畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3578-3590.doi: 10.11843/j.issn.0366-6964.2025.08.002
收稿日期:
2025-01-07
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
王淑辉
E-mail:changyishuo520@163.com;wangshuhui252@163.com
作者简介:
常铄(2002-),女,山东邹平人,硕士生,主要从事特种经济动物饲养研究,E-mail:changyishuo520@163.com
基金资助:
CHANG Shuo1(), SUN Xiuzhu2, REN Zhanjun1, WANG Shuhui1,*(
)
Received:
2025-01-07
Online:
2025-08-23
Published:
2025-08-28
Contact:
WANG Shuhui
E-mail:changyishuo520@163.com;wangshuhui252@163.com
摘要:
家兔是全球广泛应用于经济、科学研究和应用领域的家养动物之一,深入研究家兔基因组信息对家兔遗传多样性评估、功能基因挖掘、品种遗传改良和资源保护等具有重要意义。本文综合分析了近年家兔的起源驯化、基因组资源、比较基因组学和功能基因组学的重要成果,探讨了目前已公布的家兔核基因组和线粒体基因组参考序列,总结了家兔重要经济性状相关候选基因的研究进展,旨在为家兔的遗传育种工作提供参考。
中图分类号:
常铄, 孙秀柱, 任战军, 王淑辉. 家兔基因组学研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3578-3590.
CHANG Shuo, SUN Xiuzhu, REN Zhanjun, WANG Shuhui. Research Progress in Rabbit Genomics[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3578-3590.
表 1
影响家兔生长性状的相关候选基因"
样本来源 Sample source | 性状 Trait | 候选基因 Candidate gene | 参考文献 Reference |
加利福尼亚兔和康大5系兔杂交F2代 Hybrid F2 generation of California rabbit and Kangda 5-line rabbit | 体重、生长速度 | LDB2、KCNIP4、PPARGC1A、GBA3、SHISA3、GNA13和FGF10 | [ |
加利福尼亚兔和康大5系兔杂交F2代 Hybrid F2 generation of California rabbit and Kangda 5-line rabbit | 体重、日增重 | ABTB2、CDH11、CNTNAP5、JARID2、PPP1R3A、GPX5和GPX6 | [ |
康大5系兔 Kangda 5-line rabbit | 体长 | RPL13、PSD2、ZNF12、CKAP2和INSYN2A | [ |
加利福尼亚兔和康大5系兔杂交F1代 Hybrid F1 generation of California rabbit and Kangda 5-line rabbit | 生长、胴体和肉质性状 | GD4、DNM1L、ADAM7和SLC39A6 | [ |
天府黑兔Tianfu black rabbit | 体重 | CASP3 | [ |
伊普吕肉兔 Hyplus rabbits | 生长性状 | FRZB、SRA1、UCP2、SOCS2、TIAM2、AUTS2、ROR2、CSRP3、MYL3和SMAD3 | [ |
表 2
影响家兔毛皮性状的基因及其等位基因所控制的性状"
基因座 Locus | 基因 Gene | 等位基因 Allele | 毛皮性状 Fur characteristics | 参考文献 Reference |
Rex 1 | LIPH | R1 | 有护毛和芒毛(野生型) | [ |
r1 | 无护毛和芒毛,有绒毛 | [ | ||
Extension | MC1R | ED | 显性黑色 | [ |
ES | 钢青色 | [ | ||
eJ | 日本斑纹 | [ | ||
e | 隐形黄/红色 | [ | ||
Albino | TYR | C | 正常黑色素生成 | [ |
c | 白化病 | [ | ||
Dilute | MLPH | D | 深黑色和红色(野生型) | [ |
d | 蓝色和黄色 | [ | ||
Brown | TYRP1 | B | 产生真黑色素和褐黑色素(野生型) | [ |
b | 产生褐黑色素 | [ | ||
English spotting | KIT | en | 无斑点(野生型) | [ |
En | 英式斑点 | [ |
1 | 武拉平, 秦应和. 2024年中国兔产业发展情况和2025年发展展望[J]. 中国畜牧杂志, 2025, 61 (3): 409- 413. |
WU L P , QIN Y H . Development of China's rabbit industry in 2024 and prospects for 2025[J]. Chinese Journal of Animal Science, 2025, 61 (3): 409- 413. | |
2 | 武拉平, 秦应和. 2023年中国兔产业发展情况和2024年发展展望[J]. 中国畜牧杂志, 2024, 60 (3): 347- 351. |
WU L P , QIN Y H . Development of China's rabbit industry in 2023 and prospects for 2024[J]. Chinese Journal of Animal Science, 2024, 60 (3): 347- 351. | |
3 | 刘汉中, 余志菊, 秦应和, 等. 我国兔产业高质量发展之路[J]. 畜牧产业, 2024 (6): 36- 40. |
LIU H Z , YU Z J , QIN Y H , et al. The road to high quality development of China's rabbit industry[J]. Animal Agriculture, 2024 (6): 36- 40. | |
4 |
LIU C , WANG S , DONG X , et al. Exploring the genomic resources and analysing the genetic diversity and population structure of Chinese indigenous rabbit breeds by RAD-seq[J]. BMC Genomics, 2021, 22 (1): 573.
