畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1934-1946.doi: 10.11843/j.issn.0366-6964.2025.04.040
和晓兰1(), 赵艳坤1,2, 孟璐1, 刘慧敏1, 高姣姣2, 郑楠1,*(
)
收稿日期:
2024-03-14
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
郑楠
E-mail:2460213483@qq.com;zhengnan@caas.cn
作者简介:
和晓兰(2001-), 女, 河北内丘人, 硕士生, 主要从事乳品微生物学研究, E-mail: 2460213483@qq.com
基金资助:
HE Xiaolan1(), ZHAO Yankun1,2, MENG Lu1, LIU Huimin1, GAO Jiaojiao2, ZHENG Nan1,*(
)
Received:
2024-03-14
Online:
2025-04-23
Published:
2025-04-28
Contact:
ZHENG Nan
E-mail:2460213483@qq.com;zhengnan@caas.cn
摘要:
旨在了解生牛乳中分离的金黄色葡萄球菌耐药情况以及金黄色葡萄球菌的异质性耐药流行情况,并探究异质性耐药机制。从东北、华北、华东、华南、西北和西南六个地区采集179批次生牛乳,分离鉴定出金黄色葡萄球菌36株。采用肉汤微量稀释法鉴定金黄色葡萄球菌的敏感性和耐药性,联合纸片扩散法和E-test法从抗菌药物敏感表型的菌株中筛选疑似异质性耐药菌株,利用菌群谱型分析法(PAP)进行确证,传代测定异质性耐药稳定性,通过全基因组和比较基因组学分析异质性耐药机制。结果表明,36株金黄色葡萄球菌对β-内酰胺类抗生素耐药率达11.11%~61.11%,对四环素和氨基糖苷类抗生素表现高度敏感。初筛得到19种金黄色葡萄球菌和抗菌药物组合异质性耐药,确证3种组合为异质性耐药表型,其中仅金黄色葡萄球菌J23保持稳定的异质性耐药表型。本研究表明,生牛乳源的金黄色葡萄球菌对β-内酰胺类和喹诺酮类抗菌药物耐药性较高,对阿莫西林/克拉维酸的异质性耐药机制与blaZ和金属β-内酰胺酶的表达有关,对四环类药物的异质性耐药与四环素外排泵表达和耐药蛋白有关。
中图分类号:
和晓兰, 赵艳坤, 孟璐, 刘慧敏, 高姣姣, 郑楠. 生牛乳中金黄色葡萄球菌异质性耐药及机制研究[J]. 畜牧兽医学报, 2025, 56(4): 1934-1946.
HE Xiaolan, ZHAO Yankun, MENG Lu, LIU Huimin, GAO Jiaojiao, ZHENG Nan. Investigation of Heteroresistance and Its Mechanism of Staphylococcus aureus in Raw Milk[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1934-1946.
表 1
牧场采样分布情况"
序号No. | 地理区域Geographical region | 牧场地址Pasture address |
1 | 东北地区 | 黑龙江省齐齐哈尔市克山县 |
2 | 黑龙江省齐齐哈尔市甘南县 | |
3 | 吉林省白城市镇赉县 | |
4 | 华北地区 | 内蒙古自治区呼和浩特市和林格尔县 |
5 | 内蒙古自治区呼和浩特市赛罕区 | |
6 | 河北省张家口市塞北管理区 | |
7 | 河北省保定市满城区 | |
8 | 河北省保定市徐水区 | |
9 | 天津市滨海新区 | |
10 | 北京市昌平区 | |
11 | 华东地区 | 山东省淄博市高青县 |
12 | 江苏省盐城市大丰区 | |
13 | 浙江省杭州市建德市 | |
14 | 福建省南平市延平区 | |
15 | 华南地区 | 广东省清远市连州市 |
16 | 广东省湛江市遂溪县 | |
17 | 西北地区 | 陕西省渭南市大荔县 |
18 | 甘肃省金昌市金川区 | |
19 | 甘肃省嘉峪关市 | |
20 | 西南地区 | 贵州省贵阳市修文县 |
21 | 云南省曲靖市陆良县 | |
22 | 四川省达州市宣汉县 |
表 2
金黄色葡萄球菌药敏结果"
抗菌药物类别 Types of antibiotics | 抗菌药物名称 Antibiotic | 药敏类型 Types of drug resistance | 菌株MIC/(μg·mL-1) Strain MIC | 菌株数 Strain number | 比率 Rate |
β-内酰胺类 β-Lactams | 青霉素 | S | 0.125 | 18 | 50.00% |
I | / | 0 | 0.00% | ||
R | 0.25~32 | 18 | 50.00% | ||
氨苄西林 | S | 0.125 | 14 | 38.89% | |
I | / | 0 | 0.00% | ||
R | 0.5~64 | 22 | 61.11% | ||
苯唑西林 | S | 0.25~2 | 28 | 77.78% | |
