畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3773-3786.doi: 10.11843/j.issn.0366-6964.2025.08.019
范婧1, 李伟1, 朱妍2, 勿都巴拉1, 史佳慧2, 胡斯乐2,*, 吴江鸿1,*
收稿日期:
2025-01-16
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
胡斯乐,吴江鸿
作者简介:
范婧(1999-), 女, 内蒙古武川人, 硕士生, 主要从事家畜基因组与环境互作方面的研究, E-mail: 13171423726@163.com
基金资助:
FAN Jing1, LI Wei1, ZHU Yan2, Wudubala 1, SHI Jiahui2, Husile 2,*, WU Jianghong1,*
Received:
2025-01-16
Online:
2025-08-23
Published:
2025-08-28
Contact:
Husile , WU Jianghong
摘要:
旨在阐明不同发育阶段湖羊瘤胃组织形态发生与基因表达调控的协同规律,初探瘤胃功能成熟的分子基础。因此,本研究以健康母湖羊及其所产母羔羊为研究对象,按胚胎早期(85±5 d)、胎儿期(125±5 d)、新生期、成熟期(120±5 d)分4组,每组5只。经标准化饲养管理后,电休克处死羔羊并采集瘤胃背囊组织,部分样本经固定染色进行HE观察,分析形态学差异;其余样本冻存用于RNA提取及转录组测序,探究基因表达模式。结果表明,虽然瘤胃壁厚度随着日龄增加会逐渐增厚,但瘤胃乳头发育关键期是新生期至成熟期间。转录组结果也表明,成熟期的瘤胃基因表达模式与其他3个时期有显著差异,差异基因的表达模式可以分为21个典型模块,而成熟期的部分模块主要参与了脂肪酸代谢、免疫屏障构建、矿物质吸收等生物学过程与信号通路。PIP基因在成熟后瘤胃中的表达水平较其他3个发育阶段显著上升,进而调控ErbB2与MAPK等信号通路以完成免疫屏障构建,在成熟期MCT1等溶质载体家族成员表达水平显著上调,促进短链脂肪酸及其代谢物的跨膜运输并维持细胞内pH,完善营养物质转运的分子基础。因此,本研究发现瘤胃成熟的关键过程发生在出生后,基因表达模式的转变支撑了瘤胃形态的成熟,为揭示羔羊瘤胃发育的分子机制提供了一种新的思路。
中图分类号:
范婧, 李伟, 朱妍, 勿都巴拉, 史佳慧, 胡斯乐, 吴江鸿. 湖羊不同发育期瘤胃形态学变化及基因表达差异研究[J]. 畜牧兽医学报, 2025, 56(8): 3773-3786.
FAN Jing, LI Wei, ZHU Yan, Wudubala , SHI Jiahui, Husile , WU Jianghong. Study on Rumen Morphological Changes and Gene Expression Differences in Hu Sheep at Different Developmental Stages[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3773-3786.
表 2
qRT-PCR引物信息"
基因 Gene | 登录号 Accession number | 引物序列(5′→3′) Primer sequence | 产物大小/bp Size | 退火温度/℃ Annealing temperature |
PRDM1 | XM_004011238.5 | F: CACCACTTCATTGATGGCTTTA | 146 | 60 |
R: TTGGCAGGGATGGGCTTA | ||||
PRDM10 | XM_042237978.1 | F: TTCAAGTGCCGCCTCTGC | 134 | 60 |
R: TCACGGTTGGGCTTTATG | ||||
PRDM11 | XM_042233404.2 | F: GATGGTGACGGTGGTGAA | 146 | 60 |
R: TTTTGGGCATGATGAGGT | ||||
HDAC2 | XM_004011189.4 | F: TTATTACTACGGACAGGG | 125 | 58 |
R: CTTCAGCAGTGGCTTTAT | ||||
LOC101122351 | XM_027968888.2 | F: CCCTGCTTCTGATTCTTTG | 110 | 60 |
R: CTCTTCACTCCCGTCTATTT | ||||
SH3RF2 | XM_004008919.5 | F: TCAAGAAACAGCAGCGAGAA | 170 | 63 |
R: CGGTGGGCGAACAAGATG | ||||
IGF1 | NM_001009774.3 | F: AATCAGCAGTCTTCCAACCCAA | 120 | 62 |
R: AAGGCGAGCAAGCACAGG | ||||
SLC16A1 | XM_046946303.1 | F: ACCAGTTTTAGGTCGTCTCA | 207 | 60 |
R: GGCTTCTCAGCAACATCTACA | ||||
β-Actin | NM_001009784.3 | F: TGGACTTCGAGCAGGAGATG | 139 | 60 |
R: AGGAAGGAAGGCTGGAAGAG |
表 3
不同发育阶段对羔羊瘤胃乳头形态的影响"
