

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4303-4314.doi: 10.11843/j.issn.0366-6964.2025.09.015
田姣1(
), 龙菊烟1, 陈霞1, 岑晓丽1, 牛熙1, 黄世会2, 王嘉福1,*(
), 冉雪琴2,*(
)
收稿日期:2025-02-20
出版日期:2025-09-23
发布日期:2025-09-30
通讯作者:
王嘉福,冉雪琴
E-mail:1037436332@qq.com;jfwang@gzu.edu.cn;xqran@gzu.edu.cn
作者简介:田姣(1995-),女,土家族,贵州贵阳人,硕士,主要从事动物生物化学与分子生物学研究,E-mail: 1037436332@qq.com
基金资助:
TIAN Jiao1(
), LONG Juyan1, CHEN Xia1, CEN Xiaoli1, NIU Xi1, HUANG Shihui2, WANG Jiafu1,*(
), RAN Xueqin2,*(
)
Received:2025-02-20
Online:2025-09-23
Published:2025-09-30
Contact:
WANG Jiafu, RAN Xueqin
E-mail:1037436332@qq.com;jfwang@gzu.edu.cn;xqran@gzu.edu.cn
摘要:
旨在探究香猪ENTPD1基因3'UTR短散在元件(short interspersed nuclear element, SINE)插入/缺失的群体多态性及对基因表达的影响。本研究以香猪为研究对象,以大白猪为对照,利用PCR技术检测香猪和大白猪群体中ENTPD1基因3'UTR区SINE插入/缺失的群体多态性;利用UCSC、SINE Base、miRNA Base、PITA及RBP suite等数据库及软件分析SINE序列中的功能元件;利用Real-time fluorescence quantitative PCR(RT-qPCR)技术检测6月龄健康香猪不同组织(心、肝、脾、肺、肾)ENTPD1的mRNA水平和不同基因型个体肺组织ENTPD1的mRNA水平,利用Western blotting技术检测不同基因型个体肺组织ENTPD1的蛋白水平。结果显示,香猪ENTPD1 3'UTR存在一个297 bp的SINE多态位点,位于终止密码子下游466 bp后,生物信息学分析发现,该SINE属于Pre0_SS tRNA家族,含有RNA聚合酶Ⅲ启动子、多个RNA结合蛋白和miRNA的结合位点;在香猪和大白猪群体中均检测出3种基因型,即插入(SINE+/+)、缺失(SINE-/-)和杂合(SINE+/-),香猪群体中缺失(SINE-/-)基因型频率极显著高于大白猪(P < 0.01),SINE-等位基因频率显著高于大白猪(P < 0.05),SINE插入/缺失在两个群体中均呈现中度多态性,但仅在香猪群体中符合Hardy-Weinberg平衡。香猪不同组织ENTPD1 mRNA检测显示脾、肺组织中mRNA水平较高。香猪不同基因型肺组织ENTPD1的mRNA和蛋白检测显示,SINE-/-、SINE+/-基因型的mRNA水平极显著高于SINE+/+,SINE-/-基因型蛋白水平极显著高于SINE+/-、SINE+/+。研究结果提示,SINE插入负调控ENTPD1基因的表达。
中图分类号:
田姣, 龙菊烟, 陈霞, 岑晓丽, 牛熙, 黄世会, 王嘉福, 冉雪琴. 香猪ENTPD1基因3'UTR的SINE插入下调其基因表达[J]. 畜牧兽医学报, 2025, 56(9): 4303-4314.
TIAN Jiao, LONG Juyan, CHEN Xia, CEN Xiaoli, NIU Xi, HUANG Shihui, WANG Jiafu, RAN Xueqin. Down-regulation of Gene Expression by SINE Insertion in the 3'UTR of the ENTPD1 Gene in the Xiang Pig[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4303-4314.
