[1] MOOKHERJEE N, ANDERSON M A, HAAGSMAN H P, et al. Antimicrobial host defence peptides: functions and clinical potential[J]. Nat Rev Drug Discov, 2020, 19(5): 311-332. [2] HUAN Y C, KONG Q, MOU H J, et al. Antimicrobial peptides: Classification, design, application and research progress in multiple fields[J]. Front Microbiol, 2020, 11: 582779. [3] ZHANG Q Y, YAN Z B, MENG Y M, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential[J]. Mil Med Res, 2021, 8(1): 48. [4] CARDOSO M H, DE LA FUENTE-NUNEZ C, SANTOS N C, et al. Influence of antimicrobial peptides on the bacterial membrane curvature and vice versa[J]. Trends Microbiol, 2024, 32(7): 624-627. [5] XU D, LU W Y. Defensins: A double-edged sword in host immunity[J]. Front Immunol, 2020, 11: 764. [6] GAO X H, DING J Q, LIAO C B, et al. Defensins: The natural peptide antibiotic[J]. Adv Drug Deliv Rev, 2021, 179: 114008. [7] SCHLIEVERT P M, KILGORE S H, BECK L A, et al. Host cationic antimicrobial molecules inhibit S. aureus exotoxin production[J]. mSphere, 2023, 8(1): e0057622. [8] LIN Y B, SANSON M A, VEGA L A, et al. ExPortal and the LiaFSR regulatory system coordinate the response to cell membrane stress in Streptococcus pyogenes[J]. Mbio, 2020, 11(5): e01804-20. [9] WANG H Y, CHEN X C, YAN Z H, et al. Human neutrophil peptide 1 promotes immune sterilization in vivo by reducing the virulence of multidrug-resistant Klebsiella pneumoniae and increasing the ability of macrophages[J]. Biotechnol Appl Biochem, 2022, 69(5): 2091-2101. [10] KLING C, SOMMER A, ALMEIDA-HERNANDEZ Y, et al. Inhibition of pertussis toxin by human α-defensins-1 and-5: differential mechanisms of action[J]. Int J Mol Sci, 2023, 24(13): 10557. [11] VARNEY K M, BONVIN A, PAZGIER M, et al. Turning defense into offense: Defensin mimetics as novel antibiotics targeting lipid II[J]. PLoS Pathog, 2013, 9(11): e1003732. [12] AWANG T, CHAIRATANA P, PONGPRAYOON P. Molecular dynamics simulations of human α-defensin 5 (HD5) crossing gram-negative bacterial membrane[J]. Plos One, 2023, 18(11): e0294041. [13] FU J, ZONG X, JIN M L, et al. Mechanisms and regulation of defensins in host defense[J]. Signal Transduct Target Ther, 2023, 8(1): 300. [14] CHAIRATANA P, NOLAN E M. Human α-defensin 6: A small peptide that self-assembles and protects the host by entangling microbes[J]. Acc Chem Res, 2017, 50(4): 960-967. [15] AKAHOSHI D T, NATWICK D E, YUAN W R, et al. Flagella-driven motility is a target of human Paneth cell defensin activity[J]. PLoS Pathog, 2023, 19(2): e1011200. [16] KUDRYASHOVA E, QUINTYN R, SEVEAU S, et al. Human defensins facilitate local unfolding of thermodynamically unstable regions of bacterial protein toxins[J]. Immunity, 2014, 41(5): 709-721. [17] FUSCO A, SAVIO V, PERFETTO B, et al. Antimicrobial peptide human β-defensin-2 improves in vitro cellular viability and reduces pro-inflammatory effects induced by enteroinvasive Escherichia coli in Caco-2 cells by inhibiting invasion and virulence factors’ expression[J]. Front Cell Infect Microbiol, 2022, 12: 1009415. [18] GAO X H, FENG J H, WEI L N, et al. Defensins: A novel weapon against Mycobacterium tuberculosis?[J]. Int Immunopharmacol, 2024, 127: 111383. [19] ANDRÉS M T, FIERRO P, ANTUÑA V, et al. The antimicrobial activity of human defensins at physiological non-permeabilizing concentrations is caused by the inhibition of the plasma membrane H-ATPases[J]. Int J Mol Sci, 2024, 25(13): 7335. [20] HUANG C, YANG X, HUANG J, et al. Porcine beta-defensin 2 provides protection against bacterial infection by a direct bactericidal activity and alleviates inflammation via interference with the TLR4/NF-κB pathway[J]. Front Immunol, 2019, 10: 1673. [21] DASH R, BHATTACHARJYA S. Thanatin: An emerging host defense antimicrobial peptide with multiple modes of action[J]. Int J Mol Sci, 2021, 22(4): 1522. [22] LI B, ZHANG L, WANG L, et al. Antimicrobial activity of yak beta-defensin 116 against Staphylococcus aureus and its role in gut homeostasis[J]. Int J Biol Macromol, 2023, 253 (Pt 2): 