项目 Item | 胚胎期 Embryonic period | 胎儿期 Fetal period | 新生期 Newborn period | 成熟期 Mature period |
乳头长度/mm Nipple length | 0.09±0.001Cc | 0.13±0.003Cc | 0.32±0.008Bb | 2.46±0.027Aa |
乳头宽度/mm Nipple width | 0.03±0.003Cd | 0.06±0.003Bc | 0.08±0.004Bb | 0.71±0.007Aa |
乳头密度/(个·cm-2) Nipple density | 471.33±4.097Aa | 394.67±3.180Bb | 292.67±2.428Cc | 42.67±2.603Dd |
乳头表面积/(mm2·cm-2) Nipple surface area | 2.37±0.142Bb | 6.47±0.183Bb | 16.70±0.177Bb | 148.48±9.84Aa |
总厚度/μm Total thickness | 30.86±0.820Dd | 50.78±1.066Cc | 70.55±1.676Bb | 247.60±2.52Aa |
角质层/μm Stratum corneum | 4.52±0.366Bc | 8.19±0.189Bb | 9.11±0.166Bb | 41.82±1.477Aa |
颗粒层/μm Granular layer | 8.47±0.303Cc | 13.83±1.138Bb | 16.28±0.263Bb | 68.60±1.168Aa |
棘层和颗粒层/μm Spinous layer and granular layer | 17.94±0.511Dd | 28.76±0.382Cc | 45.16±1.517Bb | 137.18±1.07Aa |
表 4
不同发育期羔羊瘤胃组织转录组测序数据统计"
样本名 Sample | 高质量序列/Mb Clean read | 高质量碱基数/Gb Clean base | Q20/% | Q30/% | GC/% |
ER1 | 21.67 | 6.33 | 97.51 | 93.13 | 50.78 |
ER2 | 22.96 | 6.68 | 97.35 | 92.65 | 50.56 |
ER3 | 22.07 | 6.44 | 97.60 | 93.30 | 51.52 |
ER4 | 21.75 | 6.36 | 96.75 | 90.97 | 50.05 |
ER5 | 20.99 | 6.14 | 96.62 | 90.56 | 49.81 |
LR1 | 21.01 | 6.15 | 96.61 | 90.58 | 49.70 |
LR2 | 21.28 | 6.22 | 96.69 | 90.70 | 50.74 |
LR3 | 23.22 | 6.80 | 96.65 | 90.60 | 49.86 |
LR4 | 22.98 | 6.72 | 96.87 | 91.38 | 50.46 |
LR5 | 21.19 | 6.21 | 96.71 | 90.85 | 50.32 |
FR1 | 22.66 | 7.12 | 97.25 | 92.70 | 48.20 |
FR2 | 25.55 | 8.00 | 97.09 | 92.28 | 46.51 |
FR3 | 20.56 | 6.46 | 97.00 | 92.02 | 49.01 |
FR4 | 21.13 | 6.64 | 97.65 | 93.40 | 49.05 |
FR5 | 26.50 | 8.31 | 97.41 | 93.13 | 49.33 |
AR1 | 21.34 | 6.24 | 96.79 | 90.96 | 48.22 |
AR2 | 21.66 | 6.34 | 96.95 | 91.39 | 49.23 |
AR3 | 20.18 | 5.90 | 96.80 | 90.96 | 49.08 |
AR4 | 20.40 | 5.97 | 96.74 | 90.87 | 49.94 |
AR5 | 20.92 | 6.12 | 96.45 | 90.10 | 47.59 |
表 5
KEGG、GO注释结果"
分类 Category | 编号 ID | 条目 Term | 模块 ME |
脂肪酸代谢相关功能注释Functional annotations related to fatty acid metabolism | |||
BP | GO: 0033539 | 酰基辅酶A脱氢酶介导的脂肪酸β -氧化 | 7 |
BP | GO: 0006635 | 脂肪酸β -氧化 | 7 |
BP | GO: 0019367 | 脂肪酸延长 | 1 |
CC | GO: 0005739 | 线粒体 | 1、7、20 |
CC | GO: 0005783 | 内质网 | 1、4、20 |
CC | GO: 0031410 | 胞质囊泡 | 4、7 |
MF | GO: 0009922 | 脂肪酸延长酶活性 | 1 |
MF | GO: 0070403 | NAD+结合 | 1、4 |
MF | GO: 0004497 | 单加氧酶活性 | 16 |
KEGG | oas01212 | 脂肪酸代谢 | 1、7 |
KEGG | oas00071 | 脂肪酸降解 | 1、7 |
KEGG | oas00062 | 脂肪酸延长 | 1、7 |
