畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1676-1688.doi: 10.11843/j.issn.0366-6964.2025.04.017
龚宇轩(), 黑伟, 鲍武, 陈佳仪, 李萌, 郭晓红, 李步高*(
)
收稿日期:
2024-07-24
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
李步高
E-mail:gongyuxuan0408@163.com;jinrenn@163.com
作者简介:
龚宇轩(1999-), 女, 满族, 辽宁铁岭人, 硕士, 主要从事动物遗传育种与繁殖的研究, E-mail: gongyuxuan0408@163.com
基金资助:
GONG Yuxuan(), HEI Wei, BAO Wu, CHEN Jiayi, LI Meng, GUO Xiaohong, LI Bugao*(
)
Received:
2024-07-24
Online:
2025-04-23
Published:
2025-04-28
Contact:
LI Bugao
E-mail:gongyuxuan0408@163.com;jinrenn@163.com
摘要:
旨在探究TMEM182对猪骨骼肌卫星细胞增殖和成肌分化的调控作用。本研究选取饲养在相同条件下马身猪和大白猪各3头(180日龄,健康去势公猪),采集各组织;选取1周龄仔猪分离猪骨骼肌卫星细胞;通过qRT-PCR检测TMEM182在猪不同组织的表达谱、在不同猪种肌肉组织中的表达差异以及在骨骼肌卫星细胞不同分化天数的时序表达模式;通过在卫星细胞过表达TMEM182(OE-TMEM182)和干扰TMEM182 (si-TMEM182),采用qRT-PCR检测增殖标志基因的表达变化,采用EdU试验检测EdU阳性细胞数量变化;诱导猪骨骼肌卫星细胞成肌分化后,通过qRT-PCR、Wstern blot、免疫荧光染色等技术检测成肌分化关键基因mRNA和蛋白的表达水平以及对肌管融合的影响。结果显示,TMEM182在猪肌肉组织中均高表达,在其他组织中几乎不表达;与马身猪相比,TMEM182在大白猪肌肉组织中表达量更高(P < 0.05);随着卫星细胞分化天数的增加,TMEM182的表达量在分化第4天和5天时上升,分化第6天时下降,在分化第0天时表达量最低,第7天时表达量最高(P < 0.05);互作蛋白结果显示,OE-TMEM182组CDH15、TMEM25、HS3ST1、SEC11A的表达量极显著降低(P<0.01),VWC2L的表达量显著降低(P<0.05);在细胞增殖过程中,过表达TMEM182后极显著下调CDK1、PCNA、Ki67的表达(P < 0.01),且EdU阳性细胞数极显著减少(P < 0.01)。干扰TMEM182后极显著上调CDK4、CDK1(P < 0.01),显著上调Ki67的表达(P < 0.05),且EdU阳性细胞数极显著增加(P < 0.01)。在成肌分化过程中,过表达TMEM182后,MyoG、MyHC表达量极显著降低(P < 0.01),MyoD表达量显著降低(P < 0.05);干扰TMEM182后,MyoD、MyoG、MyHC的表达量极显著上升(P < 0.01),Myf5的表达量显著上升(P < 0.05);同时,TMEM182可能通过抑制PI3K-Akt信号通路调控猪卫星细胞的增殖和分化。本研究结果表明,TMEM182为猪骨骼肌卫星细胞增殖及分化过程中的一个负调控因子,推测其为猪骨骼肌生长发育的一个关键候选基因。
中图分类号:
龚宇轩, 黑伟, 鲍武, 陈佳仪, 李萌, 郭晓红, 李步高. TMEM182基因调控猪骨骼肌卫星细胞成肌分化的研究[J]. 畜牧兽医学报, 2025, 56(4): 1676-1688.
GONG Yuxuan, HEI Wei, BAO Wu, CHEN Jiayi, LI Meng, GUO Xiaohong, LI Bugao. Study on the Regulation of Myogenic Differentiation of Porcine Skeletal Muscle Satellite Cells by Gene TMEM182[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1676-1688.