doi: 10.1186/s12864-021-07833-6 |
5 |
CARNEIRO M , RUBIN C J , DI PALMA F , et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication[J]. Science, 2014, 345 (6200): 1074- 1079.
doi: 10.1126/science.1253714 |
6 |
CARNEIR M , AFONSO S , GERALDES A , et al. The genetic structure of domestic rabbits[J]. Mol Biol Evol, 2011, 28 (6): 1801- 1816.
doi: 10.1093/molbev/msr003 |
7 |
CARNEIR M , ALBERT F W , AFONSO S , et al. The genomic architecture of population divergence between subspecies of the European rabbit[J]. PLoS Genet, 2014, 10 (8): e1003519.
doi: 10.1371/journal.pgen.1003519 |
8 |
BIGGERS J D . Walter Heape, FRS: a pioneer in reproductive biology. Centenary of his embryo transfer experiments[J]. J Reprod Fertil, 1991, 93 (1): 173- 186.
doi: 10.1530/jrf.0.0930173 |
9 |
CHANG M C . Fertilization of rabbit ova in vitro[J]. Nature, 1959, 184 (4684): 466- 467.
doi: 10.1038/184466a0 |
10 |
XIE K , NING C , YANG A , et al. Resequencing analyses revealed genetic diversity and selection signatures during rabbit breeding and improvement[J]. Genes (Basel), 2024, 15 (4): 433.
doi: 10.3390/genes15040433 |
11 | 王娟. 中国家兔起源考证[J]. 中国农史, 2023, 42 (1): 3- 22. |
WANG J . Research on the origin of Chinese domestic rabbits[J]. Agricultural History of China, 2023, 42 (1): 3- 22. | |
12 | 高玉琪, 任战军, 建子龙. 中国古代养兔发展史[J]. 经济动物学报, 2014, 18 (3): 172- 177. |
GAO Y Q , REN Z J , JIAN Z L . The development history of rabbit farming in ancient China[J]. Journal of Economic Animal, 2014, 18 (3): 172- 177. | |
13 | 秦应和. 家兔的起源驯化与育种[J]. 生物学通报, 2011, 46 (1): 9-11+0+3. |
QIN Y H . The origin, domestication, and breeding of domestic rabbits[J]. Bulletin of Biology, 2011, 46 (1): 9-11+0+3. | |
14 | 罗泽珣. 家兔的起源[J]. 生物学通报, 1991 (5): 3- 4. |
LUO Z X . The origin of domestic rabbits[J]. Bulletin of Biology, 1991 (5): 3- 4. | |
15 |
QUENEY G , FERRAND N , WEISS S , et al. Stationary distributions of microsatellite loci between divergent population groups of the European rabbit (Oryctolagus cuniculus)[J]. Mol Biol Evol, 2001, 18 (12): 2169- 2178.
doi: 10.1093/oxfordjournals.molbev.a003763 |
16 |
VAN DER LOO W , FERRAND N , SORIGUER R C . Estimation of gene diversity at the b locus of the constant region of the immunoglobulin light chain in natural populations of European rabbit (Oryctolagus cuniculus) in Portugal, Andalusia and on the Azorean Islands[J]. Genetics, 1991, 127 (4): 789- 799.
doi: 10.1093/genetics/127.4.789 |
17 | BRANCO M , FERRAND N , MONNEROT M . Phylogeography of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula inferred from RFLP analysis of the cytochrome b gene[J]. Heredity (Edinb), 2000, 85 Pt 4, 307- 317. |
18 | BRANCO M , MONNEROT M , FERRAND N , et al. Postglacial dispersal of the European rabbit (Oryctolagus cuniculus) on the Iberian peninsula reconstructed from nested clade and mismatch analyses of mitochondrial DNA genetic variation[J]. Evolution, 2002, 56 (4): 792- 803. |
19 |
FONTANESI L . Rabbit genetic resources can provide several animal models to explain at the genetic level the diversity of morphological and physiological relevant traits[J]. Appl Sci, 2021, 11 (1): 373.
doi: 10.3390/app11010373 |
20 |
ALVES J M , CARNEIRO M , AFONSO S , et al. Levels and patterns of genetic diversity and population structure in domestic rabbits[J]. PLoS One, 2015, 10 (12): e0144687.
