畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2194-2202.doi: 10.11843/j.issn.0366-6964.2025.05.019
姚婷婷1(), 李昊1, 阎卉萱1, 曹一凡1, 次仁罗布2, 索朗曲吉2, 尼玛仓决2, 赵丽2, 旦增洛桑2, 斯朗旺姆2, 巴桑珠扎2,*(
), 陈宁博1,*(
)
收稿日期:
2024-11-20
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
巴桑珠扎,陈宁博
E-mail:Yao_ting_ting@126.com;157493385@qq.com;ningbochen@nwafu.edu.cn
作者简介:
姚婷婷(1999-),女,宁夏彭阳人,硕士生,主要从事牛遗传资源研究,E-mail:Yao_ting_ting@126.com
基金资助:
YAO Tingting1(), LI Hao1, YAN Huixuan1, CAO Yifan1, Cirengluobu 2, Suolangquji 2, Nimacangjue 2, ZHAO Li2, Danzengluosang 2, Silangwangmu 2, Basangzhuzha 2,*(
), CHEN Ningbo1,*(
)
Received:
2024-11-20
Online:
2025-05-23
Published:
2025-05-27
Contact:
Basangzhuzha , CHEN Ningbo
E-mail:Yao_ting_ting@126.com;157493385@qq.com;ningbochen@nwafu.edu.cn
摘要:
旨在探究西藏自治区10个黄牛群体的线粒体基因组遗传多样性及其母系起源。本研究通过线粒体基因组序列比对对西藏自治区10个黄牛群体的167个个体的线粒体基因组序列进行分析,重点探究其线粒体基因组遗传多样性及其母系起源。通过系统发育学和遗传多样性分析,检测到167个黄牛拥有120种单倍型,其中包括普通牛的T2、T3和T4单倍型,原牛的Q单倍型;瘤牛的I1和I2单倍型;以及牦牛的单倍型。T3单倍型还包括T3119和T3055两个东亚普通牛特异的亚单倍型。线粒体基因组遗传多样性分析结果显示,巴桑牛的单倍型多样度最高,为0.990±0.028,白朗牛的最低,为0.867±0.107;核苷酸多样度最高的为吉隆牛0.030±0.000 5,最低的为日喀则牛0.001±0.000 2。系统发育树和单倍型网络图表明,10个黄牛群体主要为普通牛母系起源,有少量牦牛及瘤牛母系起源。总体而言,10个黄牛群体均具有较高的遗传多样性,具有普通牛、瘤牛和牦牛的母系起源,表明这10个黄牛群体母系遗传多样性丰富,并且和牦牛之间存在基因交流。这些结果对于深入理解西藏自治区黄牛的遗传演化机制以及合理保护和利用这一珍贵遗传资源具有重要意义。
中图分类号:
姚婷婷, 李昊, 阎卉萱, 曹一凡, 次仁罗布, 索朗曲吉, 尼玛仓决, 赵丽, 旦增洛桑, 斯朗旺姆, 巴桑珠扎, 陈宁博. 西藏自治区10个黄牛群体的mtDNA遗传多样性与母系起源研究[J]. 畜牧兽医学报, 2025, 56(5): 2194-2202.
YAO Tingting, LI Hao, YAN Huixuan, CAO Yifan, Cirengluobu , Suolangquji , Nimacangjue , ZHAO Li, Danzengluosang , Silangwangmu , Basangzhuzha , CHEN Ningbo. Genetic Diversity of Mitochondrial Genome and Maternal Origin of 10 Cattle Populations in Tibet Autonomous Region[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2194-2202.