I | / | 0 | 0.00% | ||
R | 4~128 | 8 | 22.22% | ||
阿莫西林/克拉维酸 | S | 0.25/0.12 | 14 | 38.89% | |
I | 0.5/0.25 | 9 | 25.00% | ||
R | 1/0.5~16/8 | 13 | 36.11% | ||
头孢噻吩 | S | 0.25~1 | 29 | 80.56% | |
I | 4 | 1 | 2.78% | ||
R | 16~128 | 6 | 16.67% | ||
头孢噻呋 | S | 0.25~2 | 32 | 88.89% | |
I | / | 0 | 0.00% | ||
R | 16~128 | 4 | 11.11% | ||
大环内酯类 Macrolide | 红霉素 | S | 0.25~0.5 | 28 | 77.78% |
I | 1 | 1 | 2.78% | ||
R | 16~128 | 7 | 19.44% | ||
林可霉素类 Lincosamides | 克林霉素 | S | 0.125~0.25 | 30 | 83.33% |
I | 1~2 | 3 | 8.33% | ||
R | 4~64 | 3 | 8.33% | ||
氨基糖苷类 Aminoglycoside | 庆大霉素 | S | 0.25~2 | 34 | 94.44% |
I | 8 | 2 | 5.56% | ||
R | / | 0 | 0.00% | ||
四环素类 Tetracycline | 多西环素 | S | 0.25~4 | 33 | 91.67% |
I | 8 | 1 | 2.78% | ||
R | 16 | 2 | 5.56% | ||
四环素 | S | 0.25~2 | 31 | 86.11% | |
I | 8 | 1 | 2.78% | ||
R | 32~64 | 4 | 11.11% | ||
氯霉素类 Chloramphenicols | 氟苯尼考 | S | 1~4 | 30 | 83.33% |
I | 8 | 3 | 8.33% | ||
R | 16~128 | 3 | 8.33% | ||
喹诺酮类 Quinolones | 环丙沙星 | S | 0.125~1 | 28 | 77.78% |
I | / | 0 | 0.00% | ||
R | 4~64 | 8 | 22.22% | ||
磺胺类 Sulfonamides | 复方新诺明 | S | 0.12/2.4~1/19 | 35 | 97.22% |
I | / | 0 | 0.00% | ||
R | 32/608 | 1 | 2.78% |
表 5
菌群分析法确证结果分析"
抗菌药物-菌株 Antimicrobial-Strain | 初始MIC值/(μg·mL-1) Initial MIC | 菌株类型 Strain type | 异质性耐药亚群发生频率 Frequency of heteroresistant subpopulation |
阿莫西林克拉维酸-J23 Amoxicillin Clavulanic Acid-J23 | 0.25/0.12 | Heteroresistance | 3.26×10-7 |
四环素-J22 Tetracycline-J22 | 0.25 | Heteroresistance | 9.41×10-6 |
多西环素-J22 Doxycycline-J22 | 0.25 | Heteroresistance | 1.69×10-7 |
表 8
J23以金黄色葡萄球菌J2为参考序列的突变数目统计"
基因 Gene | 同义突变 Synonymous | 非同义突变 Nonsynonymous | 插入 Insertion | 缺失 Deletion |
J2GL000296 | 28 | 14 | 4 | 5 |
J2GL000464 | 6 | 1 | 0 | 0 |
J2GL000585 | 23 | 1 | 0 | 0 |
J2GL000597 | 0 | 0 | 0 | 0 |
J2GL001006 | 4 | 1 | ||
J2GL001140 | 15 | 4 | 0 | 0 |
J2GL001141 | 15 | 3 | 0 | 0 |
J2GL001382 | 2 | 1 | 0 | 0 |
J2GL001394 | 0 | 0 | 0 | 0 |
J2GL001383 | 5 | 3 | 0 | 0 |
J2GL001384 | 5 | 0 | 0 | |
J2GL001385 | 7 | 7 | 0 | 0 |
J2GL001386 | 27 | 10 | 1 | 1 |
1 |
BAR-GAL G K , BLUM S E , HADAS L , et al. Host-specificity of Staphylococcus aureus causing intramammary infections in dairy animals assessed by genotyping and virulence genes[J]. Vet Microbiol., 2015, 176 (1-2): 143- 154.
