1 |
PENG J Y , HAN L L , LIU B , et al. Gli1 marks a sentinel muscle stem cell population for muscle regeneration[J]. Nat Commun, 2023, 14 (1): 6993.
doi: 10.1038/s41467-023-42837-8
|
2 |
POWNALL M E , GUSTAFSSON M K , EMERSON C P JR . Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos[J]. Annu Rev Cell Dev Biol, 2002, 18, 747- 783.
doi: 10.1146/annurev.cellbio.18.012502.105758
|
3 |
GUO Q , LUO Q , SONG G B . Control of muscle satellite cell function by specific exercise-induced cytokines and their applications in muscle maintenance[J]. J Cachexia Sarcopenia Muscle, 2024, 15 (2): 466- 476.
doi: 10.1002/jcsm.13440
|
4 |
YOSHIMOTO Y , OISHI Y . Mechanisms of skeletal muscle-tendon development and regeneration/healing as potential therapeutic targets[J]. Pharmacol Ther, 2023, 243, 108357.
doi: 10.1016/j.pharmthera.2023.108357
|
5 |
JEZ J M , BENNETT M J , SCHLEGEL B P , et al. Comparative anatomy of the aldo-keto reductase superfamily[J]. Biochem J, 1997, 326 (Pt 3): 625- 636.
|
6 |
PETRASH J M . All in the family: Aldose reductase and closely related aldo-keto reductases[J]. Cell Mol Life Sci, 2004, 61 (7-8): 737- 749.
doi: 10.1007/s00018-003-3402-3
|
7 |
LIU L J , ZHU L H , CHENG Z W , et al. Aberrant expression of akr1b1 indicates poor prognosis and promotes gastric cancer progression by regulating the akt-mtor pathway[J]. Aging (Albany NY), 2023, 15 (18): 9661- 9675.
|
8 |
ZHANG S Q , YUNG K L K , CHUNG S K , et al. Aldo-keto reductases-mediated cytotoxicity of 2-deoxyglucose: A novel anticancer mechanism[J]. Cancer Sci, 2018, 109 (6): 1970- 1980.
doi: 10.1111/cas.13604
|
9 |
TANAWATTANASUNTORN T , RATTANABUREE T , THONGPANCHANG T , et al. Trans-(±)-kusunokinin suppresses akr1b1: Inhibition of oxidative stress and alteration of epithelial-mesenchymal transition markers on aggressive cancer[J]. Eur J Cancer, 2022, 174, S71- S72.
|
10 |
ZHU X P , YAO T , WANG R , et al. Irf4 in skeletal muscle regulates exercise capacity via ptg/glycogen pathway[J]. Adv Sci (Weinh), 2020, 7 (19): 2001502.
doi: 10.1002/advs.202001502
|
11 |
BHAGAVATI S , SONG X , SIDDIQUI M A . Rnai inhibition of pax3/7 expression leads to markedly decreased expression of muscle determination genes[J]. Mol Cell Biochem, 2007, 302 (1-2): 257- 262.
doi: 10.1007/s11010-007-9444-3
|
12 |
BENTZINGER C F , WANG Y X , RUDNICKI M A . Building muscle: Molecular regulation of myogenesis[J]. Cold Spring Harb Perspect Biol, 2012, 4 (2): a008342.
|
13 |
SARTORE S , GORZA L , SCHIAFFINO S . Fetal myosin heavy chains in regenerating muscle[J]. Nature, 1982, 298 (5871): 294- 296.
doi: 10.1038/298294a0
|
14 |
RUIZ F X , PARÉS X , FARRÉS J . Perspective on the structural basis for human aldo-keto reductase 1b10 inhibition[J]. Metabolites, 2021, 11 (12): 865.
doi: 10.3390/metabo11120865
|
15 |
BRESSON E , BOUCHER-KOVALIK S , CHAPDELAINE P , et al. The human aldose reductase akr1b1 qualifies as the primary prostaglandin f synthase in the endometrium[J]. J Clin Endocrinol Metab, 2011, 96 (1): 210- 219.
doi: 10.1210/jc.2010-1589
|
16 |
MATEO-OTERO Y , RIBAS-MAYNOU J , DELGADO-BERMÚDEZ A , et al. Aldose reductase b1 in pig sperm is related to their function and fertilizing ability[J]. Front Endocrinol (Lausanne), 2022, 13, 773249.
doi: 10.3389/fendo.2022.773249
|
17 |
MATEO-OTERO Y , VIÑOLAS-VERGÉIS E , LLAVANERA M , et al. Aldose reductase b1 in pig seminal plasma: Identification, localization in reproductive tissues, and relationship with quality and sperm preservation[J]. Front Cell Dev Biol, 2021, 9, 683199.
doi: 10.3389/fcell.2021.683199
|
18 |
CHOI Y , JANG H , SEO H , et al. Changes in calcium levels in the endometrium throughout pregnancy and the role of calcium on endometrial gene expression at the time of conceptus implantation in pigs[J]. Mol Reprod Dev, 2019, 86 (7): 883- 895.
doi: 10.1002/mrd.23166
|
19 |
TAO X , LIANG Y , YANG X M , et al. Transcriptomic profiling in muscle and adipose tissue identifies genes related to growth and lipid deposition[J]. PLoS One, 2017, 12 (9): e0184120.
