

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4294-4302.doi: 10.11843/j.issn.0366-6964.2025.09.014
收稿日期:2024-11-18
出版日期:2025-09-23
发布日期:2025-09-30
通讯作者:
彭练慈
E-mail:pydi123@163.com;penglianci@swu.edu.cn
作者简介:潘言迪(1999-),女,汉族,安徽临泉人,硕士生,主要从事抗菌肽抗感染的研究工作, E-mail: pydi123@163.com
基金资助:
PAN Yandi(
), ZHANG Tingting, FANG Rendong, PENG Lianci*(
)
Received:2024-11-18
Online:2025-09-23
Published:2025-09-30
Contact:
PENG Lianci
E-mail:pydi123@163.com;penglianci@swu.edu.cn
摘要:
宿主防御肽(host defense peptides, HDPs)是广泛存在于宿主体内的小分子多肽,在天然免疫抵御病原感染中发挥重要作用。宿主防御肽具有广谱抗微生物活性且不易产生耐药,是开发新型抗感染药物的潜在候选药物。但是宿主防御肽的抗微生物作用机制复杂,不仅可以作用于细胞壁、细胞膜,也可以影响细胞内核酸、蛋白质及代谢,本文综述了宿主防御肽对细菌、真菌、病毒、寄生虫等病原体的作用机制,为宿主防御肽的应用提供参考。
中图分类号:
潘言迪, 张婷婷, 方仁东, 彭练慈. 动物源宿主防御肽抗微生物作用机制研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4294-4302.
PAN Yandi, ZHANG Tingting, FANG Rendong, PENG Lianci. Research Progress on the Mechanism of Host Defense Peptides against Microorganisms[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4294-4302.
| 1 |
MOOKHERJEE N , ANDERSON M A , HAAGSMAN H P , et al. Antimicrobial host defence peptides: functions and clinical potential[J]. Nat Rev Drug Discov, 2020, 19 (5): 311- 332.
doi: 10.1038/s41573-019-0058-8 |
| 2 |
HUAN Y C , KONG Q , MOU H J , et al. Antimicrobial peptides: Classification, design, application and research progress in multiple fields[J]. Front Microbiol, 2020, 11, 582779.
doi: 10.3389/fmicb.2020.582779 |
| 3 | ZHANG Q Y , YAN Z B , MENG Y M , et al. Antimicrobial peptides: mechanism of action, activity and clinical potential[J]. Mil Med Res, 2021, 8 (1): 48. |
| 4 |
CARDOSO M H , DE LA FUENTE-NUNEZ C , SANTOS N C , et al. Influence of antimicrobial peptides on the bacterial membrane curvature and vice versa[J]. Trends Microbiol, 2024, 32 (7): 624- 627.
doi: 10.1016/j.tim.2024.04.012 |
| 5 |
XU D , LU W Y . Defensins: A double-edged sword in host immunity[J]. Front Immunol, 2020, 11, 764.
doi: 10.3389/fimmu.2020.00764 |
| 6 |
GAO X H , DING J Q , LIAO C B , et al. Defensins: The natural peptide antibiotic[J]. Adv Drug Deliv Rev, 2021, 179, 114008.
doi: 10.1016/j.addr.2021.114008 |
| 7 |
SCHLIEVERT P M , KILGORE S H , BECK L A , et al. Host cationic antimicrobial molecules inhibit S. aureus exotoxin production[J]. mSphere, 2023, 8 (1): e0057622.
doi: 10.1128/msphere.00576-22 |
| 8 | LIN Y B , SANSON M A , VEGA L A , et al. ExPortal and the LiaFSR regulatory system coordinate the response to cell membrane stress in Streptococcus pyogenes[J]. Mbio, 2020, 11 (5): e01804- 20. |
| 9 |
WANG H Y , CHEN X C , YAN Z H , et al. Human neutrophil peptide 1 promotes immune sterilization in vivo by reducing the virulence of multidrug-resistant Klebsiella pneumoniae and increasing the ability of macrophages[J]. Biotechnol Appl Biochem, 2022, 69 (5): 2091- 2101.
