畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2182-2193.doi: 10.11843/j.issn.0366-6964.2025.05.018
侯中一1(), 王宝维1,2,*(
), 张名爱1,2, 孔敏1,2, 张晶3, 王秉翰4, 岳斌2, 鲁秀1, 凡文磊1,2,*(
)
收稿日期:
2024-09-24
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
王宝维,凡文磊
E-mail:1429133886@qq.com;wangbw1959@qq.com;fanwenlei@qau.edu.cn
作者简介:
侯中一(1999-),男,山东济南人,硕士生,主要从事动物遗传与育种方向的研究,E-mail: 1429133886@qq.com
基金资助:
HOU Zhongyi1(), WANG Baowei1,2,*(
), ZHANG Ming'ai1,2, KONG Min1,2, ZHANG Jing3, WANG Binghan4, YUE Bin2, LU Xiu1, FAN Wenlei1,2,*(
)
Received:
2024-09-24
Online:
2025-05-23
Published:
2025-05-27
Contact:
WANG Baowei, FAN Wenlei
E-mail:1429133886@qq.com;wangbw1959@qq.com;fanwenlei@qau.edu.cn
摘要:
为探究鹅肥肝形成的分子机制,利用4D-DIA定量蛋白质组学技术分析了3个不同填饲阶段的朗德鹅肝脏样品。本研究选取同批次体况相近的70日龄朗德鹅,分别在填饲前期(7 d)、填饲中期(16 d)、填饲后期(25 d)随机选取3只鹅屠宰,采集肝大叶肝尖组织样,用于4D-DIA定量蛋白组学分析,共3组,每组3个生物学重复。结果:1)在3个不同填饲阶段的朗德鹅肝脏共鉴定出5 208个蛋白。2)通过主成分分析发现,3个填饲阶段鹅肝脏蛋白谱存在明显差异,填饲前期与中期鉴定出449个差异蛋白,中期与后期鉴定出303个差异蛋白。3)通过代谢通路分析发现,鹅肥肝形成过程中发生显著变化的通路主要涉及类固醇激素生物合成、脂肪细胞因子信号通路、氨基糖和核苷酸糖代谢、半胱氨酸和蛋氨酸代谢、花生四烯酸代谢、氨基酸的生物合成等,并利用荧光定量PCR技术筛选了关键差异基因ADIPOQ、PASK。填饲导致鹅肝脏蛋白组谱发生显著变化,与类固醇激素生物合成、脂肪细胞因子信号通路等相关的蛋白可能参与到了鹅肥肝形成的分子调控。
中图分类号:
侯中一, 王宝维, 张名爱, 孔敏, 张晶, 王秉翰, 岳斌, 鲁秀, 凡文磊. 基于蛋白质组学解析鹅肥肝形成的脂质代谢调控机制[J]. 畜牧兽医学报, 2025, 56(5): 2182-2193.
HOU Zhongyi, WANG Baowei, ZHANG Ming'ai, KONG Min, ZHANG Jing, WANG Binghan, YUE Bin, LU Xiu, FAN Wenlei. The Regulation Mechanism of Lipid Metabolism in Foie Gras Formation Based on Proteomics Analysis[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2182-2193.
