畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 995-1005.doi: 10.11843/j.issn.0366-6964.2025.03.003
收稿日期:
2024-05-09
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
崔凯
E-mail:wangzhuo990119@163.com;cuikai@caas.cn
作者简介:
王卓(1999-),女,河北邢台人,硕士生,主要从事动物营养与饲料科学研究,E-mail: wangzhuo990119@163.com
基金资助:
WANG Zhuo(), ZHAO Yuwei, TU Yan, DIAO Qiyu, CUI Kai*(
)
Received:
2024-05-09
Online:
2025-03-23
Published:
2025-04-02
Contact:
CUI Kai
E-mail:wangzhuo990119@163.com;cuikai@caas.cn
摘要:
肠道黏膜屏障是阻止外来病原性物质入侵的第一道防线,其完整性对维持肠道健康至关重要。β-防御素是广泛分布于哺乳动物上皮细胞的小分子多肽,具有抗微生物、抗肿瘤、抗炎及免疫调节等生物学特性,且抗菌广谱、分子量小、不易产生耐药性。β-防御素可以通过调节肠道菌群、肠上皮细胞紧密连接表达、肠上皮细胞抑菌物质的分泌以及肠黏膜免疫作用从而调控肠道屏障功能,维护肠道内环境的稳态。本文就β-防御素的生物学特性及作用机制、β-防御素在调控动物肠道屏障上的作用、饲料添加剂对肠道β-防御素的调节作用三大方面进行综述,以期为β-防御素在动物肠道中的应用提供参考。
中图分类号:
王卓, 赵雨薇, 屠焰, 刁其玉, 崔凯. β-防御素的生物学特性及其在调控动物肠道屏障中的研究进展[J]. 畜牧兽医学报, 2025, 56(3): 995-1005.
WANG Zhuo, ZHAO Yuwei, TU Yan, DIAO Qiyu, CUI Kai. Research Progress on Biological Characteristics of β-defensins and Their Roles in Regulating Intestinal Barrier in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 995-1005.
表 1
添加剂对动物肠道中β-防御素的调控"
添加剂种类 Types of additives | 饲料添加剂 Feed additive | 添加剂量 Dose added | 产生部位 Site of production | β-防御素类型 β-defensin types | 参考文献 References |
植物提取物 Plant extracts | 槲皮素 | 0.02%~0.06% | 肉鸡回肠 | AvBD3、4、5、6、7、 8、9、10、11、13 | [ |
黄花蒿 | 0.1% | 仔猪十二指肠、空肠、回肠 | pBD1、pBD2、pBD3 | [ | |
葛根多糖 | 0.8 g·kg-1 | 小鼠小肠 | 总β-防御素 | [ | |
氨基酸 Amino acids | L-苏氨酸 | 1 mmol·L-1 | IPEC-J2 | pBD-1、pBD-2、 pBD-3 | [ |
小分子化合物 Small molecule compounds | 烟酸 | 1×107 TCID50 | 断奶仔猪空肠、回肠 | pBD-1、pBD-2 | [ |
丁酸甘油酯 | 0.5% | 断奶仔猪空肠、回肠 | pBD1、pBD2、pBD3、 pBD114、pBD129 | [ | |
益生菌 Probiotics | 双歧杆菌 | 1×109 cfu·mL-1 | 斑马鱼 | zfbd-1, zfbd-2, zfbd-3 | [ |
罗伊氏乳杆菌 | 1×108 CFU 菌液300 μL | 鸡回肠和盲肠 | AvBD10、 AvBD12↓ | [ | |
酸化小儿球菌、 粪肠球菌 | 2.5×109 CFU·kg-1、 1 g·kg-1 | 肉鸡回肠 | AvBD2、 AvBD9↓ | [ |
1 |
AN J , LIU Y Q , WANG Y Q , et al. The role of intestinal mucosal barrier in autoimmune disease: a potential target[J]. Front Immunol, 2022, 13, 871713.
doi: 10.3389/fimmu.2022.871713 |
2 |
KOCH F , THOM U , ALBRECHT E , et al. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine[J]. Proc Natl Acad Sci U S A, 2019, 116 (21): 10333- 10338.
doi: 10.1073/pnas.1820130116 |
3 |
TOHIDNEZHAD M , VAROGA D , PODSCHUN R , et al. Thrombocytes are effectors of the innate immune system releasing human beta defensin-3[J]. Injury, 2011, 42 (7): 682- 686.