doi: 10.1371/journal.pone.0144687 |
21 | 李永桂. 古代养兔小史[J]. 四川畜牧兽医, 1988 (4): 46. |
LI Y G . A Brief history of ancient rabbit farming[J]. Sichuan Animal & Veterinary Sciences, 1988 (4): 46. | |
22 | 苏成爱. 国际视野下的"中国本兔"名实考——兼论中国家兔起源问题[J]. 中国农史, 2020, 39 (4): 26- 33. |
SU C A . A Study on the name of "Chinese rabbit" from an international perspective: A discussion on the origin of Chinese rabbits[J]. Agricultural History of China, 2020, 39 (4): 26- 33. | |
23 |
LONG J R , QIU X P , ZENG F T , et al. Origin of rabbit (Oryctolagus cuniculus) in China: evidence from mitochondrial DNA control region sequence analysis[J]. Anim Genet, 2003, 34 (2): 82- 87.
doi: 10.1046/j.1365-2052.2003.00945.x |
24 | 冯蜀举, 郭春华, 刘曼丽, 等. 中国白兔与其它家兔品种间遗传关系的研究[J]. 西南民族学院学报(自然科学版), 1992 (3): 314- 318. |
FENG S J , GUO C H , LIU M L , et al. A Study on the genetic relationship between Chinese white rabbit and other rabbit breeds[J]. Journal of Southwest Minzu University (Natural Science), 1992 (3): 314- 318. | |
25 | 赵纪萍. 基于RAD测序技术的6个中国家兔地方品种的遗传地位研究[D]. 杨凌: 西北农林科技大学, 2017. |
ZHAO J P. Genetic status study of six local Chinese rabbit breeds based on RAD sequencing technology[D]. Yangling: Northwest A&F University, 2017. (in Chinese) | |
26 |
LINDBLAD-TOH K , GARBER M , ZUK O , et al. A high-resolution map of human evolutionary constraint using 29 mammals[J]. Nature, 2011, 478 (7370): 476- 482.
doi: 10.1038/nature10530 |
27 |
BAI Y , LIN W , XU J , et al. Improving the genome assembly of rabbits with long-read sequencing[J]. Genomics, 2021, 113 (5): 3216- 3223.
doi: 10.1016/j.ygeno.2021.05.031 |
28 | ZHOU L , XIAO Q , BI J , et al. RabGTD: a comprehensive database of rabbit genome and transcriptome[J]. Database (Oxford), 2018, 2018, bay075. |
29 |
YAO C Y , LI Y Y , LIU L X , et al. The complete mitochondrial DNA sequence of Yimeng wool rabbit[J]. Mitochondrial DNA B Resour, 2019, 4 (2): 3858- 3859.
doi: 10.1080/23802359.2019.1687022 |
30 | 周彤, 周娟, 梁爽, 等. 福建黄兔线粒体基因组全序列测定与分析[J]. 西北农业学报, 2020, 29 (9): 1295- 1303. |
ZHOU T , ZHOU J , LIANG S , et al. Complete sequencing and analysis of mitochondrial genome of Fujian yellow rabbit[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29 (9): 1295- 1303. | |
31 | 周娟, 李佳丽, 陈秋燃, 等. 獭兔线粒体基因组全序列的测定与分析[J]. 中国兽医学报, 2020, 40 (4): 823- 827. |
ZHOU J , LI J L , CHEN Q R , et al. Determination and analysis of the whole mitochondrial genome sequence of Otter rabbit[J]. Chinese Journal of Veterinary Science, 2020, 40 (4): 823- 827. | |
32 |
WANG X , ZENG H M , WANG Y , et al. The complete mitochondrial DNA sequence of Chuanbai Rex rabbit (Oryctolagus cuniculus)[J]. Mitochondrial DNA B Resour, 2021, 6 (1): 129- 130.
doi: 10.1080/23802359.2020.1848476 |
33 |
李聪聪, 黄子珂, 黄念旎, 等. 九疑山兔线粒体基因组组装及系统进化分析[J]. 畜牧兽医学报, 2024, 55 (10): 4417- 4427.
doi: 10.11843/j.issn.0366-6964.2024.10.015 |
LI C C , HUANG Z K , HUANG N Y , et al. Assembly and phylogenetic analysis of mitochondrial genome of the Jiuyi Mountain rabbit[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (10): 4417- 4427.