表 2
填饲前期与填饲中期上调、下调的前10差异蛋白"
组别 Group | 蛋白ID Protein ID | 基因名 Gene name | 蛋白功能描述 Protein function description | 倍数变化 Fold change | P |
下调 Down | A0A8B9DKQ2 | CLDN20 | Claudin | 0.50 | 0.00 |
A0A8B9DNV2 | CD207 | C-type lectin domain-containing protein | 0.51 | 0.00 | |
A0A8B9DCX9 | Romo1 | Reactive oxygen species modulator 1 | 0.66 | 0.00 | |
A0A8B9DBW8 | AMP1 | AMP1 protein | 0.15 | 0.00 | |
A0A8B9D2F8 | Rv1747 | ABC transporter domain-containing protein | 0.48 | 0.00 | |
A0A8B9DI93 | Cygb | Cytoglobin | 0.60 | 0.00 | |
A0A8B9DKF8 | PRUNE1 | Prune exopolyphosphatase 1 | 0.65 | 0.00 | |
A0A8B9DPQ1 | Siglec12 | Ig-like domain-containing protein | 0.60 | 0.00 | |
A0A8B9E544 | ESP1 | separase | 0.50 | 0.00 | |
A0A8B9E3Q7 | frvX | Aminopeptidase | 0.66 | 0.00 | |
上调 Up | A0A8B9E098 | MARCHF5 | S Mitochondrial fission regulator | 1.88 | 0.00 |
A0A8B9D9H9 | Txlng | Taxilin gamma | 1.57 | 0.00 | |
A0A8B9DSE6 | TMED10 | Transmembrane protein 263 | 2.27 | 0.00 | |
A0A8B9IND4 | PAFAH2 | Platelet-activating factor acetylhydrolase | 2.82 | 0.00 | |
A0A8B9D8G3 | LIAS | Lipoyl synthase | 1.73 | 0.00 | |
A0A8B9DZ79 | mid1ip1b | M1I1B protein | 2.30 | 0.00 | |
A0A8B9EDG7 | uppS | polycis-polyprenyl diphosphate synthase | 3.10 | 0.00 | |
A0A8B9D5N3 | UTP14A | U3 small nucleolar RNA-associated protein 14 homolog A | 1.70 | 0.00 | |
A0A8B9E2N7 | RB18B | RB18B protein | 2.09 | 0.00 | |
A0A8B9DEC2 | Cacybp | Calcyclin-binding protein | 1.80 | 0.00 |
表 3
填饲中期与填饲后期上调、下调的前10差异蛋白"
组别 Group | 蛋白ID Protein ID | 基因名 Gene name | 蛋白功能描述 Protein function description | 倍数变化 Fold change | P |
下调Down | A0A8B9EM53 | NADH: ubiquinone oxidoreductase core subunit V1 | 0.63 | 0.00 | |
A0A8B9E7E8 | SC5D | Sterol-C5-desaturase | 0.52 | 0.00 | |
A0A8B9ET89 | Msed_0406 | propionate--CoA ligase | 0.54 | 0.00 | |
A0A8B9INS7 | MT1H | Metallothionein | 0.17 | 0.00 | |
A0A8B9DKF2 | SEC61B | Protein transport protein Sec61 subunit beta | 0.60 | 0.00 | |
A0A8B9D493 | TMX3 | thioredoxin-disulfide reductase | 0.66 | 0.00 | |
A0A8B9EDT5 | SYNE3 | Spectrin repeat containing nuclear envelope family member 3 | 0.45 | 0.00 | |
A0A8B9EK56 | PFKFB1 | 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 1 | 0.62 | 0.00 | |
A0A8B9E4B6 | PASK | Protein kinase domain-containing protein | 0.66 | 0.00 | |
A0A8B9INT0 | TMEM41B | Transmembrane protein 177 | 0.35 | 0.00 | |
上调 Up | A0A8B9D7K1 | Plxnb2 | Plexin B2 | 1.59 | 0.00 |
A0A8B9D8Z5 | Tacc1 | Transforming acidic coiled-coil containing protein 2 | 2.05 | 0.00 | |
A0A8B9DGJ0 | PDLIM4 | PDZ and LIM domain 1 | 2.45 | 0.00 | |
A0A8B9DDN0 | Urah | 5-hydroxyisourate hydrolase | 4.93 | 0.00 | |
A0A8B9DRG6 | ADIPOQ | Adiponectin, C1Q and collagen domain containing | 1.53 | 0.00 | |
A8B9DB57 | CBX2 | Chromobox 1 | 2.66 | 0.00 | |
A0A8B9DEL4 | DEFB114 | Beta-defensin 2 | 4.55 | 0.00 | |
B2ZR74 | SSA1 | Heat shock protein 70 | 1.61 | 0.00 | |
A0A8B9DD15 | Cobl | Cordon-bleu WH2 repeat protein | 1.98 | 0.00 | |
A0A8B9DMG4 | ITSN1 | Intersectin 1 | 1.52 | 0.00 |
1 | 侯水生, 刘灵芝. 2022年水禽产业现状、未来发展趋势与建议[J]. 中国畜牧杂志, 2023, 59 (3): 274- 280. |
HOU S S , LIU L Z . Current status, future development trends, and suggestions for the water bird industry in 2022[J]. Chinese Journal of Animal Science, 2023, 59 (3): 274- 280. | |
2 |
KOZÁK J . Goose production and goose products[J]. World 's Poult Sci J, 2021, 77 (2): 403- 414.