doi: 10.1002/bab.2270 |
| 10 |
KLING C , SOMMER A , ALMEIDA-HERNANDEZ Y , et al. Inhibition of pertussis toxin by human α-defensins-1 and-5: differential mechanisms of action[J]. Int J Mol Sci, 2023, 24 (13): 10557.
doi: 10.3390/ijms241310557 |
| 11 |
VARNEY K M , BONVIN A , PAZGIER M , et al. Turning defense into offense: Defensin mimetics as novel antibiotics targeting lipid Ⅱ[J]. PLoS Pathog, 2013, 9 (11): e1003732.
doi: 10.1371/journal.ppat.1003732 |
| 12 |
AWANG T , CHAIRATANA P , PONGPRAYOON P . Molecular dynamics simulations of human α-defensin 5 (HD5) crossing gram-negative bacterial membrane[J]. Plos One, 2023, 18 (11): e0294041.
doi: 10.1371/journal.pone.0294041 |
| 13 |
FU J , ZONG X , JIN M L , et al. Mechanisms and regulation of defensins in host defense[J]. Signal Transduct Target Ther, 2023, 8 (1): 300.
doi: 10.1038/s41392-023-01553-x |
| 14 |
CHAIRATANA P , NOLAN E M . Human α-defensin 6: A small peptide that self-assembles and protects the host by entangling microbes[J]. Acc Chem Res, 2017, 50 (4): 960- 967.
doi: 10.1021/acs.accounts.6b00653 |
| 15 |
AKAHOSHI D T , NATWICK D E , YUAN W R , et al. Flagella-driven motility is a target of human Paneth cell defensin activity[J]. PLoS Pathog, 2023, 19 (2): e1011200.
doi: 10.1371/journal.ppat.1011200 |
| 16 |
KUDRYASHOVA E , QUINTYN R , SEVEAU S , et al. Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins[J]. Immunity, 2014, 41 (5): 709- 721.
doi: 10.1016/j.immuni.2014.10.018 |
| 17 |
FUSCO A , SAVIO V , PERFETTO B , et al. Antimicrobial peptide human β-defensin-2 improves in vitro cellular viability and reduces pro-inflammatory effects induced by enteroinvasive Escherichia coli in Caco-2 cells by inhibiting invasion and virulence factors' expression[J]. Front Cell Infect Microbiol, 2022, 12, 1009415.
doi: 10.3389/fcimb.2022.1009415 |
| 18 |
GAO X H , FENG J H , WEI L N , et al. Defensins: A novel weapon against Mycobacterium tuberculosis?[J]. Int Immunopharmacol, 2024, 127, 111383.
doi: 10.1016/j.intimp.2023.111383 |
| 19 |
ANDRÉS M T , FIERRO P , ANTUÑA V , et al. The antimicrobial activity of human defensins at physiological non-permeabilizing concentrations is caused by the inhibition of the plasma membrane H-ATPases[J]. Int J Mol Sci, 2024, 25 (13): 7335.
doi: 10.3390/ijms25137335 |
| 20 |
HUANG C , YANG X , HUANG J , et al. Porcine beta-defensin 2 provides protection against bacterial infection by a direct bactericidal activity and alleviates inflammation via interference with the TLR4/NF-κB pathway[J]. Front Immunol, 2019, 10, 1673.
doi: 10.3389/fimmu.2019.01673 |
| 21 |
DASH R , BHATTACHARJYA S . Thanatin: An emerging host defense antimicrobial peptide with multiple modes of action[J]. Int J Mol Sci, 2021, 22 (4): 1522.
doi: 10.3390/ijms22041522 |
| 22 | LI B , ZHANG L , WANG L , et al. Antimicrobial activity of yak beta-defensin 116 against Staphylococcus aureus and its role in gut homeostasis[J]. Int J Biol Macromol, 2023, 253 (Pt 2): 126761. |
| 23 |
HUANG W P , BALIGA C , VáZQUEZ-LASLOP N , et al. Sequence diversity of apidaecin-like peptides arresting the terminating ribosome[J]. Nucleic Acids Res, 2024, 52 (15): 8967- 8978.