表 1
西藏自治区10个黄牛群体的碱基组成"
群体名 Population name | T | C | A | G | A+T | C+G |
白朗Bailang | 27.21 | 25.96 | 33.46 | 13.37 | 60.67a | 39.33b |
巴桑Basang | 27.19 | 25.94 | 33.40 | 13.45 | 60.59a | 39.39b |
果林Guolin | 27.19 | 25.94 | 33.42 | 13.44 | 60.61a | 39.38b |
浪卡子Langkazi | 27.20 | 25.94 | 33.43 | 13.41 | 60.63a | 39.35b |
亚东Yadong | 27.18 | 25.94 | 33.42 | 13.44 | 60.60a | 39.38b |
吉隆Jilong | 27.19 | 25.92 | 33.50 | 13.36 | 60.69a | 39.28b |
定结Dingjie | 27.20 | 25.93 | 33.43 | 13.40 | 60.63a | 39.33b |
昌都Changdu | 27.23 | 25.90 | 33.48 | 13.38 | 60.71a | 39.28b |
林芝Linzhi | 27.21 | 25.92 | 33.48 | 13.38 | 60.69a | 39.30b |
日喀则Shigatse | 27.20 | 25.95 | 33.40 | 13.40 | 60.60a | 39.35b |
平均Average | 27.20 | 25.93 | 33.44 | 13.40 | 60.64a | 39.34b |
表 2
西藏自治区10个黄牛群体的遗传多样性"
群体名 Population name | 样品数 Number | 单倍型 Haplotype | 单倍型多样度 Haplotype variety | 核苷酸多样度 Nucleotide diversity | 平均核苷酸差异 Mean nucleotide differences |
白朗Bailang | 10 | 7 | 0.867±0.107 | 0.022±0.000 7 | 363.911 |
巴桑Basang | 15 | 14 | 0.990±0.028 | 0.003±0.000 3 | 40.705 |
果林Guolin | 22 | 15 | 0.965±0.022 | 0.009±0.000 6 | 150.922 |
浪卡子Langkazi | 10 | 8 | 0.978±0.054 | 0.016±0.000 7 | 257.044 |
亚东Yadong | 10 | 8 | 0.956±0.059 | 0.006±0.000 4 | 94.622 |
吉隆Jilong | 36 | 23 | 0.965±0.019 | 0.030±0.000 5 | 480.624 |
定结Dingjie | 36 | 25 | 0.977±0.011 | 0.012±0.000 5 | 197.998 |
昌都Changdu | 8 | 7 | 0.964±0.077 | 0.027±0.000 8 | 439.786 |
林芝Linzhi | 12 | 7 | 0.924±0.047 | 0.026±0.000 7 | 422.697 |
日喀则Shigatse | 8 | 6 | 0.944±0.070 | 0.001±0.000 2 | 16.722 |
均值Average | - | - | 0.953±0.049 | 0.015 ±0.000 5 | - |
表 3
西藏自治区10个黄牛群体的单倍型分布"
群体名 Population name | 样品数量 Number | 支系Branch | ||||||||
T2 | T3 | T3055 | T3119 | T4 | I1 | I2 | Q | Yak | ||
白朗Bailang | 10 | 0 | 1 | 0 | 7 | 0 | 0 | 0 | 0 | 2 |
巴桑Basang | 15 | 0 | 9 | 0 | 3 | 2 | 1 | 0 | 0 | 0 |
果林Guolin | 22 | 0 | 9 | 1 | 8 | 0 | 3 | 0 | 0 | 1 |
浪卡子Langkazi | 10 | 1 | 2 | 0 | 3 | 1 | 0 | 1 | 1 | 1 |
亚东Yadong | 10 | 2 | 5 | 0 | 1 | 0 | 2 | 0 | 0 | 0 |
吉隆Jilong | 36 | 0 | 8 | 0 | 4 | 0 | 6 | 7 | 1 | 10 |
定结Dingjie | 36 | 1 | 7 | 1 | 18 | 2 | 3 | 0 | 1 | 3 |
昌都Changdu | 8 | 0 | 1 | 2 | 2 | 1 | 0 | 0 | 0 | 2 |
林芝Linzhi | 12 | 0 | 6 | 0 | 2 | 0 | 0 | 0 | 1 | 3 |
日喀则Shigatse | 8 | 2 | 0 | 0 | 5 | 0 | 0 | 0 | 1 | 0 |
合计Total | 167 | 6 | 48 | 4 | 53 | 6 | 15 | 8 | 5 | 22 |
占比/% Proportion | 100 | 3.59 | 28.74 | 2.40 | 31.74 | 3.59 | 8.98 | 4.79 | 2.99 | 13.17 |
1 |
黄钧瑶, 牛雅楠, 张园园. 2000-2019年我国畜牧业发展研究热点及前沿分析——基于Citespace的知识图谱量化研究[J]. 农业科学研究, 2020, 41 (4): 49- 54.