doi: 10.1080/00439339.2021.1885002 |
3 | FAZIA M A D , SERVILLO G . Foie gras and liver regeneration: a fat dilemma[J]. Other, 2018, 2 (7): 144. |
4 | CIAULA A D , CALAMITA G , SHANMUGAM H , et al. Mitochondria matter: Systemic aspects of nonalcoholic fatty liver disease (NAFLD) and diagnostic assessment of liver function by stable isotope dynamic breath tests[J]. MDPI AG, 2021 (14): 77- 86. |
5 | 夏丽丽. 内质网应激、胰岛素抵抗与鹅肥肝形成的关系研究[D]. 扬州: 扬州大学, 2016. |
XIA L L. Study on the relationship between endoplasmic reticulum stress, insulin resistance and foie gras formation[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) | |
6 | 刘龙, 王倩, 许程, 等. 鹅肥肝形成中补体受体1基因的表达和调控研究[J]. 中国家禽, 2016, 38 (24): 6. |
LIU L , WANG Q , XU C , et al. Expression and regulation of complement receptor 1 gene in foie gras formation[J]. Chinese Poultry, 2016, 38 (24): 6. | |
7 | SUN X , ZHANG Y , XIE M . The role of peroxisome proliferator-activated receptor in the treatment of non-alcoholic fatty liver diseases[J]. Acta Pharm, 2017 (1): 96. |
8 |
POLYZOS S A , PERAKAKIS N , MANTZOROS C S . Fatty liver in lipodystrophy: A review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement[J]. Metabolism, 2019, 96, 66- 82.
doi: 10.1016/j.metabol.2019.05.001 |
9 | 黄宣, 尹兆正, 徐春晖, 等. 基于TMT技术的不同产蛋性能母鸡卵巢蛋白组学研究[J]. 中国畜牧杂志, 2024, 60 (5): 139- 146. |
HUANG X , YIN Z Z , XU C H , et al. Ovarian proteomics of hens with different laying performance based on TMT technology[J]. Chinese Journal of Animal Science, 2024, 60 (5): 139- 146. | |
10 | WANG L , CHENG B , LI H , et al. Proteomics analysis of preadipocytes between fat and lean broilers[J]. Br Poult Sci, 2024, 3 (1): 41. |
11 | 刘忠华. 鹅正常肝脏与肥肝差异表达蛋白质检测与分析[D]. 扬州: 扬州大学, 2008. |
LIU Z H. Detection and analysis of differential expression of protein in normal liver and foie gras of geese[D]. Yangzhou: Yangzhou University, 2008. (in Chinese) | |
12 |
PETER J , THILO K , MANFRED B , et al. Dietary protein-related changes in hepatic transcription correspond to modifications in hepatic protein expression in growing pigs[J]. J Nutr, 2004, 134 (1): 43- 47.
doi: 10.1093/jn/134.1.43 |
13 | 冯亚敏. 高胆固醇血症小鼠肝脏的差异表达蛋白[J]. 中国动脉硬化杂志, 2004, 12 (3): 279- 283. |
FENG Y M . Differential expression of proteins in the liver of hypercholesterolemic mice[J]. Chinese Journal of Arteriosclerosis, 2004, 12 (3): 279- 283. | |
14 | 马秋霞, 王宝维, 张名爱, 等. 基于广泛靶向代谢组学揭示鹅肥肝形成过程中代谢物动态变化规律[J]. 食品科学, 2024, 45 (1): 118- 124. |
MA Q X , WANG B W , ZHANG M A , et al. Study on dynamic changes of metabolites during foie gras formation based on broadly targeted metabolomics[J]. Food Science, 2024, 45 (1): 118- 124. | |
15 | 柳序, 郭松长, 刘耀文, 等. 鹅肝脏脂肪变性和鹅肥肝形成的分子保护机制研究进展[J]. 动物营养学报, 2018, 30 (7): 6. |
LIU X , GUO S C , LIU Y W , et al. Advances in molecular protective mechanisms of liver steatosis and foie gras formation in geese[J]. Chinese Journal of Animal Nutrition, 2018, 30 (7): 6. | |
16 | 徐衍, 饶慧瑛. 从非酒精性脂肪性肝病到代谢相关脂肪性肝病的变迁[J]. 肝脏, 2024, 29 (3): 255- 257. |
XU Y , RAO H Y . Transition from nonalcoholic fatty liver disease to metabolically related fatty liver disease[J]. Liver, 2024, 29 (3): 255- 257. | |
17 |
FU Y , LUO N , KLEIN R L , GARVEY W T . Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation[J]. J Lipid Res, 2005, 46, 1369- 1379.