126761. [23] HUANG W P, BALIGA C, VáZQUEZ-LASLOP N, et al. Sequence diversity of apidaecin-like peptides arresting the terminating ribosome[J]. Nucleic Acids Res, 2024, 52(15): 8967-8978. [24] LAUER S M, REEPMEYER M, BERENDES O, et al. Multimodal binding and inhibition of bacterial ribosomes by the antimicrobial peptides Api137 and Api88[J]. Nat Commun, 2024, 15(1): 3945. [25] WANG Y, SONG Y C, YAN S A, et al. Antimicrobial properties and mode of action of cryptdin-4, a mouse α-defensin regulated by peptide redox structures and bacterial cultivation conditions[J]. Antibiotics (Basel), 2023, 12(6): 1047. [26] PASTUSZAK K, KOWALCZYK B, TARASIUK J, et al. Insight into the mechanism of interactions between the LL-37 peptide and model membranes of Legionella gormanii bacteria[J]. Int J Mol Sci, 2023, 24(15): 12039. [27] PALUSINSKA-SZYSZ M, JURAK M, GISCH N, et al. The human LL-37 peptide exerts antimicrobial activity against Legionella micdadei interacting with membrane phospholipids[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867(6): 159138. [28] ZHANG R, XU L J, DONG C M. Antimicrobial peptides: An overview of their structure, function and mechanism of action[J]. Protein Pept Lett, 2022, 29(8): 641-650. [29] LU Y, XIANG F, XU L Y, et al. The protective role of chicken cathelicidin-1 against Streptococcus suis serotype 2 in vitro and in vivo[J]. Vet Res, 2023, 54(1): 65. [30] XIA R, XIAO H Z, XU M, et al. Insight into the inhibitory activity and mechanism of bovine cathelicidin BMAP 27 against Salmonella Typhimurium[J]. Microb Pathog, 2024, 187: 106540. [31] OVERHAGE J, CAMPISANO A, HÄUSSLER S, et al. Human host defense peptide LL-37 prevents bacterial biofilm formation[J]. Infect Immun, 2008, 76(9): 4176-4182. [32] LIN M F, TSAI P W, CHEN J Y, et al. OmpA binding mediates the effect of antimicrobial peptide LL-37 on Acinetobacter baumannii [J]. PLoS One, 2015, 10(10): e0141107. [33] LIN M F, LIN Y Y, LAN C Y. Characterization of biofilm production in different strains of Acinetobacter baumanni and the effects of chemical compounds on biofilm formation[J]. PeerJ, 2020, 8: e9020. [34] ZHANG L, WU W K K, GALLO R L, et al. Critical role of antimicrobial peptide cathelicidin for controlling Helicobacter pylori survival and infection[J]. J Immunol, 2016, 196(4): 1799-1809. [35] SOUNDRARAJAN N, SOMASUNDARAM P, KIM D, et al. Effective healing of Staphylococcus aureus-infected wounds in pig cathelicidin protegrin-1-overexpressing transgenic mice[J]. Int J Mol Sci, 2023, 24 (14): 11658. [36] HE Y M, RUAN S M, LIANG G Z, et al. A nonbactericidal anionic antimicrobial peptide provides prophylactic and therapeutic efficacies against bacterial infections in mice by immunomodulatory-antithrombotic duality[J]. J Med Chem, 2024, 67(9): 7487-7503. [37] LU Y, TIAN H L, CHEN R Q, et al. Synergistic antimicrobial effect of antimicrobial peptides CATH-1, CATH-3, and PMAP-36 with erythromycin against bacterial pathogens[J]. Front Microbiol, 2022, 13: 953720. [38] CATTEAU L, IGLESIAS Y D, TSUNEMOTO H, et al. Nafcillin augmentation of daptomycin and cathelicidin LL-37 killing of methicillin-resistant Staphylococcus epidermidis: Foundations of successful therapy of endocarditis[J]. Int J Antimicrob Agents, 2023, 61(6): 106758. [39] FARZI N, OLOOMI M, BAHRAMALI G, et al. Antibacterial properties and efficacy of LL-37 fragment GF-17D3 and scolopendin A2 peptides against resistant clinical strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii in vitro and in vivo model studies[J]. Probiotics Antimicrob Proteins, 2024, 16(3): 796-814. [40] YE Z F, FU L, LI S Y, et al. Synergistic collaboration between AMPs and non-direct antimicrobial cationic peptides[J]. Nat Commun, 2024, 15(1): 7319. [41] ZHAI Y J, FENG Y, MA X, et al. Defensins: defenders of human reproductive health[J]. Hum Reprod Update, 2023, 29(1): 126-154. [42] CHANG T L, VARGAS J, DELPORTILLO A, et al. Dual role of α-defensin-1 in anti-HIV-1 innate immunity[J]. J Clin Invest, 2005, 115(3): 765-773. [43] MAITI B