表 1
qRT-PCR引物信息"
基因名称Gene | 引物序列(5′→3′) Primer sequence | 产物长度/bp Product length |
TMEM182 | F: CTCCTATATTGCGGCAGGCA R: AGCCATACAGCACAGAAGGG | 143 |
Myf5 | F: GACGAGTTTGAGCCACGAGT R: CGTGCTCTTCCTCGTCTGAG | 76 |
MyHC | F: CTCCTGGGGTGATGGACAAC R: CTTTCTGCAGATGCGGATGC | 83 |
MyoG | F: GAGCTGTATGAGACATCCCCC R: GTGGACGGGCAGGTAGTTTT | 75 |
MyoD | F: GCTCCGCGACGTAGATTTGA R: GGAGTCGAAACACGGGTCAT | 91 |
GAPDH | F: TCGGAGTGAACGGATTTGGC R: TGACAAGCTTCCCGTTCTCC | 189 |
PCNA | F: GCAGAGCATGGACTCGTCTC R: TTGGACATGCTGGTGAGGTT | 120 |
CDK1 | F: GCGACGCTGACGTGGTAG R: GGATGTGGTAGATCCCAGCTTA | 69 |
CDK4 | F: TTGTCCGGCTGATGGATGTC R: GCTCAAACACCAGGGTCACT | 72 |
Ki67 | F: CCGCTCTTAACACCCCTGAG R: TTTTGCACCAGATACGGGCT | 158 |
VWC2L | F: GCATTCCAACTGTCCATGCG R: TTCGGGACAGCATCCATTGT | 115 |
CDH15 | F: GACCAGGATGCCTATGA R: GGATGAAGTCAGCGATG | 170 |
TMEM25 | F: CGACTCCAACAACCTGAA R: GATCTCATCACTGCTCACA | 253 |
HS3ST1 | F: CGCAGACCATCATCATC R: CTTGGCTGTAATGCTCCTC | 133 |
TM6SF1 | F: TGGCTCTGCTCATTATCTG R: GACAAGTGTATGGTATGCT | 195 |
SEC11A | F: CCATAGTTCACCGAGTCTT R: AGCCAGTGTTGTCCTTG | 122 |
PI3K | F: AGACCAGAGACCAATACTTG R: GAGCACCAGTTCCTTCAG | 365 |
AKT | F: CACCTTCATCGGCTACAA R: TCCATCATCTCTTCCTCCT | 258 |
mTOR | F: GCAGAAGGTTGAGGTGTT R: AGAGCGAGTGTAGTTGGT | 127 |
GSK3B | F: GCACTATGTAGCCGTCTG R: GAGGAGGAATAAGGATGGTAG | 199 |
1 | 茹文秀. METTL3通过m6A修饰调控牛成肌细胞发育的功能与机制研究[D]. 杨凌: 西北农林科技大学, 2023. |
RU W X. Function and mechanism of METTL3 regulating bovine myoblast development through m6A modification[D]. Yangling: Northwest A&F University, 2023. (in Chinese) | |
2 |
梁淑怡, 李凡, 江青艳, 等. 脯氨酸羟化酶(PHDs)对动物骨骼肌发育和脂肪沉积的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55 (3): 867- 873.
doi: 10.11843/j.issn.0366-6964.2024.03.001 |
LIANG S Y , LI F , JIANG Q Y , et al. Regulation and mechanism of Proline Hydroxylases (PHDs) on skeletal muscle development and fat deposition in animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 867- 873.
doi: 10.11843/j.issn.0366-6964.2024.03.001 |
|
3 |
PARK J Y , PARK S M , LEE T S , et al. Radiopharmaceuticals for skeletal muscle PET imaging[J]. Int J Mol Sci, 2024, 25 (9): 4860.
doi: 10.3390/ijms25094860 |
4 |
LI J L , ZHANG Z Y , BO H , et al. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification[J]. Free Radic Biol Med, 2024, 213, 409- 425.
doi: 10.1016/j.freeradbiomed.2024.01.036 |
5 |
IWATA T , SHIRAI T , UEMICHI K , et al. Effect of spermidine intake on skeletal muscle regeneration after chemical injury in male mice[J]. Physiol Rep, 2024, 12 (20): e70092.
doi: 10.14814/phy2.70092 |
6 |
MASSENET J , GARDNER E , CHAZAUD B , et al. Epigenetic regulation of satellite cell fate during skeletal muscle regeneration[J]. Skeletal Muscle, 2021, 11 (1): 4.
doi: 10.1186/s13395-020-00259-w |
7 |
MEHROTRA P , JABLONSKI J , TOFTEGAARD J , et al. Skeletal muscle reprogramming enhances reinnervation after peripheral nerve injury[J]. Nat Commun, 2024, 15 (1): 9218.