doi: 10.3969/j.issn.1673-0747.2020.04.009 |
HUNAG J Y , NIU Y N , ZHANG Y Y . Analyzing development of animal husbandry research hotspot and frontier from 2000 to 2019——Research on knowledge map quantification based on Citespace[J]. Journal of Agricultural Sciences, 2020, 41 (4): 49- 54.
doi: 10.3969/j.issn.1673-0747.2020.04.009 |
|
2 | GÖTHERSTRÖM A , ANDERUNG C , HELLBORG L , et al. Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe[J]. Proc Biol Sci, 2005, 272 (1579): 2345- 2350. |
3 |
LOFTUS R T , MACHUGH D E , BRADLEY D G , et al. Evidence for two independent domestications of cattle[J]. Proc Natl Acad Sci, 1994, 91 (7): 2757- 2761.
doi: 10.1073/pnas.91.7.2757 |
4 |
UTSUNOMIYA Y T , MILANESI M , FORTES M R S , et al. Genomic clues of the evolutionary history of Bos indicus cattle[J]. Anim Genet, 2019, 50 (6): 557- 568.
doi: 10.1111/age.12836 |
5 |
ZHAO M , KONG Q P , WANG H W , et al. Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau[J]. Proc Natl Acad Sci, 2009, 106 (50): 21230- 21235.
doi: 10.1073/pnas.0907844106 |
6 |
CHEN N , CAI Y , CHEN Q , et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia[J]. Nat Commun, 2018, 9 (1): 2337.
doi: 10.1038/s41467-018-04737-0 |
7 | 张沅. 中国畜禽遗传资源志-牛志[M]. 北京: 中国农业出版社, 2011. |
ZHANG Y . Chronicles of livestock and poultry genetic resources in China[M]. Beijing: China Agriculture Press, 2011. | |
8 | 陈幼春. 中国黄牛生态种质特征及其利用方向[M]. 北京: 农业出版社, 1990. |
CHEN Y C . Ecological germplasm characteristics and utilization direction of cattle in China[M]. Beijing: Agriculture Press, 1990. | |
9 |
李广祯, 马志杰, 陈生梅, 等. 野牦牛及青海地方牦牛品种全线粒体基因组母系遗传多样性、分化及系统发育分析[J]. 畜牧兽医学报, 2022, 53 (5): 1420- 1430.
doi: 10.11843/j.issn.0366-6964.2022.05.010 |
LI G Z , MA Z J , CHEN S M , et al. Maternal genetic diversity, differentiation and phylogeny of mitogenome sequence variations of wild yak and local yak breeds in Qinghai[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (5): 1420- 1430.
doi: 10.11843/j.issn.0366-6964.2022.05.010 |
|
10 |
WANG X , PEI J , XIONG L , et al. Genetic diversity, phylogeography, and maternal origin of yak (Bos grunniens)[J]. BMC Genomics, 2024, 25 (1): 481.
doi: 10.1186/s12864-024-10378-z |
11 | 曹萍, 梅萨, 陈生梅, 等. 基于mtDNA D-loop序列分析青海省果洛州牦牛遗传资源的母系遗传多样性及群体遗传结构[J]. 中国农业大学学报, 2024, 29 (8): 134- 146. |
CAO P , MEI S , CHEN S M , et al. Analysis of maternal genetic diversity and population genetic structure of yak genetic resources in goluo prefecture, Qinghai province based on mtDNA D-loop sequence[J]. Journal of China Agricultural University, 2024, 29 (8): 134- 146. | |
12 | 曹萍, 徐宇辉, 刘瑞林, 等. 天祝白牦牛全线粒体基因组母系遗传多样性[J]. 青海大学学报, 2024, 42 (2): 28- 34. |
CAO P , XU Y H , LIU R L , et al. Maternal genetic diversity of whole mitochondrial genome of Tianzhu white yak[J]. Journal of Qinghai University, 2024, 42 (2): 28- 34. | |
13 |
CHEN S , LIN BZ , BAIG M , et al. Zebu cattle are an exclusive legacy of the South Asia neolithic[J]. Mol Biol Evol, 2010, 27 (1): 1- 6.