doi: 10.1093/nar/gkae567 |
| 24 |
LAUER S M , REEPMEYER M , BERENDES O , et al. Multimodal binding and inhibition of bacterial ribosomes by the antimicrobial peptides Api137 and Api88[J]. Nat Commun, 2024, 15 (1): 3945.
doi: 10.1038/s41467-024-48027-4 |
| 25 |
WANG Y , SONG Y C , YAN S A , et al. Antimicrobial properties and mode of action of cryptdin-4, a mouse α-defensin regulated by peptide redox structures and bacterial cultivation conditions[J]. Antibiotics (Basel), 2023, 12 (6): 1047.
doi: 10.3390/antibiotics12061047 |
| 26 |
PASTUSZAK K , KOWALCZYK B , TARASIUK J , et al. Insight into the mechanism of interactions between the LL-37 peptide and model membranes of Legionella gormanii bacteria[J]. Int J Mol Sci, 2023, 24 (15): 12039.
doi: 10.3390/ijms241512039 |
| 27 | PALUSIŃSKA-SZYSZ M , JURAK M , GISCH N , et al. The human LL-37 peptide exerts antimicrobial activity against Legionella micdadei interacting with membrane phospholipids[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867 (6): 159138. |
| 28 |
ZHANG R , XU L J , DONG C M . Antimicrobial peptides: An overview of their structure, function and mechanism of action[J]. Protein Pept Lett, 2022, 29 (8): 641- 650.
doi: 10.2174/0929866529666220613102145 |
| 29 |
LU Y , XIANG F , XU L Y , et al. The protective role of chicken cathelicidin-1 against Streptococcus suis serotype 2 in vitro and in vivo[J]. Vet Res, 2023, 54 (1): 65.
doi: 10.1186/s13567-023-01199-1 |
| 30 |
XIA R , XIAO H Z , XU M , et al. Insight into the inhibitory activity and mechanism of bovine cathelicidin BMAP 27 against Salmonella Typhimurium[J]. Microb Pathog, 2024, 187, 106540.
doi: 10.1016/j.micpath.2024.106540 |
| 31 |
OVERHAGE J , CAMPISANO A , HÄUSSLER S , et al. Human host defense peptide LL-37 prevents bacterial biofilm formation[J]. Infect Immun, 2008, 76 (9): 4176- 4182.
doi: 10.1128/IAI.00318-08 |
| 32 |
LIN M F , TSAI P W , CHEN J Y , et al. OmpA binding mediates the effect of antimicrobial peptide LL-37 on Acinetobacter baumannii[J]. PLoS One, 2015, 10 (10): e0141107.
doi: 10.1371/journal.pone.0141107 |
| 33 |
LIN M F , LIN Y Y , LAN C Y . Characterization of biofilm production in different strains of Acinetobacter baumanni and the effects of chemical compounds on biofilm formation[J]. PeerJ, 2020, 8, e9020.
doi: 10.7717/peerj.9020 |
| 34 |
ZHANG L , WU W K K , GALLO R L , et al. Critical role of antimicrobial peptide cathelicidin for controlling Helicobacter pylori survival and infection[J]. J Immunol, 2016, 196 (4): 1799- 1809.
doi: 10.4049/jimmunol.1500021 |
| 35 |
SOUNDRARAJAN N , SOMASUNDARAM P , KIM D , et al. Effective healing of Staphylococcus aureus-infected wounds in pig cathelicidin protegrin-1-overexpressing transgenic mice[J]. Int J Mol Sci, 2023, 24 (14): 11658.
doi: 10.3390/ijms241411658 |
| 36 |
HE Y M , RUAN S M , LIANG G Z , et al. A nonbactericidal anionic antimicrobial peptide provides prophylactic and therapeutic efficacies against bacterial infections in mice by immunomodulatory-antithrombotic duality[J]. J Med Chem, 2024, 67 (9): 7487- 7503.