KEGG | oas01240 | 辅因子生物合成 | 1、4、7、16 |
KEGG | oas00640 | 丙酸代谢 | 7 |
免疫屏障相关功能注释Functional annotations related to immune barrier | |||
BP | GO: 0071222 | 细胞对脂多糖的应答 | 4 |
BP | GO: 0030855 | 上皮细胞分化 | 4 |
BP | GO: 0050829 | 对革兰氏阴性菌的防御反应 | 4 |
CC | GO: 0031012 | 细胞外基质 | 1、4 |
CC | GO: 0005765 | 溶酶体膜 | 4、16 |
CC | GO: 0008305 | 整合素复合体 | 15 |
MF | GO: 0005149 | 白细胞介素-1受体结合 | 4 |
MF | GO: 0003796 | 溶菌酶活性 | 4 |
MF | GO: 0050839 | 细胞黏附分子结合 | 1 |
KEGG | oas00980 | 细胞色素P450对外源物的代谢 | 1 |
KEGG | oas04520 | 黏着连接 | 1 |
KEGG | oas04530 | 紧密连接 | 4 |
KEGG | oas00480 | 谷胱甘肽代谢 | 1、15 |
KEGG | oas05150 | 金黄色葡萄球菌感染 | 4 |
物质转运相关功能注释Functional annotations related to substance transport | |||
BP | GO: 0006730 | 一碳代谢 | 1、4、15 |
BP | GO: 0055085 | 跨膜运输 | 4 |
BP | GO: 0006814 | 钠离子转运 | 4 |
CC | GO: 0005794 | 高尔基体 | 1 |
CC | GO: 0005922 | 连接蛋白复合体 | 1 |
CC | GO: 0016324 | 顶质膜 | 4 |
MF | GO: 1903763 | 参与电耦联细胞通讯的缝隙连接通道活性 | 1 |
MF | GO: 0005246 | 钙通道调节活性 | 15 |
MF | GO: 0046872 | 金属离子结合 | 1、7、16 |
KEGG | oas04976 | 胆汁分泌 | 1 |
KEGG | oas04978 | 矿物质吸收 | 4 |
KEGG | oas04530 | 紧密连接 | 4 |
KEGG | oas04520 | 黏着连接 | 1 |
KEGG | oas01200 | 碳代谢 | 4 |
1 |
YUAN Y , SUN D M , QIN T , et al. Single-cell transcriptomic landscape of the sheep rumen provides insights into physiological programming development and adaptation of digestive strategies[J]. Zool Res, 2022, 43 (4): 634- 647.
doi: 10.24272/j.issn.2095-8137.2022.086 |
2 |
MEALE S J , CHAUCHEYRAS-DURAND F , BERENDS H , et al. From pre-to postweaning: Transformation of the young calf's gastrointestinal tract[J]. J Dairy Sc i, 2017, 100 (7): 5984- 5995.
doi: 10.3168/jds.2016-12474 |
3 |
WU J J , ZHU S L , GU F F , et al. Cross-tissue single-cell transcriptomic landscape reveals the key cell subtypes and their potential roles in the nutrient absorption and metabolism in dairy cattle[J]. J Adv Res, 2022, 37, 1- 18.
doi: 10.1016/j.jare.2021.11.009 |
4 | 李双宏, 张博彦, 张晗, 等. 高精料饲粮对滩羊瘤胃上皮发育及转录组变化的影响[J]. 动物营养学报, 2023, 35 (4): 2651- 2660. |
LI S H , ZHANG B Y , ZHANG H , et al. Effects of high-concentrate diet on rumen epithelium development and transcriptome change of Tan sheep[J]. Chinese Journal of Animal Nutrition, 2023, 35 (4): 2651- 2660. | |
5 |
WANG X J , ZHANG D Y , WANG W M , et al. Transcriptome profiling reveals differential gene expression in the rumen of Hu lambs at different developmental stages[J]. Anim Biotechnol, 2023, 34 (3): 471- 481.