doi: 10.11843/j.issn.0366-6964.2024.10.015 |
|
34 | 谢克锐. 基于全基因组测序数据研究中国家兔的起源驯化[D]. 泰安: 山东农业大学, 2023. |
XIE K R. Research on the origin and domestication of Chinese domestic rabbits based on whole genome sequencing data[D]. Tai'an: Shandong Agricultural University, 2023. (in Chinese) | |
35 | 陈晓敏, 李沂霖, 何炜诺, 等. 分子标记技术在山羊育种中的研究进展[J]. 中国草食动物科学, 2023, 43 (6): 45- 51. |
CEHN X M , LI Y L , HE W N , et al. Research progress of molecular marker technology in goat breeding[J]. China Herbivore Science, 2023, 43 (6): 45- 51. | |
36 | 姚红伟, 张立冬, 孙金阳, 等. DNA分子标记技术概述[J]. 河北渔业, 2010 (7): 42- 46. |
YAO H W , ZHANG L D , SUN J Y , et al. Overview of DNA molecular marker technology[J]. He Bei Yu Ye, 2010 (7): 42- 46. | |
37 | 夏圣荣, 冯凯, 吴添文, 等. 5个家兔群体FGF5基因部分外显子1的遗传多样性分析[J]. 草食家畜, 2010 (4): 22- 25. |
XIA S R , FENG K , WU T W , et al. Genetic diversity analysis of partial exon 1 of FGF5 gene in 5 rabbit populations[J]. Herbivorous Livestock, 2010 (4): 22- 25. | |
38 |
RICO C , RICO I , WEBB N , et al. Four polymorphic microsatellite loci for the European wild rabbit, Oryctolagus cuniculus[J]. Anim Genet, 1994, 25 (5): 367.
doi: 10.1111/j.1365-2052.1994.tb00379.x |
39 |
KORSTANJE R , GILLISSEN G F , DEN BIEMAN M G , et al. Mapping of rabbit chromosome 1 markers generated from a microsatellite-enriched chromosome-specific library[J]. Anim Genet, 2001, 32 (5): 308- 312.
doi: 10.1046/j.1365-2052.2001.00783.x |
40 | 宋明坤. 基于全基因组重测序鉴定影响家兔生长性状的候选基因及验证[D]. 郑州: 河南农业大学, 2022. |
SONG M K. Identification and validation of candidate genes affecting growth traits in rabbits based on whole genome resequencing[D]. Zhengzhou: Henan Agricultural University, 2022. (in Chinese) | |
41 | 任安勇. 四个中国家兔地方品种全基因组SNP标记开发与遗传多样性评估[D]. 雅安: 四川农业大学, 2020. |
REN A Y. Development of whole genome SNP markers and evaluation of genetic diversity in four local Chinese rabbit breeds[D]. Ya'an: Sichuan Agricultural University, 2020. (in Chinese) | |
42 | 牛华锋, 张成东, 杨雪娇, 等. 伊拉肉兔和美系獭兔MSTN基因多态性研究[J]. 陕西农业科学, 2022, 68 (7): 60-65+95. |
NIU H F , ZHANG C D , YANG X J , et al. Study on MSTN gene polymorphism in Ela meat rabbit and American otter rabbit[J]. Shaanxi Journal of Agricultural Sciences, 2022, 68 (7): 60-65+95. | |
43 |
ANDRADE P , ALVES JM , PEREIRA P , et al. Selection against domestication alleles in introduced rabbit populations[J]. Nat Ecol Evol, 2024, 8 (8): 1543- 1555.
doi: 10.1038/s41559-024-02443-3 |
44 |
CARNEIRO M , HU D , ARCHER J , et al. Dwarfism and altered craniofacial development in rabbits is caused by a 12.1 kb deletion at the HMGA2 locus[J]. Genetics, 2017, 205 (2): 955- 965.
doi: 10.1534/genetics.116.196667 |
45 |
BALLAN M , BOVO S , SCHIAVO G , et al. Genomic diversity and signatures of selection in meat and fancy rabbit breeds based on high-density marker data[J]. Genet Sel Evol, 2022, 54 (1): 3.
doi: 10.1186/s12711-022-00696-9 |
46 |
BLASCO A , NAGY I , HERNANDEZ P . Genetics of growth, carcass and meat quality in rabbits[J]. Meat Sci, 2018, 145, 178- 185.
doi: 10.1016/j.meatsci.2018.06.030 |
47 |
NI M , LI Z , LI J , et al. Selection and validation of reference genes for the normalization of quantitative real-time PCR in different muscle tissues of rabbits[J]. BMC Zool, 2022, 7 (1): 60.
doi: 10.1186/s40850-022-00159-0 |
48 |
LUO G , MU J Z , WANG S H , et al. Association of blood APMAP content and meat quality trait in Rex rabbits[J]. Anim Biotechnol, 2023, 34 (4): 974- 979.