doi: 10.1021/acs.jmedchem.4c00342 |
| 37 |
LU Y , TIAN H L , CHEN R Q , et al. Synergistic antimicrobial effect of antimicrobial peptides CATH-1, CATH-3, and PMAP-36 with erythromycin against bacterial pathogens[J]. Front Microbiol, 2022, 13, 953720.
doi: 10.3389/fmicb.2022.953720 |
| 38 |
CATTEAU L , IGLESIAS Y D , TSUNEMOTO H , et al. Nafcillin augmentation of daptomycin and cathelicidin LL-37 killing of methicillin-resistant Staphylococcus epidermidis: Foundations of successful therapy of endocarditis[J]. Int J Antimicrob Agents, 2023, 61 (6): 106758.
doi: 10.1016/j.ijantimicag.2023.106758 |
| 39 |
FARZI N , OLOOMI M , BAHRAMALI G , et al. Antibacterial properties and efficacy of LL-37 fragment GF-17D3 and scolopendin A2 peptides against resistant clinical strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii in vitro and in vivo model studies[J]. Probiotics Antimicrob Proteins, 2024, 16 (3): 796- 814.
doi: 10.1007/s12602-023-10070-w |
| 40 |
YE Z F , FU L , LI S Y , et al. Synergistic collaboration between AMPs and non-direct antimicrobial cationic peptides[J]. Nat Commun, 2024, 15 (1): 7319.
doi: 10.1038/s41467-024-51730-x |
| 41 |
ZHAI Y J , FENG Y , MA X , et al. Defensins: defenders of human reproductive health[J]. Hum Reprod Update, 2023, 29 (1): 126- 154.
doi: 10.1093/humupd/dmac032 |
| 42 |
CHANG T L , VARGAS J , DELPORTILLO A , et al. Dual role of α-defensin-1 in anti-HIV-1 innate immunity[J]. J Clin Invest, 2005, 115 (3): 765- 773.
doi: 10.1172/JCI21948 |
| 43 |
MAITI B K . Potential role of peptide-based antiviral therapy against SARS-CoV-2 infection[J]. ACS Pharmacol Transl Sci, 2020, 3 (4): 783- 785.
doi: 10.1021/acsptsci.0c00081 |
| 44 |
GULATI N M , MIYAGI M , WIENS M E , et al. alpha-defensin HD5 stabilizes Human Papillomavirus 16 capsid/core interactions[J]. Pathog Immun, 2019, 4 (2): 196- 234.
doi: 10.20411/pai.v4i2.314 |
| 45 | KEIKHA M , KAMALI H , GHAZVINI K , et al. Antimicrobial peptides: natural or synthetic defense peptides against HBV and HCV infections[J]. Virus Dis, 2022, 33 (4): 445- 455. |
| 46 |
ROY M , LEBEAU L , CHESSA C , et al. Comparison of anti-viral activity of frog skin anti-microbial peptides temporin-sha and K3 SHa to LL-37 and temporin-Tb against herpes simplex virus type 1[J]. Viruses, 2019, 11 (1): 77.
doi: 10.3390/v11010077 |
| 47 |
YE C , WAN C , CHEN J , et al. Cathelicidin CATH-B1 inhibits pseudorabies virus infection via direct interaction and TLR4/JNK/IRF3-mediated interferon activation[J]. J Virol, 2023, 97 (7): e0070623.
doi: 10.1128/jvi.00706-23 |
| 48 |
PENG L C , DU W J , BALHUIZEN M D , et al. Antiviral activity of chicken cathelicidin B1 against influenza A virus[J]. Front Microbiol, 2020, 11, 426.
doi: 10.3389/fmicb.2020.00426 |
| 49 |
VON BECK T , NAVARRETE K , ARCE N A , et al. A wild boar cathelicidin peptide derivative inhibits severe acute respiratory syndrome coronavirus-2 and its drifted variants[J]. Sci Rep, 2023, 13 (1): 14650.