doi: 10.1080/10495398.2021.1975728 |
6 |
ZHANG J Z , DEQING Z G , ZHANG X Q , et al. Different feeding strategies can affect growth performance and rumen functions in Gangba sheep as revealed by integrated transcriptome and microbiome analyses[J]. Front Microbiol, 2022, 13, 908326.
doi: 10.3389/fmicb.2022.908326 |
7 |
SHA Y Z , HE Y Y , LIU X , et al. Rumen epithelial development-and metabolism-related genes regulate their micromorphology and VFAs mediating plateau adaptability at different ages in Tibetan sheep[J]. Int J Mol Sci, 2022, 23 (24): 16078.
doi: 10.3390/ijms232416078 |
8 |
XIANG R , ODDY V H , ARCHIBALD A L , et al. Epithelial, metabolic and innate immunity transcriptomic signatures differentiating the rumen from other sheep and mammalian gastrointestinal tract tissues[J]. PeerJ, 2016, 4, e1762.
doi: 10.7717/peerj.1762 |
9 |
HONG L Y , LIANG H , MAN W Q , et al. Estrogen and bacterial infection[J]. Front Immunol, 2025, 16, 1556683.
doi: 10.3389/fimmu.2025.1556683 |
10 | EVANGELISTA DE LIMA TERCEIRO. Delineating the role of prolactin-inducible protein (Pip) in breast cancer lung metastasis[D]. Manitoba: University of Manitoba, 2023. |
11 |
FALCIONI R , ANTONINI A , NISTICÒ P , et al. α6β4 and α6β1 integrins associate with ErbB-2 in human carcinoma cell lines[J]. Exp Cell Res, 1997, 236 (1): 76- 85.
doi: 10.1006/excr.1997.3695 |
12 |
YU X , MIYAMOTO S , MEKADA E . Integrin α2β1-dependent EGF receptor activation at cell-cell contact sites[J]. J Cell Sci, 2000, 113 (12): 2139- 2147.
doi: 10.1242/jcs.113.12.2139 |
13 |
ODONGO N , ALZAHAL O , LINDINGER M , et al. Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs[J]. J Anim Sci, 2006, 84 (2): 447- 455.
doi: 10.2527/2006.842447x |
14 |
MALHI M , GUI H , YAO L , et al. Increased papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats are associated with transient increases in cyclin D1 expression after ruminal butyrate infusion[J]. J Dairy Sci, 2013, 96 (12): 7603- 7616.
doi: 10.3168/jds.2013-6700 |
15 |
PATRO R , DUGGAL G , LOVE M I , et al. Salmon provides fast and bias-aware quantification of transcript expression[J]. Nat Methods, 2017, 14 (4): 417- 419.
doi: 10.1038/nmeth.4197 |
16 |
HAAS B J , PAPANICOLAOU A , YASSOUR M , et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis[J]. Nat Protoc, 2013, 8 (8): 1494- 1512.
doi: 10.1038/nprot.2013.084 |
17 | LANGFELDER P , HORVATH S . Fast R functions for robust correlations and hierarchical clustering[J]. J Stat Softw, 2012, 46 (11): i11. |
18 |
ROBERTSON D , SAVAGE K , REIS-FILHO J S , et al. Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue[J]. BMC Cell Biol, 2008, 9, 1- 10.
doi: 10.1186/1471-2121-9-1 |
19 |
LI D P , LIU Z J , DUAN X M , et al. Rumen development of Tianhua Mutton sheep was better than that of gansu alpine fine wool sheep under grazing conditions[J]. Animals, 2024, 14 (9): 1259.
doi: 10.3390/ani14091259 |
20 |
LEITE E R , CONDE JÚNIOR A M , FONSECA C M B , et al. Impact of feeding native Caatinga pasture on the rumen histomorphometry of sheep raised in semi-extensive management[J]. Anat Histol Embryol, 2024, 53 (2): e13029.
doi: 10.1111/ahe.13029 |
21 |
XIANG R , MCNALLY J , ROWE S , et al. Gene network analysis identifies rumen epithelial cell proliferation, differentiation and metabolic pathways perturbed by diet and correlated with methane production[J]. Sci Rep, 2016, 6 (1): 39022.
