1 |
李志平. 国际马产业发展经验及启示[J]. 世界农业, 2020 (2): 98-104, 114.
|
|
LI Z P . International horse industry development experience and inspiration[J]. World Agriculture, 2020 (2): 98-104, 114.
|
2 |
BRKLJAČA BOTTEGARO N , GOTIĆ J , ŠURAN J , et al. Effect of prolonged submaximal exercise on serum oxidative stress biomarkers (d-ROMs, MDA, BAP) and oxidative stress index in endurance horses[J]. BMC Vet Res, 2018, 14 (1): 216.
|
3 |
WILLIAMS C A , KRONFELD D S , HESS T M , et al. Vitamin E intake and systemic antioxidant status in competitive endurance horses[J]. Equine and Comparative Exercise Physiology, 2005, 2 (3): 149- 152.
|
4 |
WANG D , CHEN J , SUN H , et al. MCFA alleviate H2O2-induced oxidative stress in AML12 cells via the ERK1/2/Nrf2 pathway[J]. Lipids, 2022, 57 (3): 153- 162.
|
5 |
WILLIAMS C A , KRONFELDT D S , HESS T M , et al. Antioxidant supplementation and subsequent oxidative stress of horses during an 80-km endurance race[J]. J Anim Sci, 2004, 82 (2): 588- 594.
|
6 |
CHAN A C . Partners in defense, vitamin E and vitamin C[J]. Can J Physiol Pharmacol, 1993, 71 (9): 725- 731.
|
7 |
WHITE S H , WOHLGEMUTH S , LI C , et al. Rapid Communication: Dietary selenium improves skeletal muscle mitochondrial biogenesis in young equine athletes[J]. J Anim Sci, 2017, 95 (9): 4078- 4084.
|
8 |
GARCIA E I C , ELGHANDOUR M M M Y , KHUSRO A , et al. Dietary supplements of vitamins E, C, and β-carotene to reduce oxidative stress in horses: An overview[J]. J Equine Vet Sci, 2022, 110, 103863.
|
9 |
李梅林, 杜津昊, 刘建飞, 等. 枸杞硒多糖的合成及对人体肝癌HepG2细胞增殖的体外抑制作用评价[J]. 食品工业科技, 2018, 39 (11): 22- 27.
|
|
LI M L , DU J H , LIU J F , et al. Synthesis of selenium polysaccharide from Lycium barbarum and its inhibitory effect on HepG2 cell growth in vitro[J]. Science and Technology of Food Industry, 2018, 39 (11): 22- 27.
|
10 |
景磊, 王婷婷, 胡晨曦, 等. 超声辅助纤维素酶法提取小麦硒多糖工艺优化及抗氧化活性研究[J]. 河南城建学院学报, 2024, 33 (2): 122- 128.
|
|
JING L , WANG T T , HU C X , et al. Optimization of ultrasound-assisted cellulase extraction of selenium polysaccharide from wheat and its antioxidant activity[J]. Journal of Henan University of Urban Construction, 2024, 33 (2): 122- 128.
|
11 |
周美, 姜阳明, 国光梅, 等. 铁皮石斛硒多糖制备及免疫活性[J]. 现代食品科技, 2025, 41 (2): 9- 18.
|
|
ZHOU M , JIANG Y M , GUO G M , et al. Preparation and immune activity of selenated dendrobium officinale polysaccharide[J]. Modern Food Science and Technology, 2025, 41 (2): 9- 18.
|
12 |
张梦圆, 朱晓庆, 谷新利, 等. 硒化甘草多糖、甘草多糖及其联合抗生素对无乳链球菌体外抗菌活性及机制分析[J]. 新疆农业科学, 2024, 61 (2): 469- 478.
|
|
ZHANG M Y , ZHU X Q , GU X L , et al. Study on antibacterial activity and mechanism of selenium glycyrrhiza polysaccharide, glycyrrhiza polysaccharide and their combined antibiotics against Streptococcus agalactiae in vitro[J]. Xinjiang Agricultural Sciences, 2024, 61 (2): 469- 478.
|
13 |
杨雪. 枸杞多糖纳米硒体外消化吸收特性及抗疲劳活性研究[D]. 扬州: 扬州大学, 2021.
|
|
YANG X. Study on simulated digestion and absorption in vitro and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharide[D]. Yangzhou: Yangzhou University, 2021. (in Chinese)
|
14 |
HAMID M , LIU D , ABDULRAHIM Y , et al. Inactivation of Kupffer cells by selenizing Astragalus polysaccharides prevents CCl4-induced hepatocellular necrosis in the male Wistar rat[J]. Biol Trace Elem Res, 2017, 179, 226- 236.