doi: 10.1016/j.injury.2010.12.010 |
4 |
MAXWELL A I , MORRISON G M , DORIN J R . Rapid sequence divergence in mammalian β-defensins by adaptive evolution[J]. Mol Immunol, 2003, 40 (7): 413- 421.
doi: 10.1016/S0161-5890(03)00160-3 |
5 | 李庆豪. 猪β-防御素-2对黄曲霉毒素B1致肠道损伤的修复效果研究[D]. 郑州: 河南农业大学, 2022. |
LI Q H. Effects of porcine beta-defensin-2 on intestinal injury induced by Aflatoxin B1[D]. Zhengzhou: Henan Agricultural University, 2022. (in Chinese) | |
6 |
陈小培, 田海芝, 任正楠, 等. 表达鼠源β-防御素14的植物乳植杆菌减轻小鼠急性结肠炎[J]. 食品科学, 2022, 43 (17): 1- 11.
doi: 10.7506/spkx1002-6630-20220509-110 |
CHEN X P , TIAN H Z , REN Z N , et al. Mouse β-defensin 14-expressing Lactiplantibacillus plantarum attenuates acute colitis in mice[J]. Food Science, 2022, 43 (17): 1- 11.
doi: 10.7506/spkx1002-6630-20220509-110 |
|
7 |
JIN X , LI Q H , SUN J , et al. Porcine β-defensin-2 alleviates AFB1-induced intestinal mucosal injury by inhibiting oxidative stress and apoptosis[J]. Ecotoxicol Environ Saf, 2023, 262, 115161.
doi: 10.1016/j.ecoenv.2023.115161 |
8 |
SELSTED M E , TANG Y Q , MORRIS W L , et al. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils[J]. J Biol Chem, 1993, 268 (9): 6641- 6648.
doi: 10.1016/S0021-9258(18)53298-1 |
9 |
DIAMOND G , ZASLOFF M , ECK H , et al. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: Peptide isolation and cloning of a cDNA[J]. Proc Natl Acad Sci U S A, 1991, 88 (9): 3952- 3956.
doi: 10.1073/pnas.88.9.3952 |
10 | 杜海燕. 山羊附睾头β防御素家族表达特点及gBD124功能分析[D]. 太原: 山西农业大学, 2018. |
DU H Y. The expression characteristics of β-defensin family from caprine epididymis and function analysis of gBD124[D]. Taiyuan: Shanxi Agricultural University, 2018. (in Chinese) | |
11 |
PATIL A A , CAI Y B , SANG Y M , et al. Cross-species analysis of the mammalian β-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract[J]. Physiol Genomics, 2005, 23 (1): 5- 17.
doi: 10.1152/physiolgenomics.00104.2005 |
12 |
黄鑫芸, 张俊梅, 邰苗苗, 等. 山羊β-防御素124定位及过表达附睾头上皮细胞系的建立[J]. 山西农业科学, 2022, 50 (10): 1476- 1481.
doi: 10.3969/j.issn.1002-2481.2022.10.17 |
HUANG X Y , ZHANG J M , TAI M M , et al. Localization of β-defensin 124 and construction of overexpressed epithelial cell strain of epididymal caput of goats[J]. Journal of Shanxi Agricultural Sciences, 2022, 50 (10): 1476- 1481.
doi: 10.3969/j.issn.1002-2481.2022.10.17 |
|
13 |
S∅RENSEN O E , COWLAND J B , THEILGAARD-MONCH K , et al. Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors[J]. J Immunol, 2003, 170 (11): 5583- 5589.
doi: 10.4049/jimmunol.170.11.5583 |
14 |
ZHANG G L , SUNKARA L T . Avian antimicrobial host defense peptides: from biology to therapeutic applications[J]. Pharmaceuticals (Basel), 2014, 7 (3): 220- 247.
doi: 10.3390/ph7030220 |
15 |
GANZ T . Defensins in the urinary tract and other tissues[J]. J Infect Dis, 2001, 183 (S1): S41- S42.
doi: 10.1086/318838 |
16 |
SCHUTTE B C , MITROS J P , BARTLETT J A , et al. Discovery of five conserved β-defensin gene clusters using a computational search strategy[J]. Proc Natl Acad Sci U S A, 2002, 99 (4): 2129- 2133.
doi: 10.1073/pnas.042692699 |
17 |
LYNN D J , HIGGS R , GAINES S , et al. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken[J]. Immunogenetics, 2004, 56 (3): 170- 177.