doi: 10.1038/s41467-024-53276-4 |
8 |
CHEN B D , YOU W J , WANG Y Z , et al. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration[J]. Cell Mol Life Sci, 2020, 77 (8): 1551- 1569.
doi: 10.1007/s00018-019-03341-9 |
9 | 于倩文, 黄可佳, 张全启, 等. 许氏平鲉Myomaker通过调控成肌细胞融合促进肌肉肥大生长的调控机制[J]. 中国海洋大学学报(自然科学版), 2024, 54 (1): 67- 78. |
YU J W , HUANG K J , ZHANG Q Q , et al. Myomaker drives hypertrophy growth of muscle in black rockfish (Sebastes schlegelii) by promoting myoblast fusion[J]. Periodical of Ocean University of China, 2024, 54 (1): 67- 78. | |
10 |
VICENTE-GARCÍA C , HERNÁNDEZ-CAMACHO J D , CARVAJAL J J . Regulation of myogenic gene expression[J]. Exp Cell Res, 2022, 419 (1): 113299.
doi: 10.1016/j.yexcr.2022.113299 |
11 |
HERRERA-QUITERIO G A , ENCARNACIÓN-GUEVARA S . The transmembrane proteins (TMEM) and their role in cell proliferation, migration, invasion, and epithelial-mesenchymal transition in cancer[J]. Front Oncol, 2023, 13, 1244740.
doi: 10.3389/fonc.2023.1244740 |
12 |
SCHMIT K , MICHIELS C . TMEM Proteins in Cancer: A Review[J]. Front Pharmacol, 2018, 9, 1345.
doi: 10.3389/fphar.2018.01345 |
13 |
ESTEVES DE LIMA J , BLAVET C , BONNIN M A , et al. TMEM8C-mediated fusion is regionalized and regulated by NOTCH signalling during foetal myogenesis[J]. Development, 2022, 149 (2): dev199928.
doi: 10.1242/dev.199928 |
14 | 杨柳, 田慧, 冀媛媛, 等. 跨膜蛋白TMEM家族在人类生殖系统中作用的研究进展[J]. 基础医学与临床, 2024, 44 (4): 568- 571. |
YANG L , TIAN H , JI Y Y , et al. Research progress on the role of the TMEM family of transmembrane proteins in the human reproductive system[J]. Basic and Clinical Medicine, 2024, 44 (4): 568- 571. | |
15 |
PAPADAKOS S , ISSA H , ALAMRI A , et al. Rapamycin as a potential alternative drug for squamous cell gingiva carcinoma (Ca9-22): a focus on cell cycle, apoptosis and autophagy genetic profile[J]. Pharmaceuticals, 2024, 17 (1): 131.
doi: 10.3390/ph17010131 |
16 |
BERLANSKY S , HUMER C , SALLINGER M , et al. More than just simple interaction between STIM and orai proteins: CRAC channel function enabled by a network of interactions with regulatory proteins[J]. Int J Mol Sci, 2021, 22 (1): 471.
doi: 10.3390/ijms22010471 |
17 |
BEASLEY H K , RODMAN T A , COLLINS G V , et al. TMEM135 is a novel regulator of mitochondrial dynamics and physiology with implications for human health conditions[J]. Cells, 2021, 10 (7): 1750.
doi: 10.3390/cells10071750 |
18 |
ZHANG L L , WU F , ZHAO J . Transmembrane protein 45A regulates the proliferation, migration, and invasion of glioma cells through nuclear factor kappa-B[J]. Anticancer Drugs, 2020, 31 (9): 900- 907.
doi: 10.1097/CAD.0000000000000890 |
19 | WU Y , SMAS C M . Expression and regulation of transcript for the novel transmembrane protein Tmem182 in the adipocyte and muscle lineage[J]. BMC Res Notes, 2008, 19 (1): 85. |
20 | HSING E W , SHIAH S G , PENG H Y , et al. TNF-α-induced miR-450a mediates TMEM182 expression to promote oral squamous cell carcinoma motility[J]. PLoS One, 2024, 14 (3): e0213463. |
21 |
MORIHARA H , YOKOE S , WAKABAYASHI S , et al. TMEM182 inhibits myocardial differentiation of human iPS cells by maintaining the activated state of Wnt/β-catenin signaling through an increase in ILK expression[J]. FASEB Bioadv, 2024, 6 (11): 565- 579.