|
15 |
CHEN D , SUN H , SHEN Y , et al. Selenium bio-absorption and antioxidant capacity in mice treated by selenium modified rice germ polysaccharide[J]. Journal of Functional Foods, 2019, 61, 103492.
|
16 |
赵雅丽. Nrf2-ARE信号通路介导的马骨骼肌卫星细胞氧化应激的调控机理[D]. 呼和浩特: 内蒙古农业大学, 2020.
|
|
ZHAO Y L. The regulatory mechanism of oxidative stress in horse skeletalative muscle satellite cels mediated by Nrf2-ARE signaling pathway[D]. Hohhot: Inner Mongolia Agricultural University, 2020. (in Chinese)
|
17 |
SCHERZ-SHOUVAL R , ELAZAR Z . Regulation of autophagy by ROS: physiology and pathology[J]. Trends Biochem Sci, 2011, 36 (1): 30- 38.
|
18 |
詹经纬, 李欣, 关淑文, 等. 竹叶黄酮对过氧化氢诱导的奶牛乳腺上皮细胞氧化损伤的保护作用[J]. 动物营养学报, 2023, 35 (4): 2616- 2628.
|
|
ZHAN J W , LI X , GUAN S W , et al. Protective effect of bamboo leaf flavonoids on oxidative damage of bovine mammary epithelial cells induced by hydrogen peroxide[J]. Chinese Journal of Animal Nutrition, 2023, 35 (4): 2616- 2628.
|
19 |
李永义. 茶多酚对氧化应激仔猪的保护作用及机制研究[D]. 雅安: 四川农业大学, 2011.
|
|
LI Y Y. Protective effects of tea polyphenols for weaned pigs challenged with oxidative stress[D]. Yaan: Sichuan Agricultural University, 2011. (in Chinese)
|
20 |
齐晓龙, 赵芹, 张亚男, 等. 过氧化氢诱导产蛋鸡原代肝细胞氧化应激模型的建立[J]. 中国畜牧杂志, 2013, 49 (11): 49- 52.
|
|
QI X L , ZHAO Q , ZHANG Y N , et al. Establishment of a model of hydrogen peroxide-induced oxidative stress in primary hepatocytes in laying hens[J]. Chinese Journal of Animal Science, 2013, 49 (11): 49- 52.
|
21 |
SCHRAUZER G N . Anticarcinogenic effects of selenium[J]. Cell Mol Life Sci, 2000, 57 (13-14): 1864- 1873.
|
22 |
WANG L , XIAO J X , HUA Y , et al. Effects of dietary selenium polysaccharide on growth performance, oxidative stress and tissue selenium accumulation of juvenile black sea bream, Acanthopagrus schlegelii[J]. Aquaculture, 2019, 503, 389- 395.
|
23 |
YANG Y , YANG M , AI F , et al. Cardioprotective effect of Aloe verabiomacromolecules conjugated with selenium trace element on myocardial ischemia-reperfusion injury in rats[J]. Biol Trace Elem Res, 2017, 177 (2): 345- 352.
|
24 |
FORMAN H J , ZHANG H . Targeting oxidative stress in disease: promise and limitations of antioxidant therapy[J]. Nat Rev Drug Discov, 2021, 20 (9): 689- 709.
|
25 |
LOBODA A , DAMULEWICZ M , PYZA E , et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73 (17): 3221- 3247.
|
26 |
VASCONCELOS A R , DOS SANTOS N B , SCAVONE C , et al. Nrf2/ARE pathway modulation by dietary energy regulation in neurological disorders[J]. Front Pharmacol, 2019, 10, 33.
|
27 |
TEBAY L E , ROBERTSON H , DURANT S T , et al. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease[J]. Free Radic Biol Med, 2015, 88 (Pt B): 108- 146.
|
28 |
周丽娟, 张伟梁, 刘瑞琦, 等. 薯蓣皂苷通过GSK3β/Nrf2/HO-1通路改善尿酸诱导的HK-2细胞氧化应激损伤的作用及机制研究[J]. 中药新药与临床药理, 2024, 35 (3): 342- 348.
|
|
ZHOU L J , ZHANG W L , LIU R Q , et al. Effect and mechanism of dioscin on ameliorating uric acid-induced oxidative stress injury in HK-2 cells through GSK3β/Nrf2/HO-1 pathway[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2024, 35 (3): 342- 348.
|
29 |
李连浩. 添加桑叶黄酮对马运动氧化应激水平的影响及其调控机理的研究[D]. 呼和浩特: 内蒙古农业大学, 2022.
|
|
LI L H. Effects of mulberry leaf flavonoids on oxidative stress statusand its regulation mechanism in exercise horse[D]. Hohhot: Inner Mongolia Agricultural University, 2022. (in Chinese)
|
30 |
曹迪. Nrf2-ARE信号通路介导的桑叶黄酮缓解马骨骼肌卫星细胞氧化应激的机理研究[D]. 呼和浩特: 内蒙古农业大学, 2021.