doi: 10.1038/srep39022 |
22 | 李科南. 初始补饲苜蓿时间和日龄对湖羊羔羊生长和瘤胃发育的影响及其机制研究[D]. 呼和浩特: 内蒙古农业大学, 2024. |
LI K. Study on the effects and mechanism of initial alfalfa supplementation time and age on growth and rumen development of Hu sheep lambs[D]. Hohhot: Inner Mongolia Agricultural University, 2024. (in Chinese) | |
23 | 马学义, 李乔, 祁成虎, 等. 花椒籽对湖羊羔羊生产性能, 内脏器官指数和瘤胃组织形态发育的影响[J]. 甘肃农业大学学报, 2024, 59 (5): 1- 9. |
MA X Y , LI Q , QI C H , et al. Effects of Zanthoxylum bungeanum seeds on growth performance, visceral organ indices, and rumen tissue morphological development in Hu sheep lambs[J]. Journal of Gansu Agricultural University, 2024, 59 (5): 1- 9. | |
24 | 周广琛. 基于剩余采食量探究宿主及胃肠道微生物对绵羊饲料利用效率的影响机制[D]. 咸阳: 西北农林科技大学, 2024. |
ZHOU G C. Exploring the influence mechanism of host and gastrointestinal microbiota on feed utilization efficiency in sheep based on residual feed intake[D]. Xianyang: Northwest A & F University, 2024. (in Chinese) | |
25 |
THOMPSON G E . Circulating prolactin levels in the newborn lamb[J]. J Dairy Res, 1993, 60 (2): 255- 258.
doi: 10.1017/S0022029900027576 |
26 | URBANIAK A , JABLONSKA K , PODHORSKA-OKOLOW M , et al. Prolactin-induced protein (PIP)-characterization and role in breast cancer progression[J]. Am J Cancer Res, 2018, 8 (11): 2150- 2164. |
27 | FREY M R , BRENT POLK D . ErbB receptors and their growth factor ligands in pediatric intestinal inflammation[J]. Pediatr Res, 2014, 75 (1): 127- 132. |
28 |
YANG C L , LAN W , YE S J , et al. Transcriptomic analyses reveal the protective immune regulation of conjugated linoleic acids in sheep ruminal epithelial cells[J]. Front Physiol, 2020, 11, 588082.
doi: 10.3389/fphys.2020.588082 |
29 |
LUO N J , CHENG W Q , ZHOU Y M , et al. Screening candidate genes regulating placental development from trophoblast transcriptome at early pregnancy in Dazu Black goats (Capra hircus)[J]. Animals, 2021, 11 (7): 2132.
doi: 10.3390/ani11072132 |
30 |
HU R , ZOU H W , WANG Z S , et al. Nutritional interventions improved rumen functions and promoted compensatory growth of growth-retarded yaks as revealed by integrated transcripts and microbiome analyses[J]. Front Microbiol, 2019, 10, 318.
doi: 10.3389/fmicb.2019.00318 |
31 | GEBEYEW K , MI H , LIU Y , et al. Differential immunological responses in lamb rumen and colon to alfalfa hay and wheat straw in a concentrate-rich diet: insights into microbe-host interactions[J]. mSystems, 2024, 9 (10): e00483- 24. |
32 |
GARCIA M , BRADFORD B , NAGARAJA T . Invited review: ruminal microbes, microbial products, and systemic inflammation[J]. Prof Anim Sci, 2017, 33 (6): 635- 650.
doi: 10.15232/pas.2017-01663 |
33 |
LANE M , JESSE B . Effect of volatile fatty acid infusion on development of the rumen epithelium in neonatal sheep[J]. J Dairy Sci, 1997, 80 (4): 740- 746.
doi: 10.3168/jds.S0022-0302(97)75993-9 |
34 |
BALDWIN VI R L , LIU M , CONNOR E E , et al. Transcriptional reprogramming in rumen epithelium during the developmental transition of pre-ruminant to the ruminant in cattle[J]. Animals, 2021, 11 (10): 2870.
doi: 10.3390/ani11102870 |
35 |
YANG B , CHEN H W , CAO J W , et al. Transcriptome analysis reveals that alfalfa promotes rumen development through enhanced metabolic processes and calcium transduction in Hu lambs[J]. Front Genet, 2019, 10, 929.
doi: 10.3389/fgene.2019.00929 |
36 |
YANG W X , SHA Y Z , CHEN X W , et al. Effects of the interaction between rumen microbiota density-VFAs-hepatic gluconeogenesis on the adaptability of Tibetan sheep to plateau[J]. Int J Mol Sci, 2024, 25 (12): 6726.
doi: 10.3390/ijms25126726 |
37 |
SUN D M , YIN Y Y , GUO C Z , et al. Transcriptomic analysis reveals the molecular mechanisms of rumen wall morphological and functional development induced by different solid diet introduction in a lamb model[J]. J Anim Sci Biotechnol, 2021, 12, 1- 15.