doi: 10.1080/10495398.2021.2007117 |
49 | LAGHOUAOUTA H , SOSA-MADRID B S , ZUBIRI-GAITÁN A , et al. Novel genomic regions associated with intramuscular fatty acid composition in rabbits[J]. Animals (Basel), 2020, 10 (11): 2090. |
50 | 朱翠云, 郑琪, 敬敬, 等. 新西兰兔三个发育阶段骨骼肌的转录组分析[J]. 农业生物技术学报, 2022, 30 (12): 2363- 2375. |
ZHU C Y , ZHENG Q , JING J , et al. Transcriptome analysis of skeletal muscle in three developmental stages of New Zealand rabbits[J]. Journal of Agricultural Biotechnology, 2022, 30 (12): 2363- 2375. | |
51 |
HELAL M , ALI M A , NADRIN A H , et al. Association between IRS-1, PPAR-γ and LEP genes polymorphisms and growth traits in rabbits[J]. Anim Biotechnol, 2023, 34 (7): 2391- 2399.
doi: 10.1080/10495398.2022.2092743 |
52 | 廖勇兰. 肉兔生长曲线全基因组关联分析及84日龄体重基因组评估[D]. 雅安: 四川农业大学, 2022. |
LIAO Y L. Genome wide association analysis of growth curves and genomic evaluation of body weight at 84 days of age in meat rabbits[D]. Ya'an: Sichuan Agricultural University, 2022. (in Chinese) | |
53 | 杨丽. 肉兔生长速度杂种优势与全基因组关联分析[D]. 雅安: 四川农业大学, 2023. |
YANG L. Heterozygous growth rate and genome-wide association analysis of meat rabbits[D]. Ya'an: Sichuan Agricultural University, 2023. (in Chinese) | |
54 | 宋梓辰. 基于全基因组和转录组关联分析鉴定肉兔生长发育和屠宰性状的关键基因[D]. 泰安: 山东农业大学, 2023. |
SONG Z C. Identification of key genes for growth, development, and slaughter traits in meat rabbits based on whole genome and transcriptome association analysis[D]. Tai'an: Shandong Agricultural University, 2023. (in Chinese) | |
55 | YANG X , DENG F , WU Z , et al. A Genome-wide association study identifying genetic variants associated with growth, carcass and meat quality traits in rabbits[J]. Animals (Basel), 2020, 10 (6): 1068. |
56 | 夏思琪. 基于多组学技术探究肉兔不同体重的分子调控机制[D]. 雅安: 四川农业大学, 2023. |
XIA S Q. Exploring the molecular regulatory mechanisms of meat rabbits with different body weights based on multi omics techniques[D]. Ya'an: Sichuan Agricultural University, 2023. (in Chinese) | |
57 | 杨雪. 基于SLAF-seq技术的家兔重要经济性状全基因组关联分析[D]. 雅安: 四川农业大学, 2021. |
YANG X. Genome wide association analysis of important economic traits in rabbits based on SLAF-seq technology[D]. Ya'an: Sichuan Agricultural University, 2021. (in Chinese) | |
58 | 王利娜. PIK3CA和AKT3基因多态性与家兔生长速度关联分析及对骨骼肌卫星细胞增殖的影响[D]. 雅安: 四川农业大学, 2016. |
WANG L N. Association analysis of PIK3CA and AKT3 gene polymorphisms with growth rate in rabbits and their effects on proliferation of skeletal muscle satellite cells[D]. Ya'an: Sichuan Agricultural University, 2016. (in Chinese) | |
59 | 牛华锋, 张成东, 杨雪娇, 等. 伊拉肉兔和美系獭兔FGF5基因外显子及部分内含子多态性研究[J]. 家畜生态学报, 2021, 42 (8): 30- 35. |
NIU H F , ZHANG C D , YANG X J , et al. Study on the polymorphism of FGF5 gene exons and partial introns in Ela meat rabbit and American otter rabbit[J]. Journal of Domestic Animal Ecology, 2021, 42 (8): 30- 35. | |
60 |
FATIMA N , JIA L , LIU B , et al. A homozygous missense mutation in the fibroblast growth factor 5 gene is associated with the long-hair trait in Angora rabbits[J]. BMC Genomics, 2023, 24 (1): 298.
doi: 10.1186/s12864-023-09405-2 |
61 | 张琛, 李佳丽, 靳荣帅, 等. 兔BMP4基因对毛囊发育相关基因表达的影响[J]. 西南农业学报, 2022, 35 (6): 1448- 1454. |
ZHANG C , LI J L , JIN R S , et al. The effect of rabbit BMP4 gene on the expression of genes related to hair follicle development[J]. Southwest China Journal of Agricultural Sciences, 2022, 35 (6): 1448- 1454. | |
62 |
ZHAO B H , LI J L , ZHANG X Y , et al. Characterisation and functional analysis of the WIF1 gene and its role in hair follicle growth and development of the Angora rabbit[J]. World Rabbit Sci, 2022, 30 (3): 209- 218.