K. Potential role of peptide-based antiviral therapy against SARS-CoV-2 infection[J]. ACS Pharmacol Transl Sci, 2020, 3(4): 783-785. [44] GULATI N M, MIYAGI M, WIENS M E, et al. alpha-defensin HD5 stabilizes Human Papillomavirus 16 capsid/core interactions[J]. Pathog Immun, 2019, 4(2): 196-234. [45] KEIKHA M, KAMALI H, GHAZVINI K, et al. Antimicrobial peptides: natural or synthetic defense peptides against HBV and HCV infections[J]. Virus Dis, 2022, 33(4): 445-455. [46] ROY M, LEBEAU L, CHESSA C, et al. Comparison of anti-viral activity of frog skin anti-microbial peptides temporin-sha and K3 SHa to LL-37 and temporin-Tb against herpes simplex virus type 1[J]. Viruses, 2019, 11(1): 77. [47] YE C, WAN C, CHEN J, et al. Cathelicidin CATH-B1 inhibits pseudorabies virus infection via direct interaction and TLR4/JNK/IRF3-mediated interferon activation[J]. J Virol, 2023, 97(7): e0070623. [48] PENG L C, DU W J, BALHUIZEN M D, et al. Antiviral activity of chicken cathelicidin B1 against influenza A virus[J]. Front Microbiol, 2020, 11: 426. [49] VON BECK T, NAVARRETE K, ARCE N A, et al. A wild boar cathelicidin peptide derivative inhibits severe acute respiratory syndrome coronavirus-2 and its drifted variants[J]. Sci Rep, 2023, 13(1): 14650. [50] CHENG Y T, SUN F, LI S, et al. Inhibitory activity of a scorpion defensin BmKDfsin3 against hepatitis C virus[J]. Antibiotics (Basel), 2020, 9(1): 33. [51] WANG J, JIANG B Y, WANG K Z, et al. A cathelicidin antimicrobial peptide from Hydrophis cyanocinctus inhibits Zika virus infection by downregulating expression of a viral entry factor[J]. J Biol Chem, 2022, 298(10): 102471. [52] SCHROEDER B O, WU Z H, NUDING S, et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1[J]. Nature, 2011, 469(7330): 419-423. [53] KAMLI M R, SABIR J S M, MALIK M A, et al. Human β defensins-1, an antimicrobial peptide, kills Candida glabrata by generating oxidative stress and arresting the cell cycle in G0/G1 phase[J]. Biomed Pharmacother, 2022, 154: 113569. [54] MEMARIANI H, MEMARIANI M. Antibiofilm properties of cathelicidin LL-37: an in-depth review[J]. World J Microbiol Biotechnol, 2023, 39(4): 99. [55] MEMARIANI M, MEMARIANI H. Antifungal properties of cathelicidin LL-37: current knowledge and future research directions[J]. World J Microbiol Biotechnol, 2024, 40(1): 34. [56] JIN X, LI Q H, SUN J, et al. Porcine β-defensin-2 alleviates AFB1-induced intestinal mucosal injury by inhibiting oxidative stress and apoptosis[J]. Ecotoxicol Environ Saf, 2023, 262: 115161. [57] HE H R, HUANG X Z, WEN C Y, et al. A novel defensin-like peptide C-13326 possesses protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀×Channa argus )[J]. J Fish Dis, 2024, 47(4): e13922. [58] WILLIAMS S A, LAY F T, BINDRA G K, et al. Crocodile defensin (CpoBD13) antifungal activity via pH-dependent phospholipid targeting and membrane disruption[J]. Nat Commun, 2023, 14(1): 1170. [59] CRAUWELS P, BANK E, WALBER B, et al. Cathelicidin contributes to the restriction of Leishmania in human host macrophages[J]. Front Immunol, 2019, 10: 2697. [60] NOGRADO K, ADISAKWATTANA P, REAMTONG O. Antimicrobial peptides: On future antiprotozoal and anthelminthic applications[J]. Acta Trop, 2022, 235: 11. [61] MALUF S E, DAL MAS C, OLIVEIRA E B, et al. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom[J]. Peptides, 2016, 78: 11-16. [62] ULMSCHNEIDER J P, ULMSCHNEIDER M B. Melittin can permeabilize membranes via large transient pores[J]. Nat Commun, 2024, 15(1): 7281. [63] MEMARIANI H, MEMARIANI M. Melittin as a promising anti-protozoan peptide: current knowledge and future prospects[J]. AMB Express, 2021, 11(1): 16. [64] LI T, REN X, LUO X, et al. A foundation model identifies broad-spectrum antimicrobial peptides against drug-resistant bacterial infection[J]. Nat Commun, 2024, 15(1): 7538. [65] WHITMORE M, TOBIN I, BURKARDT A, et al. Nutritional modulation of host defense peptide synthesis: A novel host-directed antimicrobial therapeutic strategy?[J]. Adv Nutr, 2024, 15(9): 100277. |