doi: 10.1194/jlr.M400373-JLR200 |
18 |
KADOWAKI T , YAMAUCHI T . Adiponectin and adiponectin receptors[J]. Endocr Rev, 2005, 26, 439- 451.
doi: 10.1210/er.2005-0005 |
19 |
QI Y , TAKAHASHI N , HILEMAN S M , et al. Adiponectin acts in the brain to decrease body weight[J]. Nat Med, 2004, 10, 524- 529.
doi: 10.1038/nm1029 |
20 |
FRUEBIS J , TSAO T S , JAVORSCHI S , et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice[J]. Proc Natl Acad Sci USA, 2001, 98, 2005- 2010.
doi: 10.1073/pnas.98.4.2005 |
21 | CHEN L , LI W , FU Y , et al. Shugan jiangzhi decoction alleviates nonalcoholic fatty liver disease (NAFLD) via regulating AMPK/PPAR signaling pathway[J]. Letters Drug Design Discovery, 2024 (13): 21. |
22 | LIU S , LI C , HU X , et al. Molecular mechanisms of circRNA-miRNA-mRNA interactions in the regulation of goose liver development[J]. Animals, 2024, 14 (6): 89- 99. |
23 |
HERMIER D , ROUSSELOF PAILLEY D , PERESSON R , et al. Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis[J]. Biochim Biophys Acta, 1994, 1211 (1): 97- 106.
doi: 10.1016/0005-2760(94)90143-0 |
24 |
PAWLAK M , LEFEBVRE P , STAELS B . Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease[J]. J Hepatol, 2015, 62 (3): 720- 733.
doi: 10.1016/j.jhep.2014.10.039 |
25 | 陈剑明, 张声生, 李琳, 等. 虎杖苷治疗非酒精性脂肪肝的肝脏病理评价及对脂质代谢酶SERSP-1c和PPAR-a的调节作用[J]. 中华中医药学刊, 2015, 33 (7): 6. |
CHEN J M , ZHANG S S , LI L , et al. Liver pathological evaluation of polydatin in the treatment of non-alcoholic fatty liver and its regulatory effect on lipid metabolism enzymes SERSP-1c and PPAR-a[J]. Chinese Journal of Traditional Chinese Medicine, 2015, 33 (7): 6. | |
26 |
陈兴勇, 赵宁, 张燕, 等. 皖西白鹅育肥期肌肉脂肪酸组成及肝PPARα、FADS2和ME1基因表达规律的研究[J]. 畜牧兽医学报, 2017, 48 (10): 1912- 1919.
doi: 10.11843/j.issn.0366-6964.2017.10.014 |
CHEN X Y , ZHAO N , ZHANG Y , et al. Study on fatty acid composition of muscle and expression of PPARα, FADS2 and ME1 genes in liver of Wanxi White Geese during fattening period[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (10): 1912- 1919.
doi: 10.11843/j.issn.0366-6964.2017.10.014 |
|
27 |
MANDARD S , MULLER M , KERSTEN S . Peroxisome proliferator receptor α target genes[J]. Cell Mol Life Sci, 2004, 61 (4): 393- 416.
doi: 10.1007/s00018-003-3216-3 |
28 |
GEORRGIADI A , KERSTEN S . Mechanisms of gene regulation by fatty acids[J]. Adv Nutr, 2012, 3 (2): 127- 134.
