1 |
王海燕, 张珍珍, 倪博, 等. 猪肺炎支原体通过抑制SPLUNC1功能破坏呼吸道炎性反应平衡[J]. 中国农业科学, 2024, 57 (1): 216- 226.
|
|
WANG H Y , ZHANG Z Z , NI B , et al. Mycoplasma hyopneumoniae destroyed the inflammatory balance of respiratory tract through suppressing the function of SPLUNC1[J]. Scientia Agricultura Sinica, 2024, 57 (1): 216- 226.
|
2 |
齐德重, 陈燕君, 王妮娜, 等. 猪肺炎支原体JM株的分离鉴定及主要抗原蛋白基因序列分析[J]. 黑龙江畜牧兽医, 2022, (18): 73-80, 142.
|
|
QI D Z , CHEN Y J , WANG N N , et al. Isolation and identification of Mycoplasma hyopneumoniae JM strain and analysis of its main antigen protein genes[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022, (18): 73-80, 142.
|
3 |
多米尼克·梅斯, 玛丽娜·西比拉, 玛利亚·皮特斯. 猪的支原体[M]. 邵国青, 译. 北京: 中国农业出版社, 2021: 128-140.
|
|
MAES D, SIBILA M, PIETERS M. Mycoplasmas of swine[M]. SHAO G Q, trans. Beijing: China Agriculture Press, 2021: 128-140. (in Chinese)
|
4 |
杰弗里·J·齐默曼, 洛克·A·卡里克, 亚历杭德罗·拉米雷斯, 等. 猪病学[M]. 杨汉春, 译. 沈阳: 辽宁科学技术出版社, 2022: 904-921.
|
|
ZIMMERMAN J J, KARRIKER L A, RAMIREZ A, et al. Diseases of swine[M]. YANG H C, trans. Shenyang: Liaoning Science and Technology Press, 2022: 904-921. (in Chinese)
|
5 |
谢青云, 邢蕙萱, 于岩飞, 等. 猪肺炎支原体解螺旋酶RuvA的原核表达、多克隆抗体制备及活性鉴定[J]. 畜牧兽医学报, 2024, 55 (1): 271- 281.
|
|
XIE Q Y , XING H X , YU Y F , et al. Prokaryotic expression, polyclonal antibody preparation and activity identification of helicase RuvA from Mycoplasma hyopneumoniae[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (1): 271- 281.
|
6 |
孙红妹, 冯志新. 支原体感染实验室诊断技术[M]. 北京: 人民卫生出版社, 2019: 1- 5.
|
|
SUN H M , FENG Z X . Laboratory diagnostic technology of Mycoplasma infection[M]. Beijing: People's Medical Publishing House, 2019: 1- 5.
|
7 |
MAES D , SIBILA M , KUHNERT P , et al. Update on Mycoplasma hyopneumoniae infections in pigs: knowledge gaps for improved disease control[J]. Transbound Emerg Dis, 2018, 65 Suppl 1, 110- 124.
|
8 |
VICCA J , MAES D , THERMOTE L , et al. Patterns of Mycoplasma hyopneumoniae infections in Belgian farrow-to-finish pig herds with diverging disease-course[J]. J Vet Med B Infect Dis Vet Public Health, 2002, 49 (7): 349- 353.
doi: 10.1046/j.1439-0450.2002.00579.x
|
9 |
LEAL ZIMMER F M A , PAES J A , ZAHA A , et al. Pathogenicity & virulence of Mycoplasma hyopneumoniae[J]. Virulence, 2020, 11 (1): 1600- 1622.
doi: 10.1080/21505594.2020.1842659
|
10 |
FERRARINI M G , MUCHA S G , PARROT D , et al. Hydrogen peroxide production and myo-inositol metabolism as important traits for virulence of Mycoplasma hyopneumoniae[J]. Mol Microbiol, 2018, 108 (6): 683- 696.
doi: 10.1111/mmi.13957
|
11 |
杨德华. 肺炎支原体生物膜形成分析及特性研究[D]. 杭州: 浙江大学, 2018.
|
|
YANG D H. Analysis of Mycoplasma pneumoniae-produced biofilm and its characterization[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
|
12 |
RAYMOND B B A , JENKINS C , TURNBULL L , et al. Extracellular DNA release from the genome-reduced pathogen Mycoplasma hyopneumoniae is essential for biofilm formation on abiotic surfaces[J]. Sci Rep, 2018, 8 (1): 10373.
doi: 10.1038/s41598-018-28678-2
|
13 |
LIU W , FANG L R , LI M , et al. Comparative genomics of Mycoplasma: analysis of conserved essential genes and diversity of the pan-genome[J]. PLoS One, 2012, 7 (4): e35698.