表 1
引物信息"
| 引物名称 Primer name | 引物序列(5′→3′) Primer sequence | 产物长度/bp Length | 退火温度/℃ Annealing temperature | 用途 Application |
| ENTPD1-3′UTR-F | GAACTGAGAATCCTGAGTCCTGT | 571/274 | 58 | SV分型 |
| ENTPD1-3′UTR-R | CATAAGTTCCTTCACAAGCCTCT | |||
| qENTPD1-F | CTCCCACTCCACCTATGTCTTC | 160 | 60 | mRNA水平分析 |
| qENTPD1-R | AGTTTTCTTCTCACTCCAGCCA | |||
| qGAPDH-F | AGGTCGGAGTGAACGGATTTG | 118 | 60 | |
| qGAPDH-R | ACCATGTAGTGGAGGTCAATGAAG |
表 2
ENTPD1 3′UTR SINE中RBP结合位点预测"
| 序号 Number | RNA结合蛋白 RNA-binding protein | 结合位置 Binding position | 结合序列 Binding sequence | 数量 Number | 分数 Score |
| 1 | 富脯氨酸和谷氨酰胺的剪接因子(SFPQ) | 112~118 | GUGGUGU | 1 | 0.58 |
| 2 | Lin-28同系物A(LIN28A) | 113~119;159~165 | UGGUGUA | 2 | 0.98 |
| 3 | 多聚结合蛋白1(PCBP1) | 194~200 67~73 | CCUAGCC CCUGCCC | 1 1 | 0.72 0.56 |
| 5 | 脆性X信使核糖核蛋白1(FMR1) | 35~41 | CGACUAG | 1 | 0.83 |
| 6 | 富丝氨酸和精氨酸的剪接因子7(SRSF7) | 33~40 | UCCGACUA | 1 | 0.99 |
| 7 | 富丝氨酸和精氨酸的剪接因子9(SRSF9) | 14~20 | UGGCGCA | 1 | 0.99 |
| 8 | FUS RNA结合蛋白(FUS) | 114~117;160~163 | GGUG | 2 | 0.67 |
| 9 | FMR1常染色体同系物2(FXR2) | 126~132 | AGACGCG | 1 | 0.97 |
| 10 | 胰岛素样生长因子2 mRNA结合蛋白1(IGF2BP1) | 138~148 | GAUCCUGCGUU | 1 | 0.60 |
| 11 | 多聚嘧啶区结合蛋1(PTBP1) | 72~78 | CCUUGCU | 1 | 0.51 |
| 12 | Pumilio RNA结合家族成员1(PUM1) | 116~119;162~165 | UGUA | 2 | 0.67 |
表 3
ENTPD1 3′UTR SINE中miRNA结合位点预测"
| 序号 Number | miRNA名称 miRNA | 结合位置 Binding position | 序列(5′→3′) Sequence | 自由能/(kJ·mol-1) Free energy |
| 1 | ssc-miR-744 | 209~217 | AGCTCCGAT | -10.67 |
| 2 | ssc-miR-4331-3p | 209~215 | AGCTCCG | -11.61 |
| 3 | ssc-miR-214-5p | 195~203 | AGGCTGGCA | -10.52 |
| 4 | ssc-miR-9802-3p | 100~107 | GCCCTTGC | -11.57 |
| 5 | ssc-miR-326 | 258~266 | GCCCAAAGA | -11.06 |
| 6 | ssc-miR-330 | 258~266 | GCCCAAAGA | -12.02 |
| 7 | ssc-miR-885-3p | 128~135 | CGTTGCCG | -10.32 |
| 8 | ssc-miR-99b | 84~91 | TGCGGGTT | -10.75 |
| 9 | ssc-miR-652 | 78~86 | TGGGGTTGC | -10.23 |
| 10 | ssc-miR-9805-3p | 168~176 | GATCCTGCG | -10.87 |
| 11 | ssc-miR-7137-5p | 34~42 | GTTCCCGTC | -10.62 |
| 12 | ssc-miR-193a-5p | 254~262 | AAAGACCAA | -14.65 |
| 13 | ssc-miR-140-5p | 255~263 | AAGACCAAA | -11.56 |
表 4
ENTPD1 3′UTR SINE插入/缺失的群体多态性分析"
| 群体 Population | 样本数/头 Sample | 基因型频率(%) Genotype frequency | 等位基因频率/% Allele frequency | HWE test P | 群体遗传特征 Population genetic characteristics | |||||||
| SINE+/+ | SINE+/- | SINE-/- | SINE+ | SINE- | 纯合度 Ho | 杂合度 He | 有效等位 基因数Ne | 多态信息 含量PIC | ||||
| 香猪 Xiang pig | 302 | 70 (23.18) | 124 (41.06) | 108 (35.76)A | 43.71 | 56.29A | 0.13 | 0.51 | 0.49 | 1.97 | 0.37 | |
| 大白猪 Large White pig | 170 | 54 (31.76) | 102 (60.00) | 14 (8.24)C | 61.76 | 38.24B | 0.03 | 0.53 | 0.47 | 1.90 | 0.36 | |
| 1 |
LI X Y , MOESTA A K , XIAO C , et al. Targeting CD39 in cancer reveals an extracellular ATP- and inflammasome-driven tumor immunity[J]. Cancer Discov, 2019, 9 (12): 1754- 1773.