doi: 10.3945/an.111.001602 |
29 | HONDA K , ANEYASUS T , SUGIMOTO H , et al. Role of peroxisome proliferator-activated receptor alpha in the expression of hepatic fatty acid oxidation-related genes in chickens[J]. Anim Sci, 2015, 87 (1): 61- 66. |
30 |
RAMIAH S K , MENG G Y . Physiological and pathophysiological aspects of peroxisome proliferator-activated receptor regulation by fatty acids in poultry species[J]. World Poult Sci J, 2016, 72 (3): 551- 562.
doi: 10.1017/S0043933916000490 |
31 |
TSUTSUMI T . Proline- and alanine-rich ste20-related kinase associates with F-actin and translocates from the cytosol to cytoskeleton upon cellular stresses[J]. J Biol Chem, 2000, 275 (13): 9157- 9162.
doi: 10.1074/jbc.275.13.9157 |
32 | XIAO M . Signal-regulated unmasking of nuclear localization motif in the PAS domain regulates the nuclear translocation of PASK[J]. J Mol Biol, 2024, 436 (3): 56- 63. |
33 |
HENRY J T . Ligand-binding PAS domains in a genomic, cellular, and structural context[J]. Annu Rev Microbiol, 2011, 65, 261- 286.
doi: 10.1146/annurev-micro-121809-151631 |
34 | PAPE J A . Per-Arnt-Sim kinase (PASK) deficiency increases cellular respiration on a standard diet and decreases liver triglyceride accumulation on a western high-fat high-sugar diet[J]. Nutrients, 2018, 10 (12): 102- 115. |
35 | 李佶桐. LncRNA--p3134通过调控PASK--PPARγ通路影响3T3--L1前体脂肪细胞分化及胰岛素敏感性[D]. 广州: 南方医科大学, 2024. |
LI J T. Lncrna-p3134 affects 3T3-L1 precursor adipocyte differentiation and insulin sensitivity by regulating Pask-PPARγ pathway[D]. Guangzhou: Southern Medical University, 2024. (in Chinese) | |
36 | 李聆嫦. 基于PI3K/AKT/mTOR信号通路探讨加味理中汤治疗非酒精性脂肪性肝炎的临床疗效及机制研究[D]. 南宁: 广西中医药大学, 2023. |
LI L C. To investigate the clinical efficacy and mechanism of Jiawei-Lizhong decoction in the treatment of non-alcoholic steatohepatitis based on PI3K/AKT/mTOR signaling pathway[D]. Nanning: Guangxi University of Traditional Chinese Medicine, 2023. (in Chinese) | |
37 | 李凤, 李茂微, 王雨杉. 非酒精性脂肪肝病的治疗模式和潜在疗法[J]. 临床肝胆病杂志, 2024, 40 (10): 2082- 2086. |
LI F , LI M W , WANG Y S . Treatment model and potential therapy of nonalcoholic fatty liver disease[J]. Journal of Clinical Hepatobiliary Diseases, 2024, 40 (10): 2082- 2086. | |
38 | 陈陶然, 杨文静, 董溶溶, 等. 脂联素检测方法的研究进展[J]. 标记免疫分析与临床, 2023, 30 (10): 1795- 1800. |
CHEN T R , YANG W J , DONG R R , et al. Research progress of adiponectin detection methods[J]. Journal of Labeled Immuno Analysis and Clinic, 2023, 30 (10): 1795- 1800. | |
39 |
ZHAO J N , PIKE B , HUANG J , et al. Effects of medium chain triglycerides on hepatic fatty acid oxidation in clofibrate-fed new born piglets[J]. Anim Nutrit, 2023, 12, 334- 344.
doi: 10.1016/j.aninu.2022.12.001 |
40 |
GENG T Y , ZHAO X , XA L L , et al. Supplementing dietary sugar promotes endoplasmic reticulum stress-independent insulin resistance and fatty liver in goose[J]. Biochem Biophys Res Commun, 2016, 476 (4): 665- 669.