doi: 10.1038/s41598-023-41850-7 |
| 50 |
CHENG Y T , SUN F , LI S , et al. Inhibitory activity of a scorpion defensin BmKDfsin3 against hepatitis C virus[J]. Antibiotics (Basel), 2020, 9 (1): 33.
doi: 10.3390/antibiotics9010033 |
| 51 |
WANG J , JIANG B Y , WANG K Z , et al. A cathelicidin antimicrobial peptide from Hydrophis cyanocinctus inhibits Zika virus infection by downregulating expression of a viral entry factor[J]. J Biol Chem, 2022, 298 (10): 102471.
doi: 10.1016/j.jbc.2022.102471 |
| 52 |
SCHROEDER B O , WU Z H , NUDING S , et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1[J]. Nature, 2011, 469 (7330): 419- 423.
doi: 10.1038/nature09674 |
| 53 |
KAMLI M R , SABIR J S M , MALIK M A , et al. Human β defensins-1, an antimicrobial peptide, kills Candida glabrata by generating oxidative stress and arresting the cell cycle in G0/G1 phase[J]. Biomed Pharmacother, 2022, 154, 113569.
doi: 10.1016/j.biopha.2022.113569 |
| 54 |
MEMARIANI H , MEMARIANI M . Antibiofilm properties of cathelicidin LL-37: an in-depth review[J]. World J Microbiol Biotechnol, 2023, 39 (4): 99.
doi: 10.1007/s11274-023-03545-z |
| 55 |
MEMARIANI M , MEMARIANI H . Antifungal properties of cathelicidin LL-37: current knowledge and future research directions[J]. World J Microbiol Biotechnol, 2024, 40 (1): 34.
doi: 10.1007/s11274-023-03852-5 |
| 56 |
JIN X , LI Q H , SUN J , et al. Porcine β-defensin-2 alleviates AFB1-induced intestinal mucosal injury by inhibiting oxidative stress and apoptosis[J]. Ecotoxicol Environ Saf, 2023, 262, 115161.
doi: 10.1016/j.ecoenv.2023.115161 |
| 57 |
HE H R , HUANG X Z , WEN C Y , et al. A novel defensin-like peptide C-13326 possesses protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀×Channa argus ♂)[J]. J Fish Dis, 2024, 47 (4): e13922.
doi: 10.1111/jfd.13922 |
| 58 |
WILLIAMS S A , LAY F T , BINDRA G K , et al. Crocodile defensin (CpoBD13) antifungal activity via pH-dependent phospholipid targeting and membrane disruption[J]. Nat Commun, 2023, 14 (1): 1170.
doi: 10.1038/s41467-023-36280-y |
| 59 |
CRAUWELS P , BANK E , WALBER B , et al. Cathelicidin contributes to the restriction of Leishmania in human host macrophages[J]. Front Immunol, 2019, 10, 2697.
doi: 10.3389/fimmu.2019.02697 |
| 60 | NOGRADO K , ADISAKWATTANA P , REAMTONG O . Antimicrobial peptides: On future antiprotozoal and anthelminthic applications[J]. Acta Trop, 2022, 235, 11. |
| 61 |
MALUF S E , DAL MAS C , OLIVEIRA E B , et al. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom[J]. Peptides, 2016, 78, 11- 16.
doi: 10.1016/j.peptides.2016.01.013 |
| 62 |
ULMSCHNEIDER J P , ULMSCHNEIDER M B . Melittin can permeabilize membranes via large transient pores[J]. Nat Commun, 2024, 15 (1): 7281.
doi: 10.1038/s41467-024-51691-1 |
| 63 |
MEMARIANI H , MEMARIANI M . Melittin as a promising anti-protozoan peptide: current knowledge and future prospects[J]. AMB Express, 2021, 11 (1): 16.
doi: 10.1186/s13568-020-01177-2 |
| 64 |
LI T , REN X , LUO X , et al. A foundation model identifies broad-spectrum antimicrobial peptides against drug-resistant bacterial infection[J]. Nat Commun, 2024, 15 (1): 7538.