doi: 10.1158/2159-8290.CD-19-0541 |
| 2 |
SCHADLICH I S , WINZER R , STABERNACK J , et al. The role of the ATP-adenosine axis in ischemic stroke[J]. Semin Immunopathol, 2023, 45 (3): 347- 365.
doi: 10.1007/s00281-023-00987-3 |
| 3 | WANG C , YI NQ , SN Z , et al. Progress on role of extracellular ATP and its metabolite adenosine in immunoregulation: Review[J]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2020, 36 (12): 1134- 1140. |
| 4 |
GRASSI F , MARINO R . The P2X7 receptor in mucosal adaptive immunity[J]. Purinergic Signal, 2024, 20 (1): 9- 19.
doi: 10.1007/s11302-023-09939-w |
| 5 |
VUERICH M , ROBSON S C , LONGHI M S . Ectonucleotidases in intestinal and hepatic inflammation[J]. Front Immunol, 2019, 10, 507.
doi: 10.3389/fimmu.2019.00507 |
| 6 |
GUTKNECHT DA SILVA J L , PASSOS D F , CABRAL F L , et al. Istradefylline induces A2A/P2X7 crosstalk expression inducing pro-inflammatory signal, and reduces AKT/mTOR signaling in melanoma-bearing mice[J]. Med Oncol, 2023, 40 (6): 178.
doi: 10.1007/s12032-023-02033-6 |
| 7 |
PENG Z W , ROTHWEILER S , WEI G , et al. The ectonucleotidase ENTPD1/CD39 limits biliary injury and fibrosis in mouse models of sclerosing cholangitis[J]. Hepatol Commun, 2017, 1 (9): 957- 972.
doi: 10.1002/hep4.1084 |
| 8 |
LEE N T , SAVVIDOU I , SELAN C , et al. Development of endothelial-targeted CD39 as a therapy for ischemic stroke[J]. J Thromb Haemost, 2024, 22 (8): 2331- 2344.
doi: 10.1016/j.jtha.2024.04.023 |
| 9 |
ZENG J , NING Z , WANG Y , et al. Implications of CD39 in immune-related diseases[J]. Int Immunopharmacol, 2020, 89, 107055.
doi: 10.1016/j.intimp.2020.107055 |
| 10 |
SAVIO L E B , DE ANDRADE MELLO P , FIGLIUOLO V R , et al. CD39 limits P2X7 receptor inflammatory signaling a nd attenuates sepsis-induced liver injury[J]. J Hepatol, 2017, 67 (4): 716- 726.
doi: 10.1016/j.jhep.2017.05.021 |
| 11 |
MALONEY J P , BRANCHFORD B R , BRODSKY G L , et al. The ENTPD1 promoter polymorphism -860 A>G (rs3814159) is associated with increased gene transcription, protein expression, CD39/NTPDase1 enzymatic activity, and thromboembolism risk[J]. Faseb j, 2017, 31 (7): 2771- 2784.
doi: 10.1096/fj.201600344R |
| 12 |
ZHAO P , GU L , GAO Y , et al. Young SINEs in pig genomes impact gene regulation, genetic diversity, and complex traits[J]. Commun Biol, 2023, 6 (1): 894.
doi: 10.1038/s42003-023-05234-x |
| 13 |
TAM P L F , LEUNG D . The molecular impacts of retrotransposons in development and diseases[J]. Int J Mol Sci, 2023, 24 (22): 16418.
doi: 10.3390/ijms242216418 |
| 14 | ZHENG Y , CHEN C , WANG M , et al. SINE insertion in the pig carbonic anhydrase 5B (CA5B) gene is associated with changes in gene expression and phenotypic variation[J]. Animals (Basel), 2023, 13 (12): 1942. |
| 15 |
KRAMEROV D A , VASSETZKY N S . Origin and evolution of SINEs in eukaryotic genomes[J]. Heredity (Edinb), 2011, 107 (6): 487- 495.