doi: 10.1007/s00251-004-0675-0 |
18 |
HUANG Y H , LI Y R , BURT D W , et al. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species[J]. Nat Genet, 2013, 45 (7): 776- 783.
doi: 10.1038/ng.2657 |
19 |
SANG Y M , PATIL A A , ZHANG G L , et al. Bioinformatic and expression analysis of novel porcine β-defensins[J]. Mamm Genome, 2006, 17 (4): 332- 339.
doi: 10.1007/s00335-005-0158-0 |
20 | ISLAM S , AKHAND M R N , HASAN M . Evolutionary trend of bovine β-defensin proteins toward functionality prediction: a domain-based bioinformatics study[J]. Heliyon, 2023, 9 (3): e14158. |
21 |
MEYERHOLZ D K , GALLUP J M , GRUBOR B M , et al. Developmental expression and distribution of sheep β-defensin-2[J]. Dev Comp Immunol, 2004, 28 (2): 171- 178.
doi: 10.1016/S0145-305X(03)00105-8 |
22 |
BLYTH G A D , CONNORS L , FODOR C , et al. The network of colonic host defense peptides as an innate immune defense against enteropathogenic bacteria[J]. Front Immunol, 2020, 11, 965.
doi: 10.3389/fimmu.2020.00965 |
23 |
FU J , ZONG X , JIN M L , et al. Mechanisms and regulation of defensins in host defense[J]. Sig Transduct Target Ther, 2023, 8 (1): 300.
doi: 10.1038/s41392-023-01553-x |
24 |
SCHROEDER B O , WU Z H , NUDING S , et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1[J]. Nature, 2011, 469 (7330): 419- 423.
doi: 10.1038/nature09674 |
25 |
HUANG X X , GAO C Y , ZHAO Q J , et al. Antimicrobial characterization of site-directed mutagenesis of porcine beta defensin 2[J]. PLoS One, 2015, 10 (2): e0118170.
doi: 10.1371/journal.pone.0118170 |
26 | 李娟, 刘阳, 牛军波, 等. 禽类β-防御素的研究进展[J]. 中国家禽, 2019, 41 (2): 39- 43. |
LI J , LIU Y , NIU J B , et al. Progress on the study of AvBDs[J]. China Poultry, 2019, 41 (2): 39- 43. | |
27 |
HUANG J , QI Y H , WANG A T , et al. Porcine β-defensin 2 inhibits proliferation of pseudorabies virus in vitro and in transgenic mice[J]. Virol J, 2020, 17 (1): 18.
doi: 10.1186/s12985-020-1288-4 |
28 |
LÓPEZ M L P , RAMÍREZ A V R , RÍOS J A A , et al. Cytomegalovirus seropositivity correlates with both human β-defensin 1 and IFN-γ downregulation in women with obesity[J]. Cytokine, 2023, 168, 156230.
doi: 10.1016/j.cyto.2023.156230 |
29 |
OTHUMPANGAT S , NOTI J D . β-defensin-1 regulates influenza virus infection in human bronchial epithelial cells through the STAT3 signaling pathway[J]. Pathogens, 2023, 12 (1): 123- 123.
doi: 10.3390/pathogens12010123 |
30 |
CRACK L R , JONES L , MALAVIGE G N , et al. Human antimicrobial peptides LL-37 and human β-defensin-2 reduce viral replication in keratinocytes infected with varicella zoster virus[J]. Clin Exp Dermatol, 2012, 37 (5): 534- 543.
doi: 10.1111/j.1365-2230.2012.04305.x |
31 | 全锁配. 猪β-防御素-1的原核表达及其微胶囊的制备[D]. 合肥: 安徽农业大学, 2020. |
QUAN S P. Prokaryotic expression and preparation of microcapsules of porcine β-defensin-1[D]. Hefei: Anhui Agricultural University, 2020. (in Chinese) | |
32 |
FENG Z M , DUBYAK G R , LEDERMAN M M , et al. Cutting edge: human β defensin 3-a novel antagonist of the HIV-1 coreceptor CXCR4[J]. J Immunol, 2006, 177 (2): 782- 786.
doi: 10.4049/jimmunol.177.2.782 |
33 |
PETROV V , FUNDERBURG N , WEINBERG A , et al. Human β defensin-3 induces chemokines from monocytes and macrophages: diminished activity in cells from HIV-infected persons[J]. Immunology, 2013, 140 (4): 413- 420.