doi: 10.1038/s41467-024-51933-2 |
| 65 |
WHITMORE M , TOBIN I , BURKARDT A , et al. Nutritional modulation of host defense peptide synthesis: A novel host-directed antimicrobial therapeutic strategy?[J]. Adv Nutr, 2024, 15 (9): 100277.
doi: 10.1016/j.advnut.2024.100277 |
| [1] | 王彦博, 张笑梦, 景秀娟, 冯肖艺, 张元庆, 赵学明. 纳米粒子在动物种质资源冷冻保存的研究进展[J]. 畜牧兽医学报, 2025, 56(9): 4156-4164. |
| [2] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氨基葡萄糖对断奶仔猪血清抗氧化、炎症指标以及肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(8): 3908-3921. |
| [3] | 熊平文, 徐川辉, 艾高祥, 季华员, 胡艳, 陈将, 宋琼莉, 宋文静, 韦启鹏, 陈小连, 邹志恒, 陈和洪. 金荞麦茎叶粉对赣南藏香母猪养分表观消化率、血清生化指标及粪微生物区系的影响[J]. 畜牧兽医学报, 2025, 56(7): 3290-3304. |
| [4] | 王楠, 王城名, 王婧, 林星彤, 何凌云. 磷脂酰乙醇胺对出生后生长迟缓仔猪结肠黏膜屏障功能和肠道菌群的影响[J]. 畜牧兽医学报, 2025, 56(7): 3305-3315. |
| [5] | 宋琳, 赵小伟, 齐英杰, 张养东. 短链脂肪酸对奶牛瘤胃微生物菌群的影响研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2082-2092. |
| [6] | 贾芮, 郑爱娟, 刘金梅, 陈志敏, 常文环, 刘国华. 微生物除臭技术及其在畜禽养殖中的应用[J]. 畜牧兽医学报, 2025, 56(5): 2093-2102. |
| [7] | 吴俊杰, 吕世明, 龙小霞, 王忠, 王立琦. 中药及活性成分抗耐药菌作用及其机制研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1632-1647. |
| [8] | 李苏陈, 陆婷婷, 陈军光, 缪晖, 毛海光, 韩新燕. 岔路黑猪断奶前后粪便菌群和病毒组变化及其相关性研究[J]. 畜牧兽医学报, 2025, 56(4): 1791-1801. |
| [9] | 王馨怡, 姚军虎, 张霞, 张俊. 胆汁酸调控动物肠道健康的作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1006-1018. |
| [10] | 张仕琦, 郑楠, 王加启, 赵圣国. 饲粮NFC/NDF比例对奶牛瘤胃中微生物尿素氮代谢流的影响[J]. 畜牧兽医学报, 2025, 56(3): 1302-1312. |
| [11] | 张雨, 王琪茹, 师鑫潮, 郭子明, 何欣, 张铁, 赵兴华. 厚朴酚固体分散体对犊牛生长性能、血清抗氧化能力和肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(2): 943-952. |
| [12] | 史心琦, 马梦梦, 高腾云, 刘深贺. 动物肠道微生物调控精液品质的研究进展[J]. 畜牧兽医学报, 2025, 56(1): 26-35. |
| [13] | 张纪桥, 蔡瑛婕, 李雨笑, 曹敞, 李涛, 鲍秀瑜, 张建勤. 不同饲养模式下略阳乌鸡生长性能、免疫、肠道结构及盲肠菌群的对比分析[J]. 畜牧兽医学报, 2024, 55(9): 4001-4011. |
| [14] | 宋云方, 程浩, 冯露雅, 白平, 邓远坤, 夏耀耀, 谭碧娥, 王婧. 营养调控肠道免疫细胞活化机制研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2846-2858. |
| [15] | 文安林, 杨芸芸, 罗永荣, 杨颖, 程振涛, 欧德渊, 文明. 黄连防治鸭病毒性肠炎机制的网络药理学分析及动物试验验证[J]. 畜牧兽医学报, 2024, 55(7): 3225-3233. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||