doi: 10.1093/molbev/msp213 |
14 | 刘洪瑜, 朱一笑, 邱孝青, 等. 皖南牛mtDNA D-loop区遗传多样性和系统进化分析[J]. 阜阳师范大学学报(自然科学版), 2023, 40 (1): 13- 18. |
LIU H Y , ZHU Y X , QIU X Q , et al. Genetic diversity and phylogenetic analysis of mtDNA D-loop region of Wannan cattle[J]. Journal of Fuyang Normal University (Natural Science Edition), 2023, 40 (1): 13- 18. | |
15 |
张佳琳, 姚婷婷, 马伟东, 等. 甘孜藏牛mtDNA基因组遗传多样性分析[J]. 中国牛业科学, 2024, 50 (1): 5- 8.
doi: 10.3969/j.issn.1001-9111.2024.01.002 |
ZHANG J L , YAO T T , MA W D , et al. Genetic diversity analysis of mtDNA genome of Ganzi Tibetan cattle[J]. Science of Cattle Industry in China, 2024, 50 (1): 5- 8.
doi: 10.3969/j.issn.1001-9111.2024.01.002 |
|
16 |
赖松家, 刘延鑫, 李学伟, 等. 四川黄牛品种线粒体DNA遗传多样性研究[J]. 畜牧兽医学报, 2005, 36 (9): 887- 892.
doi: 10.3321/j.issn:0366-6964.2005.09.006 |
LAI S J , LIU Y X , LI X W , et al. Study on mitochondrial DNA genetic diversity of Sichuan cattle breeds[J]. Acta Veterinaria et Zootechnica Sinica, 2005, 36 (9): 887- 892.
doi: 10.3321/j.issn:0366-6964.2005.09.006 |
|
17 |
VERDUGO M P , MULLIN V E , SCHEU A , et al. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent[J]. Science, 2019, 365 (6449): 173- 176.
doi: 10.1126/science.aav1002 |
18 |
TROY C S , MACHUGH D E , BAILEY J F , et al. Genetic evidence for Near-Eastern origins of European cattle[J]. Nature, 2001, 410 (6832): 1088- 1091.
doi: 10.1038/35074088 |
19 |
ACHILLI A , BONFIGLIO S , OLIVIERI A , et al. The multifaceted origin of taurine cattle reflected by the mitochondrial genome[J]. PLoS One, 2009, 4 (6): e5753.
doi: 10.1371/journal.pone.0005753 |
20 |
BONFIGLIO S , ACHILLI A , OLIVIERI A , et al. The enigmatic origin of bovine mtDNA haplogroup R: sporadic interbreeding or an independent event of Bos primigenius domestication in Italy?[J]. PLoS One, 2010, 5 (12): e15760.
doi: 10.1371/journal.pone.0015760 |
21 |
ZHANG H , PAIJMANS J L , CHANG F , et al. Morphological and genetic evidence for early Holocene cattle management in northeastern China[J]. Nat Commun, 2013, 4, 2755.
doi: 10.1038/ncomms3755 |
22 |
CAI D , SUN Y , TANG Z , et al. The origins of Chinese domestic cattle as revealed by ancient DNA analysis[J]. J Archaeol Sci, 2014, 41, 423- 434.
doi: 10.1016/j.jas.2013.09.003 |
23 |
XIA X , QU K , ZHANG G , et al. Comprehensive analysis of the mitochondrial DNA diversity in Chinese cattle[J]. Anim Genet, 2019, 50 (1): 70- 73.
doi: 10.1111/age.12749 |
24 | 陈宁博, 雷初朝. 从DNA角度认识中国黄牛的起源和利用历史[J]. 第四纪研究, 2022, 42 (1): 92- 100. |
CHEN N B , LEI C Z . Understanding the origin and utilization history of Chinese cattle from the perspective of DNA[J]. Quaternary Sciences, 2022, 42 (1): 92- 100. | |
25 |
LI H , HANDSAKER B , WYSOKER A , et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25 (16): 2078- 2079.