doi: 10.1111/imm.12148 |
34 |
赵国春, 扣泽华, 孔令聪, 等. β-防御素生理特性的研究进展[J]. 当代畜禽养殖业, 2020 (10): 17- 20.
doi: 10.3969/j.issn.1005-5959.2020.10.007 |
ZHAO G C , KOU Z H , KONG L C , et al. Research progress on the physiological properties of β-defensins[J]. Modern Animal Husbandry, 2020 (10): 17- 20.
doi: 10.3969/j.issn.1005-5959.2020.10.007 |
|
35 |
ZHENG J Y , YANG J H , ZHANG Z M , et al. An improved oral vaccine with molecular adjuvant β-defensin protects grouper against nervous necrosis virus infection[J]. Fish Shellfish Immunol, 2023, 136, 108709.
doi: 10.1016/j.fsi.2023.108709 |
36 |
CHESSA C , BODET C , JOUSSELIN C , et al. Antiviral effect of hBD-3 and LL-37 during human primary keratinocyte infection with West Nile virus[J]. Viruses, 2022, 14 (7): 1552.
doi: 10.3390/v14071552 |
37 |
ADYNS L , PROOST P , STRUYF S . Role of defensins in tumor biology[J]. Int J Mol Sci, 2023, 24 (6): 5268.
doi: 10.3390/ijms24065268 |
38 |
PANJETA A , PREET S . Anticancer potential of human intestinal defensin 5 against 1, 2-dimethylhydrazine dihydrochloride induced colon cancer: a therapeutic approach[J]. Peptides, 2020, 126, 170263.
doi: 10.1016/j.peptides.2020.170263 |
39 |
SUN C Q , ARNOLD R S , HSIEH C L , et al. Discovery and mechanisms of host defense to oncogenesis: targeting the β-defensin-1 peptide as a natural tumor inhibitor[J]. Cancer Biol Ther, 2019, 20 (6): 774- 786.
doi: 10.1080/15384047.2018.1564564 |
40 | LI X H , SONG W Y , ZHANG M Y , et al. Human β-defensin 1 functions as a tumor suppressor via ER stress-triggered JNK pathway in hepatocellular carcinoma[J]. J BUON, 2021, 26 (4): 1365- 1372. |
41 | 孙小娟, 李彬, 余丹纯, 等. 结肠癌组织中β防御素-2的表达与树突状细胞浸润的相关性研究[J]. 中国实用医药, 2017, 12 (26): 103- 104. |
SUN X J , LI B , YU D C , et al. Correlation between β-defensin-2 expression and dendritic cell infiltration in colon cancer tissues[J]. China Practical Medicine, 2017, 12 (26): 103- 104. | |
42 |
AGARWAL S , CHAUHAN A , SINGH K , et al. Immunomodulatory effects of β-defensin 2 on macrophages induced immuno-upregulation and their antitumor function in breast cancer[J]. BMC Immunol, 2022, 23 (1): 53.
doi: 10.1186/s12865-022-00527-y |
43 |
BINDRA G K , WILLIAMS S A , LAY F T , et al. Human β-defensin 2 (HBD-2) displays oncolytic activity but does not affect tumour cell migration[J]. Biomolecules, 2022, 12 (2): 264.
doi: 10.3390/biom12020264 |
44 |
BIRAGYN A , RUFFINI P A , LEIFER C A , et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2[J]. Science, 2002, 298 (5595): 1025- 1029.
doi: 10.1126/science.1075565 |
45 |
YANG D , CHERTOV O , BYKOVSKAIA S N , et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6[J]. Science, 1999, 286 (5439): 525- 528.
doi: 10.1126/science.286.5439.525 |
46 |
JIN G , WEINBERG A . Human antimicrobial peptides and cancer[J]. Semin Cell Dev Biol, 2019, 88, 156- 162.
doi: 10.1016/j.semcdb.2018.04.006 |
47 |
MILAD N , PINEAULT M , BOUFFARD G , et al. Recombinant human β-defensin 2 delivery improves smoking-induced lung neutrophilia and bacterial exacerbation[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 323 (1): L37- L47.
doi: 10.1152/ajplung.00027.2022 |
48 |
PENG G , TSUKAMOTO S , IKUTAMA R , et al. Human β-defensin-3 attenuates atopic dermatitis-like inflammation through autophagy activation and the aryl hydrocarbon receptor signaling pathway[J]. J Clin Invest, 2022, 132 (17): e156501.