doi: 10.4995/wrs.2022.17353 |
63 |
CAI J W , ZHAO B H , LI J L , et al. A single nucleotide polymorphism in the WIF1 promoter region regulates the wool length in rabbits[J]. Agriculture, 2022, 12 (11): 1858.
doi: 10.3390/agriculture12111858 |
64 |
CHEN Y , BAO Z Y , LIU M , et al. Promoter methylation changes in KRT17: a novel epigenetic marker for wool production in angora rabbit[J]. Int J Mol Sci, 2022, 23 (11): 6077.
doi: 10.3390/ijms23116077 |
65 |
韩小曼, 孙少宁, 杨洁, 等. 家兔MSX2基因的克隆表达及生物信息学分析[J]. 畜牧兽医学报, 2025, 56 (6): 2724- 2732.
doi: 10.11843/j.issn.0366-6964.2025.06.017 |
HAN X M , SUN S N , YANG J , et al. Cloning, expression and bioinformatics analysis of rabbit MSX2 gene[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (6): 2724- 2732.
doi: 10.11843/j.issn.0366-6964.2025.06.017 |
|
66 | 高文玉. 关于家兔毛色遗传规律的探讨分析[J]. 中国农学通报, 2012, 28 (8): 19- 23. |
GAO W Y . Exploration and analysis of the genetic law of rabbit hair color[J]. Chinese Agricultural Science Bulletin, 2012, 28 (8): 19- 23. | |
67 | 惠春晖. 家兔被毛麻色变异的候选基因分析[D]. 泰安: 山东农业大学, 2019. |
HUI C H. Candidate gene analysis of fur and linen color variation in rabbits[D]. Tai'an: Shandong Agricultural University, 2019. (in Chinese) | |
68 | 段耀举. 家兔毛色候选基因MC1R、AGOUTI、TYR、TYRP1及MLPH的研究分析[D]. 泰安: 山东农业大学, 2017. |
DUAN Y J. Research and analysis of candidate genes MC1R, AGOUTI, TYR, TYRP1, and MLPH for rabbit hair color[D]. Tai'an: Shandong Agricultural University, 2017. (in Chinese) | |
69 |
DAI Y Y , HU S S , BAI S C , et al. CDK1 promotes the proliferation of melanocytes in Rex rabbits[J]. Genes Genomics, 2022, 44 (10): 1191- 1199.
doi: 10.1007/s13258-022-01283-4 |
70 |
DIRIBARNE M , MATA X , CHANTRY-DARMON C , et al. A deletion in exon 9 of the LIPH gene is responsible for the rex hair coat phenotype in rabbits (Oryctolagus cuniculus)[J]. PLoS One, 2011, 6 (4): e19281.
doi: 10.1371/journal.pone.0019281 |
71 |
FONTANESI L , TAZZOLI M , BERETTI F , et al. Mutations in the melanocortin 1 receptor (MC1R) gene are associated with coat colours in the domestic rabbit (Oryctolagus cuniculus)[J]. Anim Genet, 2006, 37 (5): 489- 493.
doi: 10.1111/j.1365-2052.2006.01494.x |
72 | FONTANESI L , SCOTTI E , COLOMBO M , et al. A composite six bp in-frame deletion in the melanocortin 1 receptor (MC1R) gene is associated with the Japanese brindling coat colour in rabbits (Oryctolagus cuniculus)[J]. BMC Genet, 2010, 11, 59. |
73 | 吴玉哲. 家兔部分毛色的基因型鉴定与互作关系分析[D]. 泰安: 山东农业大学, 2022. |
WU Y Z. Genotyping identification and interaction analysis of partial coat color in rabbits[D]. Tai'an: Shandong Agricultural University, 2022. (in Chinese) | |
74 |
UTZERI V J , RIBANI A , SCHIAVO G , et al. Describing variability in the tyrosinase (TYR) gene, the albino coat colour locus, in domestic and wild European rabbits[J]. Ital J Anim Sci, 2021, 20 (1): 181- 187.
doi: 10.1080/1828051X.2021.1877574 |
75 |
FONTANESI L , SCOTTI E , ALLAIN D , et al. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds[J]. Anim Genet, 2014, 45 (2): 248- 255.
doi: 10.1111/age.12104 |
76 |
LEHNER S , GÄHLE M , DIERKS C , et al. Two-exon skipping within MLPH is associated with coat color dilution in rabbits[J]. PLoS One, 2013, 8 (12): e84525.
doi: 10.1371/journal.pone.0084525 |
77 |
DEMARS J , IANNUCCELLI N , UTZERI V J , et al. New insights into the Melanophilin (MLPH) gene affecting coat color dilution in rabbits[J]. Genes (Basel), 2018, 9 (9): 430.