doi: 10.1038/hdy.2011.43 |
| 16 |
SENFT A D , MACFARLAN T S . Transposable elements shape the evolution of mammalian development[J]. Nat Rev Genet, 2021, 22 (11): 691- 711.
doi: 10.1038/s41576-021-00385-1 |
| 17 |
CHOI J D , DEL PINTO L A , SUTTER N B . SINE retrotransposons import polyadenylation signals to 3'UTRs in dog (Canis familiaris)[J]. Mob DNA, 2025, 16 (1): 1.
doi: 10.1186/s13100-024-00338-5 |
| 18 |
WANG X , CHI C , HE J , et al. SINE insertion may act as a repressor to affect the expression of pig LEPROT and growth traits[J]. Genes (Basel), 2022, 13 (8): 1422.
doi: 10.3390/genes13081422 |
| 19 |
QI F , CHEN X , WANG J , et al. Genome-wide characterization of structure variations in the Xiang pig for genetic resistance to African swine fever[J]. Virulence, 2024, 15 (1): 2382762.
doi: 10.1080/21505594.2024.2382762 |
| 20 | 梁小芬, 冉雪琴, 牛熙, 等. 香猪CYP3A29基因3'-UTR结构变异及其与肌肉雄激素水平的关联分析[J]. 中国畜牧兽医, 2023, 50 (8): 3199- 3209. |
| LIANG X F , RAN X Q , NIU X , et al. Analysis of 3'-UTR Structural variations of CYP3A29 gene in Xiang pigs and its association with muscle androgen levels[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50 (8): 3199- 3209. | |
| 21 |
PENG Z W , ROTHWEILER S , WEI G , et al. The ectonucleotidase ENTPD1/CD39 limits biliary injury and fibrosis in mouse models of sclerosing cholangitis[J]. Hepatol Commun, 2017, 1 (9): 957- 972.
doi: 10.1002/hep4.1084 |
| 22 |
SABATEL C , BUREAU F . The innate immune brakes of the lung[J]. Front Immunol, 2023, 14, 1111298.
doi: 10.3389/fimmu.2023.1111298 |
| 23 |
RYANTO G R T , SURAYA R , NAGANO T . The importance of lung innate immunity during health and disease[J]. Pathogens, 2025, 14 (1): 91.
doi: 10.3390/pathogens14010091 |
| 24 |
WANG L , LI Y J , YANG X , et al. Purinergic signaling: a potential therapeutic target for ischemic stroke[J]. Purinergic Signal, 2023, 19 (1): 173- 183.
doi: 10.1007/s11302-022-09905-y |
| 25 |
ROBSON S C , WU Y , SUN X , et al. Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation[J]. Semin Thromb Hemost, 2005, 31 (2): 217- 233.
doi: 10.1055/s-2005-869527 |
| 26 |
ORTIZ M A , DIAZ-TORNÉ C , DE AGUSTIN J J , et al. Altered CD39 and CD73 expression in rheumatoid arthritis: Implications for disease activity and treatment response[J]. Biomolecules, 2023, 14 (1): 1.
doi: 10.3390/biom14010001 |
| 27 | 李默晗. CD39通过下调PAI-1表达与活性保护缺血性卒中脑组织[D]. 长沙: 中南大学, 2022. |
| LI M H. CD39 protects the brain tissue of ischemic stroke by down-regulating the expression and activity of PAI-1[D]. Changsha: Zhongnan University, 2022. (in Chinese) | |
| 28 | 夏国庆. ATP通过P2X4和CD39调控酒精相关性脂肪性肝炎机制研究[D]. 合肥: 安徽医科大学, 2022. |
| XIA G Q. Research on the Mechanism of ATP regulating Alcoholic Steatohepatitis through P2X4 and CD39[D]. Hefie: Anhui Medical University, 2022. (in Chinese) | |
| 29 | 杜鹏. CD39-腺苷-A2B信号通路在低温携氧机械灌注改善DCD肝脏缺血再灌注损伤中的作用及机制研究[D]. 南昌: 南昌大学, 2022. |
| DU P. Role and mechanism of CD39-adenosine-A2B signaling pathway in hypothermic oxygen-carrying mechanical perfusion to ameliorate liver ischemia-reperfusion injury in DCD[D]. Nanchang: Nanchang University, 2022. (in Chinese) | |
| 30 |
LIU J J , RAN X Q , LI S , et al. Polymorphism in the first intron of follicle stimulating hormone beta gene in three Chinese pig breeds and two European pig breeds[J]. Anim Reprod Sci, 2009, 111 (2-4): 369- 375.