doi: 10.1172/JCI156501 |
49 |
SAQIB Z , DE PALMA G , LU J , et al. Alterations in fecal β-defensin-3 secretion as a marker of instability of the gut microbiota[J]. Gut Microbes, 2023, 15 (1): 2233679.
doi: 10.1080/19490976.2023.2233679 |
50 |
LI B , ZHANG L , WANG L , et al. Antimicrobial activity of yak beta-defensin 116 against Staphylococcus aureus and its role in gut homeostasis[J]. Int J Biol Macromol, 2023, 253, 126761.
doi: 10.1016/j.ijbiomac.2023.126761 |
51 |
TANG Z R , XU L , SHI B S , et al. Oral administration of synthetic porcine beta-defensin-2 improves growth performance and cecal microbial flora and down-regulates the expression of intestinal toll-like receptor-4 and inflammatory cytokines in weaned piglets challenged with enterotoxigenic Escherichia coli[J]. Anim Sci J, 2016, 87 (10): 1258- 1266.
doi: 10.1111/asj.12540 |
52 |
PENG Z X , WANG A R , XIE L Q , et al. Use of recombinant porcine β-defensin 2 as a medicated feed additive for weaned piglets[J]. Sci Rep, 2016, 6 (1): 26790.
doi: 10.1038/srep26790 |
53 | 邹双霞. SBD2对湖羊抗F17大肠杆菌感染的作用及其调控机制研究[D]. 扬州: 扬州大学, 2021. |
ZOU S X. The effect of SBD2 on E. coli F17 infection in Hu Sheep and its regulatory mechanism[D]. Yangzhou: Yangzhou University, 2021. (in Chinese) | |
54 |
OTANI T , NGUYEN T P , TOKUDA S , et al. Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity[J]. J Cell Biol, 2019, 218 (10): 3372- 3396.
doi: 10.1083/jcb.201812157 |
55 |
ZHANG K , LIAN S Q , SHEN X Y , et al. Recombinant porcine beta defensin 2 alleviates inflammatory responses induced by Escherichia coli in IPEC-J2 cells[J]. Int J Biol Macromol, 2022, 208, 890- 900.
doi: 10.1016/j.ijbiomac.2022.03.178 |
56 |
TIAN H Z , LI J H , CHEN X P , et al. Oral delivery of mouse β-defensin 14 (mBD14)-producing Lactococcus lactis NZ9000 attenuates experimental colitis in mice[J]. J Agric Food Chem, 2023, 71 (13): 5185- 5194.
doi: 10.1021/acs.jafc.2c07098 |
57 |
LI Q H , ZHANG M , SUN J , et al. Porcine β-defensin-2 alleviates aflatoxin B1 induced intestinal mucosal damage via ROS-Erk1/2 signaling pathway[J]. Sci Total Environ, 2023, 905, 167201.
doi: 10.1016/j.scitotenv.2023.167201 |
58 | 苏国旗. 猪β防御素114的表达调控机制及其在缓解肠道屏障炎性损伤中的作用研究[D]. 雅安: 四川农业大学, 2019. |
SU G Q. Regulatory mechanism of porcine beta defensin 114 expression and its role in alleviating inflammatory damage of the intestinal barrier[D]. Ya'an: Sichuan Agricultural University, 2019. (in Chinese) | |
59 |
XIE K H , XIE H M , SU G Q , et al. β-defensin 129 attenuates bacterial endotoxin-induced inflammation and intestinal epithelial cell apoptosis[J]. Front Immunol, 2019, 10, 2333.
doi: 10.3389/fimmu.2019.02333 |
60 | 李懿, 任鑫鑫, 王勤, 等. 乳铁蛋白减轻肠道功能障碍的研究进展[J/OL]. 食品科学, 1-15[2024-05-09]. http://kns.cnki.net/kcms/detail/11.2206.ts.20240308.1026.022.html. |
LI Y, REN X X, WANG Q, et al. Progress of lactoferrin in alleviating intestinal dysfunction[J/OL]. Food Science, 1-15[2024-05-09]. http://kns.cnki.net/kcms/detail/11.2206.ts.20240308.1026.022.html. (in Chinese) | |
61 |
JOHANSSON M E V , HANSSON G C . Immunological aspects of intestinal mucus and mucins[J]. Nat Rev Immunol, 2016, 16 (10): 639- 649.