doi: 10.1016/j.bbrc.2016.05.149 |
41 | OSMAN R H , LIU L , XIA L L , et al. Fads1 and 2 are promoted to meet instant need for long chain polyunsaturated fatty acids in goose fatty liver[J]. Mol Cellr Biochem, 2016, 418 (1): 103- 107. |
[1] | 杨巧丽, 李福岗, 闫国骏, 刘强, 郭刚, 王聪. 叶酸和钴胺素对围产期奶牛泌乳性能、养分消化和肝脂质含量的影响[J]. 畜牧兽医学报, 2024, 55(11): 5114-5123. |
[2] | 祝倩, 程雅婷, 李锐煊, 李宸健, 刘雅婷, 孔祥峰. 母猪添加益生菌和合生元对子代巴马香猪肌肉脂肪酸组成及相关基因表达的影响[J]. 畜牧兽医学报, 2023, 54(6): 2458-2467. |
[3] | 何文峰, 李琛, 常洪涛, 李隆熙, 陈静, 杨国庆, 刘慧敏. 抑制伪狂犬病病毒复制的宿主蛋白的筛选与鉴定[J]. 畜牧兽医学报, 2023, 54(3): 1177-1186. |
[4] | 李红, 李艳萍, 刘婷丽, 陈国梁, 王立群, 郭小腊, 骆学农. 多房棘球蚴感染对小鼠肝脂质代谢的影响[J]. 畜牧兽医学报, 2023, 54(1): 263-271. |
[5] | 郭玉龙, 职毅豪, 李欣妍, 董佳佳, 李转见, 田亚东, 李红, 刘小军. 产蛋前期和产蛋高峰期鸡全基因组甲基化差异及其对肝脏转录组影响的研究[J]. 畜牧兽医学报, 2022, 53(9): 2888-2899. |
[6] | 徐春林, 曹玉珠, 夏天, 贾其辉, 王丹丹, 郑航, 田亚东, 康相涛, 蒋瑞瑞, 刘小军, 李红. 鸡微粒体甘油三酯转运蛋白样基因生物学特性及表达调控[J]. 畜牧兽医学报, 2022, 53(9): 2900-2911. |
[7] | 张利环, 贾浩, 王燕飞, 张若男, 刘璇. 基于转录组测序研究健康三益菌对肉鸡脂质代谢的影响[J]. 畜牧兽医学报, 2022, 53(4): 1154-1164. |
[8] | 崔志洁, 姜惺伟, 吴登科, 雷新建, 曹阳春, 邓露, 姚军虎, 蔡传江. 过瘤胃烟酸和胆碱对围产期奶牛泌乳性能和肝脂质代谢的影响[J]. 畜牧兽医学报, 2022, 53(3): 802-812. |
[9] | 张卓炜, 艾强云, 何洋, 张辉, 李英, 郭剑英, 唐兆新. 低钙胁迫对胎猪脂质代谢的影响[J]. 畜牧兽医学报, 2022, 53(10): 3675-3684. |
[10] | 吉琳, 杨秋月, 方斐旻, 窦虹, 郁建锋, 徐璐, 顾志良. 鸡Apob基因组织表达与CRISPR/Cas9敲除系统的构建[J]. 畜牧兽医学报, 2021, 52(3): 630-640. |
[11] | 刘天义, 冯卉, Salsabeel Yousuf, 解领丽, 苗向阳. 多浪羊与小尾寒羊皮下脂肪组织转录组分析[J]. 畜牧兽医学报, 2021, 52(12): 3403-3412. |
[12] | 姚大为, 马静, 陈丽丽, 王添祯, 孙欢, 宋文芹, 马毅. 干扰PTEN基因对奶山羊乳腺上皮细胞脂质合成相关基因的转录及脂肪酸组成的影响[J]. 畜牧兽医学报, 2020, 51(4): 851-860. |
[13] | 赵畅, 张江, 白云龙, 孙书函, 宋玉锡, 夏成. 基于iTRAQ技术的卵巢静止奶牛血清差异蛋白分析[J]. 畜牧兽医学报, 2019, 50(5): 972-982. |
[14] | 罗华伦, 李万贵, 张依裕, 吴磊, 覃媛钰. 鸭LXRα基因过表达对原代肝细胞及PC3细胞脂质代谢的效应研究[J]. 畜牧兽医学报, 2019, 50(1): 52-60. |
[15] | 李嫒, 张秀秀, 黄万龙, 解领丽, 苗向阳. 大白猪和莱芜猪肌内脂肪组织circRNAs的鉴定与分析[J]. 畜牧兽医学报, 2018, 49(7): 1343-1353. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||