doi: 10.1371/journal.pone.0035698
|
14 |
LIU W , XIAO S B , LI M , et al. Comparative genomic analyses of Mycoplasma hyopneumoniae pathogenic 168 strain and its high-passaged attenuated strain[J]. BMC Genomics, 2013, 14, 80.
doi: 10.1186/1471-2164-14-80
|
15 |
李真亚. 猪肺炎支原体传代致弱菌株的筛选及其免疫保护性评估[D]. 武汉: 华中农业大学, 2022.
|
|
LI Z Y. Screening of attenuated strains of Mycoplasma hyopneumoniae and evaluation of its immunoprotection[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
|
16 |
刘文豪. 猪肺炎支原体荧光定量PCR方法的建立与应用[D]. 武汉: 华中农业大学, 2021.
|
|
LIU W H. Establishment and application of fluorescence quantitative PCR method for Mycoplasma hyopneumoniae[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
|
17 |
张焱焱. 猪肺炎支原体ES-2株的特性研究及猪链球2型菌荚膜多糖合成相关基因的研究[D]. 武汉: 华中农业大学, 2019.
|
|
ZHANG Y Y. The characteristic of M. hyopneumoniae ES-2 strain and study on the genes involved in synthesis of capsular polysaccharide in Streptococcus suis type 2[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
|
18 |
RAYMOND B B A , TURNBULL L , JENKINS C , et al. Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells[J]. Sci Rep, 2018, 8 (1): 17697.
doi: 10.1038/s41598-018-36054-3
|
19 |
TASSEW D D , MECHESSO A F , PARK N H , et al. Biofilm formation and determination of minimum biofilm eradication concentration of antibiotics in Mycoplasma hyopneumoniae[J]. J Vet Med Sci, 2017, 79 (10): 1716- 1720.
doi: 10.1292/jvms.17-0279
|
20 |
RASHEED M A , QI J J , ZHU X F , et al. Comparative genomics of Mycoplasma bovis strains reveals that decreased virulence with increasing passages might correlate with potential virulence-related factors[J]. Front Cell Infect Microbiol, 2017, 7, 177.
doi: 10.3389/fcimb.2017.00177
|
21 |
ARNDT A , EIKMANNS B J . The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression[J]. J Bacteriol, 2007, 189 (20): 7408- 7416.
|
22 |
PEI J J , ZHOU Q , JIANG Y , et al. Thermoanaerobacter spp. control ethanol pathway via transcriptional regulation and versatility of key enzymes[J]. Metab Eng, 2010, 12 (5): 420- 428.
|
23 |
QUINLAN C L , GONCALVES R L S , HEY-MOGENSEN M , et al. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex Ⅰ[J]. J Biol Chem, 2014, 289 (12): 8312- 8325.
|
24 |
FERRARINI M G , SIQUEIRA F M , MUCHA S G , et al. Insights on the virulence of swine respiratory tract Mycoplasmas through genome-scale metabolic modeling[J]. BMC Genomics, 2016, 17, 353.
|
25 |
GOGARTEN J P , TOWNSEND J P . Horizontal gene transfer, genome innovation and evolution[J]. Nat Rev Microbiol, 2005, 3 (9): 679- 687.
|
26 |
GUO F B , WEI W . Prediction of genomic islands in three bacterial pathogens of pneumonia[J]. Int J Mol Sci, 2012, 13 (3): 3134- 3144.
|
27 |
BAI F F , NI B , LIU M J , et al. Mycoplasma hyopneumoniae-derived lipid-associated membrane proteins induce apoptosis in porcine alveolar macrophage via increasing nitric oxide production, oxidative stress, and caspase-3 activation[J]. Vet Immunol Immunopathol, 2013, 155 (3): 155- 161.
|
28 |
YU Y F , LIU M J , HUA L Z , et al. Fructose-1, 6-bisphosphate aldolase encoded by a core gene of Mycoplasma hyopneumoniae contributes to host cell adhesion[J]. Vet Res, 2018, 49 (1): 114.
|
29 |
NI B , BAI F F , WEI Y , et al. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma hyopneumoniae in a porcine lung epithelial cell line with the involvement of caspase 3 and the MAPK pathway[J]. Genet Mol Res, 2015, 14 (3): 11429- 11443.
|
30 |
MAGLENNON G A , COOK B S , DEENEY A S , et al. Transposon mutagenesis in Mycoplasma hyopneumoniae using a novel mariner-based system for generating random mutations[J]. Vet Res, 2013, 44 (1): 124.
|
31 |
MAGLENNON G A , COOK B S , MATTHEWS D , et al. Development of a self-replicating plasmid system for Mycoplasma hyopneumoniae[J]. Vet Res, 2013, 44 (1): 63.
|