doi: 10.1371/journal.pone.0184120
|
20 |
KANG T T , XING W K , XI Y , et al. Mir-543 regulates myoblast proliferation and differentiation of c2c12 cells by targeting[J]. J Cell Biochem, 2020, 121 (12): 4827- 4837.
doi: 10.1002/jcb.29710
|
21 |
员佳乐, 刘畅, 黄晓宇, 等. Mir-145-5p靶向igf1r介导akt通路抑制猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2023, 54 (5): 1893- 1904.
doi: 10.11843/j.issn.0366-6964.2023.05.012
|
|
YUAN J L , LIU C , HUANG X Y , et al. miR-145-5p inhibits the proliferation and differentiation of porcine skeletal muscle satellite cells by targeting IGF1R-mediated AKT pathway[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 1893- 1904.
doi: 10.11843/j.issn.0366-6964.2023.05.012
|
22 |
JIN C L , YE J L , YANG J Z , et al. Mtorc1 mediates lysine-induced satellite cell activation to promote skeletal muscle growth[J]. Cells, 2019, 8 (12): 1549.
doi: 10.3390/cells8121549
|
23 |
WANG S C , TIAN B , FENG X Y , et al. Selenium promotes broiler myoblast proliferation through the ros/pten/pi3k/ akt signaling axis[J]. Poult Sci, 2024, 103 (12): 104364.
doi: 10.1016/j.psj.2024.104364
|
24 |
CHEN X L , LUO Y L , HUANG Z Q , et al. Akirin2 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via erk1/2 and nfatc1 signaling pathways[J]. Sci Rep, 2017, 7, 45156.
|
25 |
SAKAMOTO K , FURUICHI Y , YAMAMOTO M , et al. R3hdml regulates satellite cell proliferation and differentiation[J]. EMBO Rep, 2019, 20 (11): e47957.
doi: 10.15252/embr.201947957
|
26 |
CHEN X Q , CHEN C , HAO J , et al. Akr1b1 upregulation contributes to neuroinflammation and astrocytes proliferation by regulating the energy metabolism in rat spinal cord injury[J]. Neurochem Res, 2018, 43 (8): 1491- 1499.
|
27 |
XIAO M B , JIN D D , JIAO Y J , et al. Β2-ar regulates the expression of akr1b1 in human pancreatic cancer cells and promotes their proliferation via the erk1/2 pathway[J]. Mol Biol Rep, 2018, 45 (6): 1863- 1871.
|
28 |
WU J Y , YUE B L . Regulation of myogenic cell proliferation and differentiation during mammalian skeletal myogenesis[J]. Biomed Pharm, 2024, 174, 116563.
|
29 |
郑琪, 睢梦华, 凌英会. 骨骼肌卫星细胞增殖与成肌分化过程中关键信号通路的作用[J]. 畜牧兽医学报, 2017, 48 (11): 2005- 2014.
doi: 10.11843/j.issn.0366-6964.2017.11.001
|
|
ZHENG Q , SUI M H , LING Y H . The role of key signaling pathways in the proliferation and differentiation of skeletal muscle satellite cells[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (11): 2005- 2014.
doi: 10.11843/j.issn.0366-6964.2017.11.001
|
30 |
DELFINI M C , HIRSINGER E , POURQUIÉ O , et al. Delta 1-activated notch inhibits muscle differentiation without affecting myf5 and pax3 expression in chick limb myogenesis[J]. Development, 2000, 127 (23): 5213- 5224.
|
31 |
STEINBERG G R , HARDIE D G . New insights into activation and function of the ampk[J]. Nat Rev Mol Cell Biol, 2023, 24 (4): 255- 272.
|
32 |
PAL P B , SONOWAL H , SHUKLA K , et al. Aldose reductase regulates hyperglycemia-induced huvec death via sirt1/ampk-α1/mtor pathway[J]. J Mol Endocrinol, 2019, 63 (1): 11- 25.
|
33 |
WU T T , CHEN Y Y , CHANG H Y , et al. Akr1b1-induced epithelial-mesenchymal transition mediated by rage-oxidative stress in diabetic cataract lens[J]. Antioxidants (Basel), 2020, 9 (4): 273.
|
34 |
FRANKISH B P , MURPHY R M . Does ampk bind glycogen in skeletal muscle or is the relationship correlative[J]. Essays Biochem, 2024, 68 (3): 337- 347.
|
35 |
KISSOW J , JACOBSEN K J , GUNNARSSON T P , et al. Effects of follicular and luteal phase-based menstrual cycle resistance training on muscle strength and mass[J]. Sports Med, 2022, 52 (12): 2813- 2819.
|
36 |
MENG Z T , ZHOU D , LV D , et al. Human milk extracellular vesicles enhance muscle growth and physical performance of immature mice associating with akt/mtor/p70s6k signaling pathway[J]. J Nanobiotechnol, 2023, 21 (1): 304.
|
37 |
OHANNA M , SOBERING A K , LAPOINTE T , et al. Atrophy of s6k1(-/-) skeletal muscle cells reveals distinct mtor effectors for cell cycle and size control[J]. Nat Cell Biol, 2005, 7 (3): 286- 294.
|
38 |
FANG Y , LIANG F , YUAN R Q , et al. High mobility group box 2 regulates skeletal muscle development through ribosomal protein s6 kinase 1[J]. Faseb J, 2020, 34 (9): 12367- 12378.
|