doi: 10.1186/s40104-020-00531-5 |
38 |
GÄBEL G , ASCHENBACH J , MVLLER F . Transfer of energy substrates across the ruminal epithelium: implications and limitations[J]. Anim Health Res Rev, 2002, 3 (1): 15- 30.
doi: 10.1079/AHRR200237 |
39 |
BENESCH F , DENGLER F , MASUR F , et al. Monocarboxylate transporters 1 and 4:expression and regulation by PPARα in ovine ruminal epithelial cells[J]. Am J Physiol Regul Integr Comp Physiol, 2014, 307 (12): R1428- R1437.
doi: 10.1152/ajpregu.00408.2013 |
40 | 姜茂成. MCT1介导高谷物日粮调控泌乳奶牛瘤胃SCFAs吸收机制的研究[D]. 扬州: 扬州大学, 2024. |
JIANG M C. Study on the mechanism of MCT1-mediated regulation of short-chain fatty acids (SCFAs) absorption in the rumen of lactating cows fed a high-grain diet[D]. Yangzhou: Yangzhou University, 2024. (in Chinese) |
[1] | 余昕雅, 何海健, 王磊, 倪语晨, 杜静, 周莹珊, 董婉玉, 王晓杜. LncRNA 18850对猪流行性腹泻病毒复制的影响[J]. 畜牧兽医学报, 2025, 56(3): 1366-1375. |
[2] | 张肖旭, 李昊, 冯平捷, 杨豪, 李新月, 吕冉, 潘章源, 储明星. 单细胞转录组测序技术在家养动物中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3276-3287. |
[3] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[4] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[5] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[6] | 闵祥玉, 卫佳丽, 许彪, 刘汇涛, 郑军军, 王桂武. 梅花鹿鹿茸全长转录组测序及鹿茸产量相关基因的挖掘[J]. 畜牧兽医学报, 2024, 55(12): 5549-5566. |
[7] | 梁凯欣, 钟海文, 宋长绪, 杨化强, 黄思秀, 徐铮. SYNGR2影响猪圆环病毒2型体外增殖的研究[J]. 畜牧兽医学报, 2023, 54(9): 3824-3835. |
[8] | 胡婷, 张永红, 侯晓林, 姚华, 崔德凤, 潘早早, 张凌宇, 张家希, 吴琼. 基于转录组学研究双酚A对猪睾丸支持细胞炎症和氨基酸代谢通路的影响[J]. 畜牧兽医学报, 2023, 54(7): 2858-2871. |
[9] | 刘源壹, 李昕俞, 巴音那木拉, 翠芳, 芒来, 杜明. 单细胞转录组测序技术及其在动物繁殖中的应用进展[J]. 畜牧兽医学报, 2023, 54(2): 421-433. |
[10] | 张高猛, 丁纪强, 刘昱宏, 郑麦青, 文杰, 赵桂苹, 李庆贺. 全基因组关联分析揭示白羽肉鸡孵化性状的遗传基础[J]. 畜牧兽医学报, 2023, 54(2): 534-544. |
[11] | 李晓波, 刘占发, 刘悦, 陈倩, 马月辉, 赵倩君, 叶绍辉. 基于WGCNA与GSEA方法挖掘调控中卫山羊羊毛弯曲相关基因[J]. 畜牧兽医学报, 2022, 53(9): 2930-2943. |
[12] | 毛彦妮, 常佳伟, 李娜, 王鑫, 康馨匀, 马强, 马靓, 王桂琴. 金黄色葡萄球菌在生物被膜态与浮游态的转录组差异表达分析[J]. 畜牧兽医学报, 2022, 53(8): 2697-2707. |
[13] | 赵迪, 康慧敏, 谭晓冬, 刘冉冉, 张正芬, 李华, 赵桂苹. 利用加权基因共表达网络分析筛选天农麻鸡胴体性状候选基因[J]. 畜牧兽医学报, 2022, 53(7): 2130-2140. |
[14] | 骆金红, 陈祥, 尚以顺, 敖叶, 李鹏程. 转录组测序筛选山羊妊娠早期胚胎附植相关基因[J]. 畜牧兽医学报, 2022, 53(5): 1465-1474. |
[15] | 王璐瑶, 郝雪飘, 雷白时, 赵款, 张武超, 袁万哲. 新型鹅细小病毒感染鸭的肝、胸腺、回肠转录组差异表达分析[J]. 畜牧兽医学报, 2022, 53(2): 654-657. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||