doi: 10.1096/fba.2024-00086 |
22 |
LUO W , LIN Z T , CHEN J H , et al. TMEM182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration[J]. J Cachexia Sarcopenia Muscle, 2021, 12 (6): 1704- 1723.
doi: 10.1002/jcsm.12767 |
23 |
GAO P F , CHENG Z M , LI M , et al. Selection of candidate genes affecting meat quality and preliminary exploration of related molecular mechanisms in the Mashen pig[J]. Asian-Australas J Anim Sci, 2019, 32 (8): 1084.
doi: 10.5713/ajas.18.0718 |
24 |
GUO X H , QIN B Y , YANG X F , et al. Comparison of carcass traits, meat quality and expressions of MyHCs in muscles between Mashen and Large White pigs[J]. Ital J Anim Sci, 2019, 18 (1): 1410- 1418.
doi: 10.1080/1828051X.2019.1674701 |
25 |
ZHANG N X , PAN H M , LIANG X J , et al. The roles of transmembrane family proteins in the regulation of store-operated Ca2+ entry[J]. Cell Mol Life Sci, 2022, 79 (2): 118.
doi: 10.1007/s00018-021-04034-y |
26 |
WANG H , YAO F , LUO S Y , et al. A mutual activation loop between the Ca2+-activated chloride channel TMEM16A and EGFR/STAT3 signaling promotes breast cancer tumorigenesis[J]. Cancer Lett, 2019, 455, 48- 59.
doi: 10.1016/j.canlet.2019.04.027 |
27 |
JI J J , ZHOU Z , LUO Q , et al. TMEM16A enhances the activity of the Cdc42-NWASP signaling pathway to promote invasion and metastasis in oral squamous cell carcinoma[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2024, 137 (2): 161- 171.
doi: 10.1016/j.oooo.2023.10.011 |
28 |
GUO S , BAI X , LIU Y F , et al. Inhibition of TMEM16A by natural product silibinin: potential lead compounds for treatment of lung adenocarcinoma[J]. Front Pharmacol, 2021, 12, 643489.
doi: 10.3389/fphar.2021.643489 |
29 |
CHEN J P , WANG D P , CHEN H Q , et al. TMEM196 inhibits lung cancer metastasis by regulating the Wnt/β-catenin signaling pathway[J]. J Cancer Res Clin Oncol, 2023, 149 (2): 653- 667.
doi: 10.1007/s00432-022-04363-w |
30 |
ZHANG Z L , SHANG J , DAI Z L , et al. Transmembrane Protein 170B is a prognostic biomarker and associated with immune infiltrates in pancreatic adenocarcinoma[J]. Front Genet, 2022, 13, 848391.
doi: 10.3389/fgene.2022.848391 |
31 |
MILLAY D P , O' ROURKE J R , SUTHERLAND L B , et al. Myomaker is a membrane activator of myoblast fusion and muscle formation[J]. Nature, 2013, 499 (7458): 301- 305.
doi: 10.1038/nature12343 |
32 |
邵鹏, 唐崟梅, 林亚秋, 等. PSMD9对山羊前体脂肪细胞脂质沉积的调控作用研究[J]. 畜牧兽医学报, 2023, 54 (9): 3653- 3663.
doi: 10.11843/j.issn.0366-6964.2023.09.007 |
SHAO P , TANG Y M , LIN Y Q , et al. Regulation effect of PSMD9 on lipid deposition in goat precursor adipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3653- 3663.
doi: 10.11843/j.issn.0366-6964.2023.09.007 |
|
33 |
刘珂含, 王永, 李艳艳, 等. SRSF10对山羊肌内前体脂肪细胞分化的影响[J]. 畜牧兽医学报, 2022, 53 (6): 1768- 1778.
doi: 10.11843/j.issn.0366-6964.2022.06.011 |
LIU K H , WANG Y , LI Y Y , et al. Effects of SRSF10 on the differentiation of intramuscular preadipocytes in goats[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (6): 1768- 1778.
doi: 10.11843/j.issn.0366-6964.2022.06.011 |
|
34 |
冯兰, 冯雪, 马玉林, 等. PPP5C基因调控牛脂肪细胞增殖、分化的功能研究[J]. 畜牧兽医学报, 2024, 55 (10): 4391- 4402.
doi: 10.11843/j.issn.0366-6964.2024.10.013 |
FENG L , FENG X , MA Y L , et al. Study on the Function of PPP5C gene in regulating the proliferation and differentiation of bovine adipocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (10): 4391- 4402.