doi: 10.1093/bioinformatics/btp352 |
26 |
BRIGGS A W , GOOD J M , GREEN R E , et al. Targeted retrieval and analysis of five Neandertal mtDNA genomes[J]. Science, 2009, 325 (5938): 318- 321.
doi: 10.1126/science.1174462 |
27 |
EDGAR R C . MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Res, 2004, 32 (5): 1792- 1797.
doi: 10.1093/nar/gkh340 |
28 |
ROZAS J , FERRER-MATA A , SÁNCHEZ-DELBARRIO J C , et al. DnaSP 6:DNA sequence polymorphism analysis of large data sets[J]. Mol Biol Evol, 2017, 34 (12): 3299- 3302.
doi: 10.1093/molbev/msx248 |
29 |
STAMATAKIS A . RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models[J]. Bioinformatics, 2006, 22 (21): 2688- 2690.
doi: 10.1093/bioinformatics/btl446 |
30 | GROENEVELD L F , LENSTRA J A , EDING H T , et al. Genetic diversity in farm animals——a review[J]. Anim Genet, 2010, 41 (1): 6- 31. |
31 | XIA X , HUANG G , WANG Z , et al. Mitogenome diversity and maternal origins of guangxi cattle breeds[J]. Animals (Basel), 2019, 10 (1): 19. |
32 |
DI LORENZO P , LANCIONI H , CECCOBELLI S , et al. Mitochondrial DNA variants of podolian cattle breeds testify for a dual maternal origin[J]. PLoS One, 2018, 13 (2): e0192567.
doi: 10.1371/journal.pone.0192567 |
33 |
DEMIR E , MORAVAČÍKOVÁ N , ARGUN KARSLI B , et al. Mitochondrial DNA diversity of D-loop region in three native Turkish cattle breeds[J]. Arch Anim Breed, 2023, 66 (1): 31- 40.
doi: 10.5194/aab-66-31-2023 |
34 |
XU L , WANG X , WANG H , et al. Maternal genetic diversity analysis of guanling cattle by mitochondrial genome sequencing[J]. Biochem Genet, 2024,
doi: 10.1007/s10528-024-10973-5 |
35 |
SARATH KUMAR T , SINGH S , GANGULY I , et al. Mitogenome diversity and evolution of Bos indicus cattle in India[J]. Gene, 2025, 936, 149096.
doi: 10.1016/j.gene.2024.149096 |
36 | 马志杰, 魏旭东, 盛欣, 等. 柴达木牛母系遗传多样性、分化及与我国北方黄牛品种间的遗传关系[J]. 中国畜牧杂志, 2024, 60 (2): 173- 182. |
MA Z J , WEI X D , SHENG X , et al. Genetic diversity and differentiation of maternal lines of Chaidamu cattle and their genetic relationship with cattle breeds in Northern China[J]. Chinese Journal of Animal Husbandry, 2024, 60 (2): 173- 182. | |
37 |
XIA X T , ACHILLI A , LENSTRA J A , et al. Mitochondrial genomes from modern and ancient Turano-Mongolian cattle reveal an ancient diversity of taurine maternal lineages in East Asia[J]. Heredity (Edinb), 2021, 126 (6): 1000- 1008.