doi: 10.1016/j.vetmic.2015.01.007 |
2 |
SMYTH D S , FEIL E J , MEANEY W J , et al. Molecular genetic typing reveals further insights into the diversity of animal-associated Staphylococcus aureus[J]. J Med Microbiol, 2009, 58 (10): 1343- 1353.
doi: 10.1099/jmm.0.009837-0 |
3 |
ZHOU Z , ZHANG M , LI H , et al. Prevalence and molecular characterization of Staphylococcus aureus isolated from goats in Chongqing, China[J]. BMC Vet Res, 2017, 13 (1): 352.
doi: 10.1186/s12917-017-1272-4 |
4 | LE LOIR Y , BARON F , GAUTIER M . Staphylococcus aureus and food poisoning[J]. Genet Mol Res, 2003, 2 (1): 63- 76. |
5 | JØRGENSEN H J , MØRK T , CAUGANT D A , et al. Genetic variation among Staphylococcus aureus strains from norwegian bulk milk. Appl. Environ[J]. Microbiol, 2005, 71, 8352- 8361. |
6 | SCHMID D , FRETZ R , WINTER P , et al. Outbreak of staphylococcal food intoxication after consumption of pasteurized milk products[J]. Wien Klin Wochenschr, 2007, 121, 125- 131. |
7 | OSTYN A , DE BUYSER M L , GUILLIER F , et al. First evidence of a food poisoning outbreak due to staphylococcal enterotoxin type E, France, 2009[J]. Eurosurveill, 2009, 15, 19528. |
8 |
BALABAN N , RASOOLY A . Staphylococcal enterotoxins[J]. Int J Food Microbiol, 2000, 61 (1): 1- 10.
doi: 10.1016/S0168-1605(00)00377-9 |
9 | ÍTAVO L C V , ÍTAVO C C B F , DIAS A M , et al. Microbiological evaluation of milk quality and antibiogram in dairy cows managed on pasture[J]. J Agric Stud, 2020, 8 (3): 321- 334. |
10 |
ANDRADE J R A , SILVAⅡ N , SILVEIRA W , et al. An epidemiological study of reproductive failure in dairy herds from Goiȃnia[J]. Arq Bras Med Vet Zootec, 2005, 57 (6): 720- 725.
doi: 10.1590/S0102-09352005000600002 |
11 |
LOWY F. D . Antimicrobial resistance: The example of Staphylococcus aureus[J]. J Clin Invest, 2003, 111 (9): 1265- 1273.
doi: 10.1172/JCI18535 |
12 |
MALACHOWA N , DELEO F R . Mobile genetic elements of Staphylococcus aureus[J]. Cell Mol Life Sci, 2010, 67 (18): 3057- 3071.
doi: 10.1007/s00018-010-0389-4 |
13 |
ANDERSSON D I , NICOLOFF H , HJORT K . Mechanisms and clinical relevance of bacterial heteroresistance[J]. Nat Rev Microbiol, 2019, 17 (8): 479- 496.
doi: 10.1038/s41579-019-0218-1 |
14 |
MPHAHLELE M P , OGUTTU J W , PETZER I M , et al. Prevalence and antimicrobial drug resistance of Staphylococcus aureus isolated from cow milk samples[J]. Vet World, 2020, 13 (12): 2736- 2742.
doi: 10.14202/vetworld.2020.2736-2742 |
15 | BAYMENOV B M , BULASHEV A , CHUZHEBAYEVA G D , et al. Phenotypic and genotypic resistance to antibiotics in Staphylococcus aureus strains isolated from cattle milk in Northern Kazakhstan[J]. Vet World, 2023, 16 (9): 1815- 1820. |
16 |
和晓兰, 赵艳坤, 孟璐, 等. 金黄色葡萄球菌异质性耐药研究进展[J]. 畜牧兽医学报, 2024, 55 (4): 1432- 1445.
doi: 10.11843/j.issn.0366-6964.2024.04.009 |
HE X L , ZHAO Y K , MENG L , et al. Research progress in heteroresistance of Staphylococcus aureus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1432- 1445.