doi: 10.11843/j.issn.0366-6964.2024.10.013 |
|
35 |
ZHANG D H , RAN J S , LI J J , et al. miR-21-5p regulates the proliferation and differentiation of skeletal muscle satellite cells by targeting KLF3 in chicken[J]. Genes (Basel), 2021, 12 (6): 814.
doi: 10.3390/genes12060814 |
36 |
LI W P , ZHANG Y , LIU Y T , et al. CD155 is essential for skeletal muscle regeneration by regulating satellite cell proliferation and differentiation[J]. FASEB J, 2024, 38 (2): e23440.
doi: 10.1096/fj.202201779RRR |
37 |
CHARRASSE S , COMUNALE F , GRUMBACH Y , et al. RhoA GTPase regulates M-cadherin activity and myoblast fusion[J]. Mol Biol Cell, 2006, 17 (2): 749- 759.
doi: 10.1091/mbc.e05-04-0284 |
38 |
ZESCHNIGK M , KOZIAN D , KUCH C , et al. Involvement of M-cadherin in terminal differentiation of skeletal muscle cells[J]. J Cell Sci, 1995, 108 (9): 2973- 2981.
doi: 10.1242/jcs.108.9.2973 |
39 |
KRAUSS R S , JOSEPH G A , GOEL A J . Keep your friends close: cell-cell contact and skeletal myogenesis[J]. Cold Spring Harb Perspect Biol, 2017, 9 (2): a029298.
doi: 10.1101/cshperspect.a029298 |
40 |
PONNALURI V K , EHRLICH K C , ZHANG G , et al. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression[J]. Epigenetics, 2017, 12 (2): 123- 138.
doi: 10.1080/15592294.2016.1265713 |
41 |
EHRLICH M , EHRLICH K C , LACEY M , et al. Epigenetics of genes preferentially expressed in dissimilar cell populations: myoblasts and cerebellum[J]. Epigenomes, 2024, 8 (1): 4.
doi: 10.3390/epigenomes8010004 |
42 |
LIU J , ZUO H N , WANG Z L , et al. The m6A reader YTHDC1 regulates muscle stem cell proliferation via PI4K-Akt-mTOR signaling[J]. Cell Prolif, 2023, 56 (8): e13410.
doi: 10.1111/cpr.13410 |
43 |
ZHENG L , LIANG H , ZHANG Q L , et al. circPTEN1, a circular RNA generated from PTEN, suppresses cancer progression through inhibition of TGF-β/Smad signaling[J]. Mol Cancer, 2022, 21 (1): 41.
doi: 10.1186/s12943-022-01495-y |
44 |
DESBOIS-MOUTHON C , CADORET A , BLIVET-VAN EGGELPOEL M J , et al. Insulin and IGF-1 stimulate the beta-catenin pathway through two signaling cascades involving GSK-3beta inhibition and Ras activation[J]. Oncogene, 2001, 20, 252- 259.
doi: 10.1038/sj.onc.1204064 |
45 |
UEKIK , FRUMAND A , BRACHMANNS M , et al. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinaseregulates cell signaling and survival[J]. Mol Cell Biol, 2002, 22 (3): 965- 977.
doi: 10.1128/MCB.22.3.965-977.2002 |
46 |
YUAN R Q , LUO X R , LIANG Z Y , et al. UBE2C promotes myoblast differentiation and skeletal muscle regeneration through the Akt signaling pathway[J]. Acta Biochim Biophys Sin (Shanghai), 2024, 56 (7): 1065- 1071.
doi: 10.3724/abbs.2024062 |
47 |
GLASS D J . Molecular mechanisms modulating muscle mass[J]. Trends Mol Med, 2003, 9 (8): 344- 350.
doi: 10.1016/S1471-4914(03)00138-2 |
48 |
COOLICAN S A , SAMUEL D S , EWTON D Z , et al. The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways[J]. J Biol Chem, 1997, 272 (10): 6653- 6662.
doi: 10.1074/jbc.272.10.6653 |
49 |
PANSTERS N A , SCHOLS A M , VERHEES K J , et al. Muscle-specific GSK-3beta ablation accelerates regeneration of disuse-atrophied skeletal muscle[J]. Biochim Biophys Acta, 2015, 1852 (3): 490- 506.