doi: 10.3390/genes9090430 |
78 |
UTZERI V J , RIBANI A , FONTANESI L . A premature stop codon in the TYRP1 gene is associated with brown coat colour in the European rabbit (Oryctolagus cuniculus)[J]. Anim Genet, 2014, 45 (4): 600- 603.
doi: 10.1111/age.12171 |
79 |
FONTANESI L , VARGIOLU M , SCOTTI E , et al. The KIT gene is associated with the english spotting coat color locus and congenital megacolon in Checkered Giant rabbits (Oryctolagus cuniculus)[J]. PLoS One, 2014, 9 (4): e93750.
doi: 10.1371/journal.pone.0093750 |
80 | 韦燕佩. 基于转录组测序技术分析家兔刺激性排卵机制[D]. 杨凌: 西北农林科技大学, 2024. |
WEI Y P. Analysis of the mechanism of stimulated ovulation in rabbits based on transcriptome sequencing technology[D]. Yangling: Northwest A&F University, 2024. (in Chinese) | |
81 | 宋国华. CTSS及CTSB基因对家兔卵巢颗粒细胞增殖、凋亡及激素分泌的调控作用研究[D]. 郑州: 河南农业大学, 2021. |
SONG G H. Study on the regulatory effects of CTSS and CTSB genes on the proliferation, apoptosis, and hormone secretion of rabbit ovarian granulosa cells[D]. Zhengzhou: Henan Agricultural University, 2021. (in Chinese) | |
82 | 靳荣帅. 繁殖母兔不同发情阶段行为、生理的差异分析及机制初探[D]. 扬州: 扬州大学, 2022. |
JIN R S. Analysis and Mechanism of Behavioral and Physiological Differences in Breeding Mother Rabbits at Different Estrus Stages[D]. Yangzhou: Yangzhou University, 2022. (in Chinese) | |
83 | 白少成. 繁殖母兔不同胎次卵巢功能衰退分析及其缓解措施研究[D]. 扬州: 扬州大学, 2022. |
BAI S C. Analysis of ovarian function decline in reproductive mother rabbits of different parity and study on its alleviation measures[D]. Yangzhou: Yangzhou University, 2022. (in Chinese) | |
84 | YANG J , BAO Z , LI J , et al. MTHFR as a novel candidate marker for litter size in rabbits[J]. Animals (Basel), 2024, 14 (13): 1930. |
85 |
VICENTE J S , MARCO-JIMÉNEZ F , PÉREZ-GARCÍA M , et al. Oocyte quality and in vivo embryo survival after ovarian stimulation in nulliparous and multiparous rabbit does[J]. Theriogenology, 2022, 189, 53- 58.
doi: 10.1016/j.theriogenology.2022.06.003 |
86 |
SUN C , XIE S , HUANG T , et al. Molecular characterization and expression of the GDF9 gene in New Zealand white rabbits[J]. J Genet, 2017, 96 (2): 313- 318.
doi: 10.1007/s12041-017-0766-y |
87 | 付陆, 赵明德, 吴小燕, 等. TYK2基因与家兔肠炎的易感性研究[J]. 安徽农业科学, 2017, 45 (24): 140- 143. |
FU L , ZHAO M D , WU X Y , et al. Study on the susceptibility of TYK2 gene to rabbit enteritis[J]. Journal of Anhui Agricultural Sciences, 2017, 45 (24): 140- 143. | |
88 | 刘云福. NLRP12基因SNP及表达对家兔非特异性消化道紊乱的影响[D]. 雅安: 四川农业大学, 2013. |
LIU Y F. The effect of NLRP12 gene SNP and expression on non-specific gastrointestinal disorders in rabbits[D]. Ya'an: Sichuan Agricultural University, 2013. (in Chinese) | |
89 |
WU Y , ZHAO L , QIN Y . Comprehensive RNA-seq profiling to evaluate the rabbit mammary gland transcriptome after mastitis[J]. J Anim Sci, 2023, 101, skad110.
doi: 10.1093/jas/skad110 |
90 | SONG J , ZHANG J , XU J , et al. Genome engineering technologies in rabbits[J]. J Biomed Res, 2020, 35 (2): 135- 147. |
91 |
ZHANG J , NⅡMI M , YANG D , et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits[J]. Arterioscler Thromb Vasc Biol, 2017, 37 (6): 1068- 1075.
