1 |
QI M , TAN B , WANG J , et al. The microbiota-gut-brain axis: a novel nutritional therapeutic target for growth retardation[J]. Crit Rev Food Sci Nutr, 2021, 62 (18): 4867- 4892.
|
2 |
NOWLAND T , PLUSH K , BARTON M , et al. Development and function of the intestinal microbiome and potential implications for pig production[J]. Animals, 2019, 9 (3): 76.
|
3 |
WANG C , WANG N , DENG Y , et al. β-hydroxybutyrate administration improves liver injury and metabolic abnormality in postnatal growth retardation piglets[J]. Front Vet Sci, 2023, 10, 1294095.
|
4 |
WU G , BAZER F W , WALLACE J M , et al. Board-invited review: intrauterine growth retardation: implications for the animal sciences[J]. J Anim Sci, 2006, 84 (9): 2316- 37.
|
5 |
KNAUER M T , HOSTETLER C E . US swine industry productivity analysis, 2005 to 2010[J]. J Swine Health Prod, 2013, 21 (5): 248- 252.
|
6 |
QI M , TAN B , WANG J , et al. Postnatal growth retardation is associated with deteriorated intestinal mucosal barrier function using a porcine model[J]. J Cell Physiol, 2021, 236 (4): 2631- 2648.
|
7 |
VANCE J E . Phospholipid synthesis and transport in mammalian cells[J]. Traffic, 2015, 16 (1): 1- 18.
|
8 |
BECKER T , HORVATH S E , BÖTTINGER L , et al. Role of phosphatidylethanolamine in the biogenesis of mitochondrial outer membrane proteins[J]. J Biol Chem, 2013, 288 (23): 16451- 16459.
|
9 |
WANG N , WANG C , QI M , et al. Phosphatidylethanolamine improves postnatal growth retardation by regulating mucus secretion of intestinal goblet cells in piglets[J]. Animals, 2024, 14 (8): 1193.
|
10 |
WU X , VALLANCE B A , BOYER L , et al. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294 (1): G295- G306.
|
11 |
QI M , LIAO S , WANG J , et al. MyD88 deficiency ameliorates weight loss caused by intestinal oxidative injury in an autophagy-dependent mechanism[J]. J Cachexia Sarcopenia Muscle, 2022, 13 (1): 677- 695.
|
12 |
XIA B , ZHONG R , WU W , et al. Mucin O-glycan-microbiota axis orchestrates gut homeostasis in a diarrheal pig model[J]. Microbiome, 2022, 10 (1): 139.
|
13 |
MCGUCKIN M A , LINDÉN S K , SUTTON P , et al. Mucin dynamics and enteric pathogens[J]. Nat Rev Microbiol, 2011, 9 (4): 265- 278.
|
14 |
VAN DER SLUIS M , DE KONING B A E , DE BRUIJN A C J M , et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection[J]. Gastroenterology, 2006, 131 (1): 117- 129.
|
15 |
WANG T , CHEN B , LUO M , et al. Microbiota-indole 3-propionic acid-brain axis mediates abnormal synaptic pruning of hippocampal microglia and susceptibility to ASD in IUGR offspring[J]. Microbiome, 2023, 11 (1): 245.
|
16 |
DUARTE M E , KIM S W . Intestinal microbiota and its interaction to intestinal health in nursery pigs[J]. Anim Nutr, 2022, 8, 169- 184.
|
17 |
SIOBHAN F C , EILEEN F M , ORLA O , et al. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut, 2014, 63 (12): 1913- 1920.
|
18 |
LOU M , CAO A , JIN C , et al. Deviated and early unsustainable stunted development of gut microbiota in children with autism spectrum disorder[J]. Gut, 2022, 71 (8): 1588- 1599.
|
19 |
RINNINELLA E , RAOUL P , CINTONI M , et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases[J]. Microorganisms, 2019, 7 (1): 14.
|
20 |
GIBⅡNO G , LOPETUSO L R , SCALDAFERRI F , et al. Exploring Bacteroidetes: metabolic key points and immunological tricks of our gut commensals[J]. Dig Liver Dis, 2018, 50 (7): 635- 639.
|
21 |
STOJANOV S , BERLEC A , ŠTRUKELJ B . The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease[J]. Microorganisms, 2020, 8 (11): 1715.
|
22 |
ROJAS-FERIA M , ROMERO-GARCÍA T , FERNÁNDEZ CABALLERO-RICO J Á , et al. Modulation of faecal metagenome in Crohn's disease: Role of microRNAs as biomarkers[J]. World J Gastroenterol, 2018, 24 (46): 5223- 5233.
|
23 |
BELIZÁRIO J E , NAPOLITANO M . Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches[J]. Front Microbiol, 2015, 6, 1050.
|
24 |
BINDA C , LOPETUSO L R , RIZZATTI G , et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis[J]. Dig Liver Dis, 2018, 50 (5): 421- 428.
|
25 |
MUKHOPADHYA I , HANSEN R , EL-OMAR E M , et al. IBD—what role do Proteobacteria play?[J]. Nat Rev Gastroenterol Hepatol, 2012, 9 (4): 219- 230.
|
26 |
SHIN N R , WHON T W , BAE J W . Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends Biotechnol, 2015, 33 (9): 496- 503.
|
27 |
HSU P I , PAN C Y , KAO J Y , et al. Helicobacter pylori eradication with bismuth quadruple therapy leads to dysbiosis of gut microbiota with an increased relative abundance of Proteobacteria and decreased relative abundances of Bacteroidetes and Actinobacteria[J]. Helicobacter, 2018, 23 (4): e12498.
|
28 |
TREMAROLI V , BÄCKHED F . Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489 (7415): 242- 249.
|
29 |
WEI Z Y , RAO J H , TANG M T , et al. Characterization of changes and driver microbes in gut microbiota during healthy aging using a captive monkey model[J]. Genomics Proteomics Bioinformatics, 2022, 20 (2): 350- 365.
|
30 |
BURAKOVA I , SMIRNOVA Y , GRYAZNOVA M , et al. The effect of short-term consumption of lactic acid bacteria on the gut microbiota in obese people[J]. Nutrients, 2022, 14 (16): 3384.
|
31 |
CHEN L , SHEN Y , WANG C , et al. Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models[J]. Front Microbiol, 2019, 10, 162.
|
32 |
KORT R , SCHLÖSSER J , VAZQUEZ A R , et al. Model selection reveals the butyrate-producing gut bacterium Coprococcus eutactus as predictor for language development in 3-year-old rural Ugandan children[J]. Front Microbiol, 2021, 12, 681485.
|
33 |
LEONG C , HASZARD J J , HEATH A M , et al. Using compositional principal component analysis to describe children's gut microbiota in relation to diet and body composition[J]. Am J Clin Nutr, 2020, 111 (1): 70- 78.
|
34 |
NOTTING F , PIROVANO W , SYBESMA W , et al. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders[J]. Gut Microbiome, 2023, 4, e16.
|
35 |
YANG X , LI D , ZHANG M , et al. Ginkgo biloba extract alleviates fatty liver hemorrhagic syndrome in laying hens via reshaping gut microbiota[J]. J Anim Sci Biotechnol, 2023, 14 (1): 97.
|
36 |
KHORSAND B , ASADZADEH AGHDAEI H , NAZEMALHOSSEINI-MOJARAD E , et al. Overrepresentation of Enterobacteriaceae and Escherichia coli is the major gut microbiome signature in Crohn's disease and ulcerative colitis; a comprehensive metagenomic analysis of IBDMDB datasets[J]. Front Cell Infect Microbiol, 2022, 12, 1015890.
|