|
|
CAO D. The effects of mulberry leaf flavonoids on oxidative stressof horse skeletal muscle satellite cells associated with Nrf2-ARE signaling pathway[D]. Hohhot: Inner Mongolia Agricultural University, 2021. (in Chinese)
|
31 |
WHITE S H , WARREN L K , LI C , et al. Submaximal exercise training improves mitochondrial efficiency in the gluteus medius but not in the triceps brachii of young equine athletes[J]. Sci Rep, 2017, 7 (1): 14389.
|
32 |
BRYAN K , MCGIVNEY B A , FARRIES G , et al. Equine skeletal muscle adaptations to exercise and training: evidence of differential regulation of autophagosomal and mitochondrial components[J]. BMC Genomics, 2017, 18 (1): 595.
|
33 |
LATHAM C M , GUY C P , WESOLOWSKI L T , et al. Fueling equine performance: importance of mitochondrial phenotype in equine athletes[J]. Anim Front, 2022, 12 (3): 6- 14.
|
34 |
MARTÍNEZ-REYES I , CHANDEL N S . Mitochondrial TCA cycle metabolites control physiology and disease[J]. Nat Commun, 2020, 11 (1): 102.
|
35 |
LYONS C N , LEARY S C , MOYES C D . Bioenergetic remodeling during cellular differentiation: changes in cytochrome c oxidase regulation do not affect the metabolic phenotype[J]. Biochem Cell Biol, 2004, 82 (3): 391- 399.
|
36 |
FOLMES C D , NELSON T J , MARTINEZ-FERNANDEZ A , et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming[J]. Cell Metab, 2011, 14 (2): 264- 271.
|
37 |
RYALL J G , DELL'ORSO S , DERFOUL A , et al. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells[J]. Cell Stem Cell, 2015, 16 (2): 171- 183.
|
38 |
HORI S , HIRAMUKI Y , NISHIMURA D , et al. PDH-mediated metabolic flow is critical for skeletal muscle stem cell differentiation and myotube formation during regeneration in mice[J]. FASEB J, 2019, 33 (7): 8094- 8109.
|
39 |
KIM K Y , HWANG S K , PARK S Y , et al. L-serine protects mouse hippocampal neuronal HT22 cells against oxidative stress-mediated mitochondrial damage and apoptotic cell death[J]. Free Radic Biol Med, 2019, 141, 447- 460.
|
40 |
STURZA A , PAVEL I , ANCUŞA S , et al. Quercetin exerts an inhibitory effect on cellular bioenergetics of the B164A5 murine melanoma cell line[J]. Mol Cell Biochem, 2018, 447 (1-2): 103- 109.
|
41 |
JING J , HE Y , LIU Y , et al. Selenoproteins synergistically protect porcine skeletal muscle from oxidative damage via relieving mitochondrial dysfunction and endoplasmic reticulum stress[J]. J Anim Sci Biotechnol, 2023, 14 (1): 79.
|
42 |
LEE S , SHIN H S , SHIREMAN P K , et al. Glutathione-peroxidase-1 null muscle progenitor cells are globally defective[J]. Free Radic Biol Med, 2006, 41 (7): 1174- 1184.
|
43 |
HIDALGO M , MARCHANT D , QUIDU P , et al. Oxygen modulates the glutathione peroxidase activity during the L6 myoblast early differentiation process[J]. Cell Physiol Biochem, 2014, 33 (1): 67- 77.
|
44 |
MRUGALA D , LEATHERWOOD J L , MORRIS E F , et al. Dietary conjugated linoleic acid supplementation alters skeletal muscle mitochondria and antioxidant status in young horses[J]. J Anim Sci, 2021, 99 (2): skab037.
|
45 |
OWEN R N , SEMANCHIK P L , LATHAM C M , et al. Elevated dietary selenium rescues mitochondrial capacity impairment induced by decreased vitamin E intake in young exercising horses[J]. J Anim Sci, 2022, 100 (8): skac172.
|
46 |
LATHAM C M , DICKSON E C , OWEN R N , et al. Complexed trace mineral supplementation alters antioxidant activities and expression in response to trailer stress in yearling horses in training[J]. Sci Rep, 2021, 11 (1): 7352.
|
47 |
HENRY M L , VELEZ-IRIZARRY D , PAGAN J D , et al. The impact of N-acetyl cysteine and coenzyme Q10 supplementation on skeletal muscle antioxidants and proteome in fit Thoroughbred horses[J]. Antioxidants (Basel), 2021, 10 (11): 1739.
|