doi: 10.1038/nri.2016.88 |
62 |
OTTE J M , WERNER I , BRAND S , et al. Human beta defensin 2 promotes intestinal wound healing in vitro[J]. J Cell Biochem, 2008, 104 (6): 2286- 2297.
doi: 10.1002/jcb.21787 |
63 |
FU Q Q , LIN Q , CHEN D W , et al. β-defensin 118 attenuates inflammation and injury of intestinal epithelial cells upon enterotoxigenic Escherichia coli challenge[J]. BMC Vet Res, 2022, 18 (1): 142.
doi: 10.1186/s12917-022-03242-3 |
64 |
ZHANG L , MEI Q D , WANG L , et al. Yak DEFB124 alleviates intestinal injury caused by Staphylococcus aureus infection[J]. Int Immunopharmacol, 2023, 114, 109531.
doi: 10.1016/j.intimp.2022.1095311||| |
65 |
OKUMURA R , TAKEDA K . Maintenance of intestinal homeostasis by mucosal barriers[J]. Inflamm Regen, 2018, 38 (1): 5.
doi: 10.1186/s41232-018-0063-z |
66 | WARNER J B , LARSEN I S , HARDESTY J E , et al. Human beta defensin 2 ameliorated alcohol-associated liver disease in mice[J]. Front Physiol, 2021, 12, 812882. |
67 |
HAN F F , ZHANG H W , XIA X , et al. Porcine β-defensin 2 attenuates inflammation and mucosal lesions in dextran sodium sulfate-induced colitis[J]. J Immunol, 2015, 194 (4): 1882- 1893.
doi: 10.4049/jimmunol.1402300 |
68 |
HUANG C , YANG X , HUANG J , et al. Porcine beta-defensin 2 provides protection against bacterial infection by a direct bactericidal activity and alleviates inflammation via interference with the TLR4/NF-κB pathway[J]. Front Immunol, 2019, 10, 1673.
doi: 10.3389/fimmu.2019.01673 |
69 | 肖风林. 槲皮素对肉鸡回肠禽β-防御素和菌群作用的Toll样受体信号转导机制[D]. 哈尔滨: 东北农业大学, 2020. |
XIAO F L. Toll-like receptor signal transduction mechanism of quercetin on beta-defensin and microflora in ileum of broilers[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese) | |
70 |
ZHANG S H , XIONG L , CUI C , et al. Maternal supplementation with Artemisia annua L.ameliorates intestinal inflammation via inhibiting the TLR4/NF-κB and MAPK pathways and improves the oxidative stability of offspring[J]. Food Funct, 2022, 13 (18): 9311- 9323.
doi: 10.1039/D2FO00675H |
71 | CAI G F , WU C H , MAO N N , et al. Isolation, purification and characterization of Pueraria lobata polysaccharide and its effects on intestinal function in cyclophosphamide-treated mice[J]. Int J Biol Macromol, 2022, 218, 356- 367. |
72 |
WANG C X , YANG Y , GAO N , et al. L-Threonine upregulates the expression of β-defensins by activating the NF-κB signaling pathway and suppressing SIRT1 expression in porcine intestinal epithelial cells[J]. Food Funct, 2021, 12 (13): 5821- 5836.
doi: 10.1039/D1FO00269D |
73 |
CHEN Y B , LI P , ZHEN R , et al. Effects of niacin on intestinal epithelial barrier, intestinal immunity, and microbial community in weaned piglets challenged by PDCoV[J]. Int Immunopharmacol, 2022, 111, 109054.
doi: 10.1016/j.intimp.2022.109054 |
74 |
TIAN M , LI L L , TIAN Z Z , et al. Glyceryl butyrate attenuates enterotoxigenic Escherichia coli-induced intestinal inflammation in piglets by inhibiting the NF-κB/MAPK pathways and modulating the gut microbiota[J]. Food Funct, 2022, 13 (11): 6282- 6292.
doi: 10.1039/D2FO01056A |
75 |
SUN X X , TIAN S N , YAN S , et al. Bifidobacterium mediate gut microbiota-remedied intestinal barrier damage caused by cyproconazole in zebrafish (Danio rerio)[J]. Sci Total Environ, 2024, 912, 169556.