doi: 10.1161/ATVBAHA.117.309114 |
92 | CHEN J , ZHANG H , LI L , et al. Lp-PLA2 (lipoprotein-associated phospholipase A2) deficiency lowers cholesterol levels and protects against atherosclerosis in rabbits[J]. Arterioscler Thromb Vasc Biol, 2023, 43 (1): e11- e28. |
93 | HU J , SCHELL T D , PENG X , et al. Using HLA-A2.1 transgenic rabbit model to screen and characterize new HLA-A2.1 restricted epitope DNA vaccines[J]. J Vaccines Vaccin, 2010, 1 (1): 1000101. |
94 |
HAN Y , ZHOU J , ZHANG R , et al. Genome-edited rabbits: Unleashing the potential of a promising experimental animal model across diverse diseases[J]. Zool Res, 2024, 45 (2): 253- 262.
doi: 10.24272/j.issn.2095-8137.2023.201 |
[1] | 王锦祥, 苏进博, 付环茹, 孙世坤, 高承芳, 陈冬金, 桑雷, 谢喜平. 兔源A型多杀性巴氏杆菌Pm3和Pm6的致病性和基因组特征分析[J]. 畜牧兽医学报, 2025, 56(5): 2340-2352. |
[2] | 和晓兰, 赵艳坤, 孟璐, 刘慧敏, 高姣姣, 郑楠. 生牛乳中金黄色葡萄球菌异质性耐药及机制研究[J]. 畜牧兽医学报, 2025, 56(4): 1934-1946. |
[3] | 陈远才, 黄建营, 秦慧凯, 张龙现. 隐孢子虫基因组学研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1059-1064. |
[4] | 李真亚, 刘洁, 李允, 王飞, 孔嫄嫄, 李泳, 贾荣玲. 猪肺炎支原体强弱毒株的生物学特性及比较基因组学分析[J]. 畜牧兽医学报, 2025, 56(2): 851-859. |
[5] | 曹馨予, 蔡佳炜, 鲍志远, 姚漱玉, 李云鹏, 陈阳, 吴信生, 赵博昊. ATG14调控家兔毛囊毛乳头细胞自噬进程的功能探究[J]. 畜牧兽医学报, 2024, 55(8): 3472-3481. |
[6] | 苏文楠, 刘佳琪, 钟嘉诚, 陈济铛, 朱婉君, 张溢珊, 张济培. 鹅源副鸡禽杆菌全基因组重测序及比较基因组学分析[J]. 畜牧兽医学报, 2024, 55(3): 1208-1216. |
[7] | 王晋宇, 张凯川, 王芮杰, 高铎, 蒋祺丰, 贾坤. 一株铜绿假单胞菌噬菌体全基因组分析及与抗生素体外联合应用效果[J]. 畜牧兽医学报, 2024, 55(2): 727-738. |
[8] | 马友记, 陈鹏飞, 马青, 吴怡. 不同运动量对滩羊瘤胃菌群多样性的影响[J]. 畜牧兽医学报, 2023, 54(8): 3393-3405. |
[9] | 吴祎程, 冉涛, 周传社, 谭支良. 宏基因组学技术分析山羊瘤胃病毒的多样性[J]. 畜牧兽医学报, 2023, 54(7): 2932-2941. |
[10] | 张家祺, 甲呷格西, 周群, 宋鑫, 张斌. 宏基因组学技术分析四川省集约化猪场中仔猪腹泻粪便的病毒种群[J]. 畜牧兽医学报, 2023, 54(6): 2478-2486. |
[11] | 袁生, 李安琪, 吕文珂, 羊露露, 周峰, 黄良宗, 白挨泉, 温峰, 黄淑坚, 郭锦玥. 一株猪伪狂犬病病毒的主要毒力相关基因的变异分析及其对家兔的致病性[J]. 畜牧兽医学报, 2023, 54(5): 2195-2199. |
[12] | 蒋增海, 滕霖, 贺安文, 刘言言, 乐敏, 何启盖. 猪产业链中鼠伤寒沙门菌及沙门菌血清型4,[5],12:i:-基因组学分析[J]. 畜牧兽医学报, 2023, 54(3): 1199-1209. |
[13] | 王佳宁, 张自强, 孔德婧, 冯彩彩, 张飞可, 刘玉梅. 家兔肺炎克雷伯菌的分离鉴定[J]. 畜牧兽医学报, 2023, 54(12): 5198-5206. |
[14] | 陶洁, 李本强, 程靖华, 石迎, 刘佩红, 刘惠莉. 肉鸽肠道微生物菌群差异分析和抗生素耐药基因预测[J]. 畜牧兽医学报, 2023, 54(12): 5293-5300. |
[15] | 房映栋, 程翠翠, 陆佳, 程玉娇, 张睿, 李沛轩, 王雯慧. 分泌IgA和IgG的浆细胞在家兔鼻腔中的分布特征[J]. 畜牧兽医学报, 2022, 53(8): 2751-2762. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||