doi: 10.1016/j.anireprosci.2008.03.004 |
| 31 |
MAGOTRA A , NASKAR S , DAS B , et al. A comparative study of SINE insertion together with a mutation in the first intron of follicle stimulating hormone beta gene in indigenous pigs of India[J]. Mol Biol Rep, 2015, 42 (2): 465- 470.
doi: 10.1007/s11033-014-3789-y |
| 32 | 黄月丽, 冉雪琴, 牛熙, 等. 香猪CHD3基因3'-侧翼区264 bp结构变异的研究[J]. 中国畜牧兽医, 2022, 49 (8): 3026- 3035. |
| HUANG Y L , RAN X Q , NIU X , et al. A study of 264 bp structural variation in the 3'-flanking region of the CHD3 gene of the balsam pig[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49 (8): 3026- 3035. | |
| 33 |
ZHAO P , GU L , GAO Y , et al. Young SINEs in pig genomes impact gene regulation, genetic diversity, and complex traits[J]. Commun Biol, 2023, 6 (1): 894.
doi: 10.1038/s42003-023-05234-x |
| 34 | TUCKER J M , GLAUNSINGER B A . Host noncoding retrotransposons induced by DNA viruses: a SINE of infection?[J]. J Virol, 2017, 91 (23): e00982- 17. |
| 35 |
KARIJOLICH J , ABERNATHY E , GLAUNSINGER B A . Infection-induced retrotransposon-derived noncoding RNAs enhance herpesviral gene expression via the NF-κB pathway[J]. PLoS Pathog, 2015, 11 (11): e1005260.
doi: 10.1371/journal.ppat.1005260 |
| 36 |
HWANG H , CHANG H R , BAEK D . Determinants of functional microRNA targeting[J]. Mol Cells, 2023, 46 (1): 21- 32.
doi: 10.14348/molcells.2023.2157 |
| 37 |
XI E , BAI J , ZHANG K , et al. Genomic variants disrupt miRNA-mRNA regulation[J]. Chem Biodivers, 2022, 19 (10): e202200623.
doi: 10.1002/cbdv.202200623 |
| 38 |
李河林, 蒋玉芬, 程娜, 等. 筛选的差异表达microRNAs对猪卵母细胞Npm2基因的表达调控及作用研究[J]. 畜牧兽医学报, 2024, 55 (11): 5035- 5049.
doi: 10.11843/j.issn.0366-6964.2024.11.021 |
|
LI H L , JIANG Y F , CHENG N , et al. Regulation of Npm2 gene expression and role of screened differentially expressed microRNAs in porcine oocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (11): 5035- 5049.
doi: 10.11843/j.issn.0366-6964.2024.11.021 |
|
| 39 |
KOH D , BIN JEON H , OH C , et al. RNA-binding proteins in cellular senescence[J]. Mech Ageing Dev, 2023, 214, 111853.
doi: 10.1016/j.mad.2023.111853 |
| 40 |
余祖华, 高梦茹, 齐志颖, 等. RNA结合蛋白ELAVL1的功能及其调控病毒复制的研究进展[J]. 畜牧兽医学报, 2024, 55 (5): 1914- 1925.
doi: 10.11843/j.issn.0366-6964.2024.05.010 |
|
YU Z H , GAO M R , QI Z Y , et al. Advances in the function of the RNA-binding protein ELAVL1 and its regulation of viral replication[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 1914- 1925.
doi: 10.11843/j.issn.0366-6964.2024.05.010 |
|
| 41 |
AMEIS D , LIU F , KIRBY E , et al. The RNA-binding protein Quaking regulates multiciliated and basal cell abundance in the developing lung[J]. Am J Physiol Lung Cell Mol Physiol, 2021, 320 (4): L557- L567.