doi: 10.1016/j.bbadis.2014.12.006 |
[1] | 郭妍岩, 张羽欣, 陆瑞, 李玉鹏, 陈龙宾, 张金龙, 姚大为, 阮维斌, 张效生, 郭晓飞. 哺乳动物卵泡发育阶段颗粒细胞增殖与分化的研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1484-1493. |
[2] | 叶润根, 刘渊博, 路丽丽, Collins Amponsah Asiamah, 苏瑛. miR-215-5p在雷州黑鸭组织中的表达及其对卵泡颗粒细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2025, 56(4): 1722-1730. |
[3] | 刘晨龙, 季华员, 卢丹, 万明春, 胡耀, 周泉勇. FST对猪卵巢颗粒细胞增殖凋亡及激素分泌的影响[J]. 畜牧兽医学报, 2025, 56(3): 1242-1251. |
[4] | 张正雨, 杨培鸿, 郭宏, 李新, 张林林, 郭益文, 胡德宝, 丁向彬. 去乙酰化酶Sirt1对牛骨骼肌卫星细胞增殖和分化的影响[J]. 畜牧兽医学报, 2025, 56(2): 603-610. |
[5] | 于江玮, 程慧敏, 林健, 杨宝琳, 黄程, 杨志远, 胡格. 鸭瘟病毒TaqMan荧光定量PCR检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(2): 765-773. |
[6] | 王磊, 白少成, 王森, 鲍志远, 蔡佳炜, 刘燕, 赵博昊, 吴信生, 陈阳. SRD5A2对兔颗粒细胞增殖、凋亡和类固醇激素合成相关基因表达的影响[J]. 畜牧兽医学报, 2025, 56(1): 259-268. |
[7] | 刘建华, 撒瑞雪, 张嗣玉, 李银涛, 邓智超, 贾晗铎, 赵敏, 付玉, 杨一明, 冉多良, 加尔肯. 马疱疹病毒1型分离毒株对叙利亚金黄地鼠的致病性[J]. 畜牧兽医学报, 2025, 56(1): 327-334. |
[8] | 黄心河, 李浩楠, 周潇, 徐佳婧, 张源淑, 韩正康. 植物雌激素大豆黄酮对小鼠乳腺上皮细胞乳成分合成和细胞增殖的影响及机制[J]. 畜牧兽医学报, 2025, 56(1): 417-429. |
[9] | 贾宇航, 郭良富, 张茹楠, 赵阿勇, 刘玉芳, 储明星. miR-127调控绵羊骨骼肌细胞增殖分化及其转录因子PAX3筛选[J]. 畜牧兽医学报, 2024, 55(9): 3864-3875. |
[10] | 古丽米热·阿布都热依木, 张欣如, 吴阳升, 陈莹, 汪立芹, 徐新明, 黄俊成, 林嘉鹏. FKBP5基因对绵羊卵泡颗粒细胞功能的影响[J]. 畜牧兽医学报, 2024, 55(9): 3947-3956. |
[11] | 孙雨点, 宋紫玥, 张洪亮, 秦志华, 单虎, 杨瑞梅. 鸭短喙与侏儒综合征病毒分离与鉴定[J]. 畜牧兽医学报, 2024, 55(8): 3623-3630. |
[12] | 余祖华, 高梦茹, 何雷, 魏颖, 陈建, 陈松彪, 丁轲. mdv1-miR-M4-5p对MDCC-MSB1细胞增殖和凋亡的影响[J]. 畜牧兽医学报, 2024, 55(8): 3678-3687. |
[13] | 徐禧莹, 王毅恒, 区倩婷, 洪琳媛, 刘栩靖, 卢羡盈, 贾坤. 沉默PREX1表达对CHMp细胞增殖及侵袭性的影响[J]. 畜牧兽医学报, 2024, 55(8): 3706-3713. |
[14] | 王子岩, 王亚慧, 吴天弋, 高晨, 杜振伟, 葛菲, 张晓贝, 赵文轩, 张路培, 高会江, 董焕声, 李俊雅. INTS11通过介导CDK2和CYCLIND1的转录促进牛成肌细胞增殖[J]. 畜牧兽医学报, 2024, 55(7): 2927-2939. |
[15] | 李京宇, 陈金铭, 张明一, 赵姗姗, 陶德良, 宋军科, 杨新, 樊莹莹, 赵光辉. 犬新孢子虫miRNAs的鉴定与分析[J]. 畜牧兽医学报, 2024, 55(7): 3085-3093. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||