doi: 10.1038/s41437-021-00428-7 |
38 | 李双, 夏小婷, 李付强, 等. 温岭高峰牛线粒体DNA全基因组遗传多样性分析[J]. 中国牛业科学, 2022, 48 (2): 28- 32. |
LI S , XIA X T , LI F Q , et al. Genome-wide genetic diversity analysis of mitochondrial DNA from Wenling Gaofeng cattle[J]. China Cattle Industry Science, 2022, 48 (2): 28- 32. | |
39 | XIA X , QU K , LI F , et al. Abundant genetic diversity of Yunling cattle based on mitochondrial genome[J]. Animals (Basel), 2019, 9 (9): 641. |
40 | 吕阳. 青藏高原黄牛基因组遗传多样性与高海拔环境适应性研究[D]. 杨凌: 西北农林科技大学, 2024. |
LV Y. Study on genomic genetic diversity and adaptation to high altitude environment of cattle on the Tibetan Plateau[D]. Yangling: Northwest A&F University, 2024. (in Chinese) | |
41 | OLIVIERI A , GANDINI F , ACHILLI A , et al. Mitogenomes from egyptian cattle breeds: New clues on the origin of haplogroup Q and the early spread of Bos taurus from the Near East[J]. PLoS One, 2015, 10 (10): e0141170. |
[1] | 王勤倩, 高振东, 陆颖, 马若珊, 邓卫东, 和晓明. 全基因组重测序在中国地方黄牛上的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2026-2037. |
[2] | 张俊星, 盛辉, 韩丽云, 张海亮, 张毅, 蔡蓓, 马云, 王雅春. 泌乳牛健康问题对奶牛重要经济性状的影响分析[J]. 畜牧兽医学报, 2025, 56(5): 2203-2218. |
[3] | 贾超莹, 张华伟, 罗修鑫, 刘青芸, 王湘如. A6型牛溶血性曼氏杆菌生物学特性研究及免疫原性评价[J]. 畜牧兽医学报, 2025, 56(5): 2312-2324. |
[4] | 乔亚蕊, 苗宇航, 黄倩, 周学章. 奶牛乳腺炎源粪肠球菌生物学特性研究[J]. 畜牧兽医学报, 2025, 56(5): 2325-2339. |
[5] | 赵莹, 王靖雷, 王萌, 王立斌, 张倩, 李志杰, 马鑫, 余四九, 潘阳阳. 乳源外泌体包载连翘酯苷A和山奈酚的制备、表征及体外抗炎效果评价[J]. 畜牧兽医学报, 2025, 56(5): 2481-2495. |
[6] | 熊铿, 范浩杰, 王杰, 赵善江, 朱庆利, 胡智辉, 罗昊澍, 朱化彬. 牛超数排卵重组促卵泡素研究进展及其应用[J]. 畜牧兽医学报, 2025, 56(5): 2047-2055. |
[7] | 赵文轩, 高雪, 余大为, 高晨, 李俊雅. 蒙山牛诱导多能干细胞的建立[J]. 畜牧兽医学报, 2025, 56(4): 1731-1743. |
[8] | 王昕昕, 刘小英, 王宜, 王芳, 赵晗, 杜志强, 杨彩侠. 急性热应激通过降低牛磺酸水平影响猪睾丸支持细胞的功能[J]. 畜牧兽医学报, 2025, 56(4): 1779-1790. |
[9] | 和晓兰, 赵艳坤, 孟璐, 刘慧敏, 高姣姣, 郑楠. 生牛乳中金黄色葡萄球菌异质性耐药及机制研究[J]. 畜牧兽医学报, 2025, 56(4): 1934-1946. |
[10] | 李晓彤, 王鹏宇, 方颖妍, 于鸿希, 张毅, 王雅春, 张元沛, 李彦芹, 姜力. 公牛精子耐冻性相关基因多态性位点的挖掘与功能验证[J]. 畜牧兽医学报, 2025, 56(4): 1981-1988. |
[11] | 张燕敏, 刘帅, 滕战伟, 谢红兵, 夏小静, 贺永惠, 常美楠. 功能性寡糖缓解犊牛腹泻的机理研究进展[J]. 畜牧兽医学报, 2025, 56(3): 979-994. |
[12] | 范曼婷, 黄若婷, 佘远航, 郭建超, 刘建营, 郭勇庆. 组学技术在奶牛乳腺炎发病机制和诊断上应用研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1076-1088. |
[13] | 王浩宇, 马克岩, 李讨讨, 栗登攀, 赵箐, 马友记. 基于简化基因组测序评估小骨山羊群体遗传多样性和群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1170-1179. |
[14] | 王子晨, 张娜, 张琬婷, 朱浩, 卢徐斌, 田雨, 葛继文, 王永宽, 陈玉海, 王雅春, 杨章平, 毛永江. 荷斯坦牛日反刍时间和产奶量的影响因素分析及遗传参数估计[J]. 畜牧兽医学报, 2025, 56(3): 1180-1188. |
[15] | 胡鑫, 游伟, 姜富贵, 成海建, 孙志刚, 宋恩亮. 基于全基因组重测序分析西门塔尔牛遗传多样性与群体结构[J]. 畜牧兽医学报, 2025, 56(3): 1189-1202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||