doi: 10.1016/j.scitotenv.2023.169556 |
76 |
NII T , JAISUE J , ISOBE N , et al. Effects of oral administration of Lactobacillus reuteri on mucosal barrier function in the digestive tract of broiler chicks[J]. J Poult Sci, 2020, 57 (1): 67- 76.
doi: 10.2141/jpsa.0190035 |
77 |
ATEYA A I , ARAFAT N , SALEH R M , et al. Intestinal gene expressions in broiler chickens infected with Escherichia coli and dietary supplemented with probiotic, acidifier and synbiotic[J]. Vet Res Commun, 2019, 43 (2): 131- 142.
doi: 10.1007/s11259-019-09753-z |
[1] | 闫炎, 刘晏辰, 王仲发, 李旻娟, 何玉楠, 关伟军, 姜运良. 洛岛红鸡卵黄囊源性间充质干细胞的分离培养及其分化潜能研究[J]. 畜牧兽医学报, 2025, 56(3): 1252-1263. |
[2] | 张萱, 杨雪, 李新科, 郑楠, 孟璐. 丁酸钠对幼鼠回肠发育、炎症因子及物理屏障功能的调控作用[J]. 畜牧兽医学报, 2025, 56(3): 1278-1289. |
[3] | 常萱, 魏冰妮, 张小丽, 赵中权, 陈俊材. 畜禽胃肠道共生真菌研究进展[J]. 畜牧兽医学报, 2025, 56(1): 63-73. |
[4] | 刘炜, 马嘉怡, 耿浩宇, 谢添, 苗苏南, 廖宗杰, 耿士忠. 一株广谱沙门菌噬菌体的分离鉴定及其生物学特性[J]. 畜牧兽医学报, 2024, 55(9): 4061-4068. |
[5] | 王进部, 李佳, 任德明, 王立贤, 王立刚. 机器学习在畜禽基因组选择中的应用进展[J]. 畜牧兽医学报, 2024, 55(7): 2775-2785. |
[6] | 郑焕琴, 姜晓敏, 岳红, 王宝岩, 刘洋, 张兴晓, 张建龙, 朱洪伟. 猫1型疱疹病毒分离鉴定及部分生物学特性分析[J]. 畜牧兽医学报, 2024, 55(7): 3040-3048. |
[7] | 王亚鑫, 王璟, 田学凯, 杨公社, 于太永. 多组学技术在畜禽重要经济性状研究中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1842-1853. |
[8] | 段益欣, 张林云, 赵永聚. SNP遗传力估计方法、影响因素及其在畜禽育种中的应用[J]. 畜牧兽医学报, 2024, 55(5): 1854-1865. |
[9] | 徐朕宇, 邓肖玉, 王月丽, 孙灿, 吴澳迪, 曹剑, 易继海, 王勇, 王震, 陈创夫. 牛种布鲁氏菌A19ΔBtpA缺失株生物学特性及其免疫原性研究[J]. 畜牧兽医学报, 2024, 55(5): 2135-2145. |
[10] | 高洁, 李晓成, 穆杨, 张慧, 魏荣, 李劼. 荚膜B型多杀性巴氏杆菌外膜囊泡生物学特性分析与免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2168-2175. |
[11] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[12] | 李芃绪, 李世景, 孙骏, 项维, 赵苗苗, 侯天牧, 李华明, 广敏, 陈瑞格, 徐梦然, 吴晓敏, 姜合祥, 雷连成, 张付贤. 致脑膜炎猪链球菌2型的分子分型鉴定及其生物学特性[J]. 畜牧兽医学报, 2024, 55(3): 1192-1207. |
[13] | 王晋宇, 张凯川, 王芮杰, 高铎, 蒋祺丰, 贾坤. 一株铜绿假单胞菌噬菌体全基因组分析及与抗生素体外联合应用效果[J]. 畜牧兽医学报, 2024, 55(2): 727-738. |
[14] | 张高峰, 魏家阳, 冯贺龙, 李丽, 曾哲, 田光明, 聂仁锋, 罗青平, 温国元, 魏红波, 商雨. 生物矿化对新城疫病毒LaSota株生物学特性及免疫原性的影响[J]. 畜牧兽医学报, 2024, 55(12): 5663-5671. |
[15] | 蔡梦雷, 赵东旭, 张政钢, 刘东海, 姜婷婷, 苏士炫, 闫雪敏, 薛晓阳, 崔国林. GreA蛋白对肠炎沙门菌生物学特性及致病力影响[J]. 畜牧兽医学报, 2024, 55(11): 5173-5182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||