doi: 10.1152/ajplung.00481.2019 |
| [1] | 郑云畅, 侯睿霖, 梁晓贺, 杨利丹, 张银蛟, 霍浩楠, 陈玮娜, 张萃, 李世杰. 牛FOXP2基因的单等位基因表达和DNA甲基化状态分析[J]. 畜牧兽医学报, 2025, 56(9): 4369-4378. |
| [2] | 刘芯孜, 赵海渊, 鞠宁, 陈莹, 王梓, 孟伟静, 李佳璇, 姜艳平, 崔文, 王晓娜. 组成型启动子Pldh对乳酸菌表达系统外源基因表达的影响研究[J]. 畜牧兽医学报, 2025, 56(6): 2937-2947. |
| [3] | 周显珊, 黄世会, 牛熙, 冉雪琴, 王嘉福. 皱皮香猪泛素化连接酶2基因结构变异的差异表达研究[J]. 畜牧兽医学报, 2025, 56(1): 136-146. |
| [4] | 杨杨, 余乾, 刘昱成, 杨华, 赵卓, 王立民, 周平, 杨庆勇, 代蓉. 绵羊MYL基因家族的鉴定与组织表达分析[J]. 畜牧兽医学报, 2024, 55(4): 1551-1564. |
| [5] | 康佳, 段香茹, 尹雪姣, 杨若晨, 李太春, 单新雨, 陈美静, 张英杰, 刘月琴. 半胱氨酸、蛋氨酸对体外培养绒山羊次级毛囊生长及毛乳头细胞增殖的影响[J]. 畜牧兽医学报, 2024, 55(2): 515-527. |
| [6] | 晏超, 刘永刚, 谢浩, 彭翠婷, 张才用, 赵玉兰, 齐霖, 陈指龙, 唐中林. 预扩增qPCR技术检测少量猪早期胚胎细胞基因表达的研究[J]. 畜牧兽医学报, 2024, 55(12): 5567-5574. |
| [7] | 刘勇庆, 张刚, 熊艳玲, 孙忠鑫, 高凡, 刘婷, 李慧. 热应激对从江香猪十二指肠黏膜结构、HIF-1及其相关蛋白表达的影响[J]. 畜牧兽医学报, 2024, 55(10): 4690-4699. |
| [8] | 袁巍, 毕欢, 张雨丹, 张依裕, 顾晓龙, 杨红文, 陈伟. 全基因组选择信号解析剑白香猪和从江香猪的遗传差异[J]. 畜牧兽医学报, 2023, 54(9): 3631-3641. |
| [9] | 耿梅梅, 豆梦莹, 傅德智, 何庆华, 孔祥峰. 宫内发育迟缓对环江香猪哺乳仔猪IGF发育模式的影响[J]. 畜牧兽医学报, 2023, 54(6): 2414-2420. |
| [10] | 祝倩, 程雅婷, 李锐煊, 李宸健, 刘雅婷, 孔祥峰. 母猪添加益生菌和合生元对子代巴马香猪肌肉脂肪酸组成及相关基因表达的影响[J]. 畜牧兽医学报, 2023, 54(6): 2458-2467. |
| [11] | 陈灿灿, 蒋婧, 孙晓燕, 任航行, 李杰. AGRP基因在山羊组织表达及其对黑色素生成的作用机制[J]. 畜牧兽医学报, 2023, 54(4): 1441-1451. |
| [12] | 王涵, 蒙利洁, 刘文娇, 徐永健, 龚婷. 香猪睾丸间质细胞TAS1R3基因干扰后对自噬相关因子的影响[J]. 畜牧兽医学报, 2023, 54(4): 1525-1534. |
| [13] | 徐婷婷, 齐芬芳, 黄世会, 牛熙, 李升, 冉雪琴, 王嘉福, 谢健. 香猪MAP3K4基因结构变异多态性和基因表达研究[J]. 畜牧兽医学报, 2023, 54(12): 5046-5055. |
| [14] | 胡紫平, 王立刚, 宗文成, 侯任达, 苏艳芳, 牛乃琪, 王立贤, 王源, 张龙超. 基于基因组SNP和ROH的剑白香猪群体遗传结构解析[J]. 畜牧兽医学报, 2023, 54(10): 4117-4125. |
| [15] | 季铮渝, 倪梦茹, 张兆博, 赵赶, 黄赞, 李平华, 黄瑞华, 侯黎明. 苏淮猪背最长肌FAPs细胞体外成脂能力及其基因表达模式的研究[J]. 畜牧兽医学报, 2023, 54(10): 4126-4142. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||