doi: 10.11843/j.issn.0366-6964.2024.04.009 |
|
17 | 刘欣彤, 陈孝杰, 王玉凤, 等. 重点区域规模化牧场牛奶源大肠杆菌耐药性研究[J]. 中国兽医杂志, 2022, 58 (01): 53-58, 61. |
LIU Y T , CHEN X J , WANG Y F , et al. Investigation on resistance in milk-borne Escherichia coli from large scale farms across key dairy cow raising regions[J]. Chinese Journal of Veterinary Medicine, 2022, 58 (01): 53-58, 61. | |
18 | 甘卫泽, 李益涛, 曹梦园, 等. 某规模化牧场致奶牛乳房炎金黄色葡萄球菌的鉴定及耐药性分析[J]. 中国奶牛, 2020 (11): 45- 48. |
GAN W Z , LI Y T , CAO M Y , et al. Identification and drug resistance analysis of Staphylococcus aureus mastitis in dairy cows from a large-scale pasture[J]. China Dairy Cattle, 2020 (11): 45- 48. | |
19 | 钟华晨, 王丽芳, 郭晨阳, 等. 内蒙古地区奶牛生鲜乳微生物污染状况及耐药性评估[J]. 黑龙江畜牧兽医, 2023 (13): 18- 22. |
ZHONG H C , WANG L F , GUO C Y , et al. Microbial contamination status and drug resistance assessment of fresh cow milk in Inner Mongolia Autonomous Region[J]. Heilongjiang Animal Science and Veterinary Medicine, 2023 (13): 18- 22. | |
20 |
LO-TEN-FOE J R , DE SMET A M G A , DIEDEREN B M W , et al. Comparative evaluation of the VITEK 2, disk diffusion, etest, broth microdilution, and agar dilution susceptibility testing methods for colistin in clinical isolates, including heteroresistant Enterobacter cloacae and Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2007, 51, 3726- 3730.
doi: 10.1128/AAC.01406-06 |
21 |
VAN HAL S J , WEHRHAHN M C , BARBAGIANNAKOS T , et al. Performance of various testing methodologies for detection of heteroresistant vancomycin-intermediate Staphylococcus aureus in bloodstream isolates[J]. J Clin Microbiol, 2011, 49 (4): 1489- 1494.
doi: 10.1128/JCM.02302-10 |
22 | BOYD S E , LIVERMORE D M , HOOPER D C , et al. Metallo-β-lactamases: Structure, function, epidemiology, treatment options, and the development pipeline[J]. Antimicrob Agents Chemother, 2020, 64 (10): e00397- 20. |
23 | 章升霞, 王绍琛, 吕云斌, 等. 金属β-内酰胺酶GOB-54的发现与表征[J]. 食品与发酵工业, 2024, 50 (24): 44- 50. |
ZHANG S X , WANG S C , LV Y B , et al. Discovery and biochemical characterization of the GOB-54 metallo-β-lactamase[J]. Food and Fermentation Industries., 2024, 50 (24): 44- 50. | |
24 | VARUN GOEL , SUMATI A HOGADE , SG KARADESAI . Prevalence of extended-spectrum beta-lactamases, AmpC beta-lactamase, and metallo-beta-lactamase producing Pseudomonas aeruginosa and Acinetobacter baumannii in an intensive care unit in a tertiary care hospital[J]. J Sci Soc, 2013, 1 (40): 28- 31. |
25 |
RIZWAN M , DURRANI A Z , AHMAD T , et al. Prevalence of blaZ gene and antibiotics susceptibility test profile of β-lactams resistant Staphylococcus aureus isolated from subclinical mastitis in lactating Beetal goats[J]. Livest Sci, 2022, 255, 104797.
doi: 10.1016/j.livsci.2021.104797 |
26 |
LIANG B , XIONG Z , LIANG Z , et al. Genomic basis of occurrence of cryptic resistance among oxacillin and cefoxitin-susceptible mecA-positive Staphylococcus aureus[J]. Microbiol Spectr, 2022, 10 (3): e0029122.
doi: 10.1128/spectrum.00291-22 |
27 |
PROULX M K , PALACE S G , GANDRA S , et al. Reversion from methicillin susceptibility to methicillin resistance in Staphylococcus aureus during treatment of bacteremia[J]. J Infect Dis, 2016, 213 (6): 1041- 1048.
doi: 10.1093/infdis/jiv512 |
28 | TRUONG-BOLDUC Q C , WANG Y , HOOPER D C . Staphylococcus aureus Tet38 efflux pump structural modeling and roles of essential residues in drug efflux and host cell internalization[J]. Infect Immun, 2021, 89 (5): e00811- 20. |
29 |
TRUONG-BOLDUC Q C , WANG Y , HOOPER D C . Role of Staphylococcus aureus Tet38 in transport of tetracycline and its regulation in a salt stress environment[J]. J Bacteriol, 2022, 204 (7): e0014222.
