148-1159. |
[11] | LIU Yuanyi, LI Xinyu, Bayinnamula, CUI Fang, MANG Lai, DU Ming. Single-Cell Transcriptome Sequencing Technology and its Application in Animal Reproduction [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 421-433. |
[12] | YU Zuhua, JIA Yanyan, HE Lei, LIAO Chengshui, LI Jing, WEI Ying, CHEN Jian, CHEN Songbiao, SHANG Ke, DING Ke. Effects of gga-miR-155 on MDCC-MSB1 Cell Transcriptomes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 663-672. |
[13] | HAN Haoyuan, LI Shikai, YANG Ruiqiao, LI Manman, LI Jun, HA Si, ZHAO Jinyan, WEI Hongfang, QUAN Kai. Mining Key Candidate Genes for High Reproduction Performance of Huai Goats Based on Transcriptome Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5077-5090. |
[14] | WANG Wenxiang, DU Lili, HU Junwei, ZHANG Yanxiang, MA Minghao, DUAN Rui, QIAN Cong, WANG Xinyue, LI Sanlu, ZHANG Changqing, ZHANG Lupei, GAO Xue, XU Lingyang, LI Junya, GAO Huijiang. Mining Candidate Genes Related to Meat Quality Traits of Longissimus Lumborum in Pingliang Red Steer Based on Transcriptome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4589-4604. |
[15] | ZHANG Qian, CUI Yan, YU Sijiu, HE Junfeng, PAN Yangyang, WANG Meng. Transcriptome Analysis of the Cerebral Cortex in Newborn and Adult Yaks (Bos grunniens) [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4605-4614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||