doi: 10.1128/jb.00142-22 |
30 | TRUONG-BOLDUC Q C , DUNMAN P M , STRAHILEVITZ J , et al. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus[J]. J Bacteriol, 2005, 184 (7): 2395- 405. |
31 | ZENG W , ZHANG X , LIU Y , et al. In vitro antimicrobial activity and resistance mechanisms of the new generation tetracycline agents, eravacycline, omadacycline, and tigecycline against clinical Staphylococcus aureus isolates[J]. Front Microbiol, 2022, 13, 1043736. |
32 | HATEM Z , AL-DULAIMI A A F , AL-TAAI H R R . Prevalence of tetracycline resistance genes in Staphylococcus aureus isolated from different clinical sources in Diyala, Iraq[J]. Int J Health Sci (Qassim), 2022, 6 (S2): 13200- 13209. |
[1] | 吉星, 李俊, 王冉, 何涛. 金黄色葡萄球菌毒力调控及减毒药物研究进展[J]. 畜牧兽医学报, 2025, 56(4): 1594-1607. |
[2] | 崔恒洁, 覃金珑, 朱志豪, 鲍雪, 栗绍文, 孟宪荣. 金黄色葡萄球菌对苯扎溴铵敏感性与生物被膜形成能力相关性分析[J]. 畜牧兽医学报, 2024, 55(8): 3669-3677. |
[3] | 和晓兰, 赵艳坤, 孟璐, 刘慧敏, 高姣姣, 郑楠. 金黄色葡萄球菌异质性耐药研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1432-1445. |
[4] | 吴自豪, 蔡依龙, 陀海欣, 陈伟. 1株马乳源PVL+ST22型金黄色葡萄球菌致病性分析[J]. 畜牧兽医学报, 2024, 55(2): 718-726. |
[5] | 高姣姣, 郑楠, 邵伟, 陈贺, 马宪兰, 赵艳坤. 奶源异质性耐药大肠杆菌及其耐药亚群特性研究[J]. 畜牧兽医学报, 2024, 55(12): 5813-5824. |
[6] | 占乐杨, 苟婧萱, 张曼琪, 傅唯轩, 兰守信, 涂健, 王振宇, 邵颖, 宋祥军. T6SS效应蛋白Tae4对金黄色葡萄球菌和产单核细胞李氏杆菌的抑菌作用[J]. 畜牧兽医学报, 2024, 55(10): 4660-4669. |
[7] | 苑庆欣, 刘阔, 包旭华, 高东阳, 李鹤, 宋军, 周志新. 白屈菜红碱抗耐甲氧西林金黄色葡萄球菌作用机制研究[J]. 畜牧兽医学报, 2024, 55(10): 4670-4678. |
[8] | 江南松, 吉星, 王亚新, 孙城涛, 汪洋, 陈红梅, 程龙飞, 黄瑜, 吴聪明. 猪源ST9型耐甲氧西林金黄色葡萄球菌中前噬菌体的流行状况与转导分析[J]. 畜牧兽医学报, 2023, 54(1): 338-350. |
[9] | 卢婉青, 赵莎莎, 蒋松宏, 童智子, 黄丹妮, 郭建华, 吴俊伟, 周洋. 金黄色葡萄球菌对BV2细胞IFN-α生成的影响[J]. 畜牧兽医学报, 2022, 53(8): 2633-2641. |
[10] | 毛彦妮, 常佳伟, 李娜, 王鑫, 康馨匀, 马强, 马靓, 王桂琴. 金黄色葡萄球菌在生物被膜态与浮游态的转录组差异表达分析[J]. 畜牧兽医学报, 2022, 53(8): 2697-2707. |
[11] | 王迪, 俞英. 奶牛金葡菌乳房炎抗性的转录组及表观遗传学研究进展[J]. 畜牧兽医学报, 2022, 53(2): 329-338. |
[12] | 张金柠, 钱梦樱, 唐永杰, 米思远, 师科荣, 俞英. 金黄色葡萄球菌表面蛋白A对奶牛乳腺上皮细胞的黏附作用[J]. 畜牧兽医学报, 2021, 52(5): 1369-1377. |
[13] | 马强, 杨蕊, 万佳宏, 常佳伟, 魏彦琴, 王桂琴. 宁夏地区牛源金黄色葡萄球菌β-内酰胺酶的分析及作用方式的研究[J]. 畜牧兽医学报, 2020, 51(5): 1138-1148. |
[14] | 罗梦幽, 汤承, 赵燕英, 陈娟, 唐俊妮. 硫酸铜溶液诱导对耐甲氧西林金黄色葡萄球菌抗菌药物抗性效应的初步研究[J]. 畜牧兽医学报, 2020, 51(4): 841-850. |
[15] | 马强, 王艺晖, 常佳伟, 万佳宏, 魏彦琴, 王桂琴. 金黄色葡萄球菌细胞壁变化与β-内酰胺类抗生素耐药的关系[J]. 畜牧兽医学报, 2020, 51(3): 602-611. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||