畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1981-1988.doi: 10.11843/j.issn.0366-6964.2025.04.044
李晓彤1(), 王鹏宇1(
), 方颖妍1(
), 于鸿希1, 张毅1, 王雅春1, 张元沛2, 李彦芹3, 姜力1,*(
)
收稿日期:
2024-10-15
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
姜力
E-mail:lixiaotong@cau.edu.cn;2022333020304@cau.edu.cn;ny18318118563@cau.edu.cn;lijiang@cau.edu.cn
作者简介:
李晓彤(2004-), 女, 山东德州人, 本科生, 主要从事分子遗传育种研究, E-mail: lixiaotong@cau.edu.cn李晓彤、王鹏宇和方颖妍为同等贡献作者
基金资助:
LI Xiaotong1(), WANG Pengyu1(
), FANG Yingyan1(
), YU Hongxi1, ZHANG Yi1, WANG Yachun1, ZHANG Yuanpei2, LI Yanqin3, JIANG Li1,*(
)
Received:
2024-10-15
Online:
2025-04-23
Published:
2025-04-28
Contact:
JIANG Li
E-mail:lixiaotong@cau.edu.cn;2022333020304@cau.edu.cn;ny18318118563@cau.edu.cn;lijiang@cau.edu.cn
摘要:
旨在挖掘影响公牛精子耐冻性的关键基因和分子标记并应用于奶牛的分子育种。本研究基于前期组学研究结果挖掘到ATP5F1A、DNASE2、LPO等11个与公牛精子耐冻性相关的重要候选基因,针对其外显子设计引物进行PCR混池测序检测遗传变异位点。随后采用飞行时间质谱方法在130头健康的公牛资源群体中对重要位点进行基因型分析和关联分析。其中,精子高耐冻组公牛55头,鲜精平均活力为0.68,冻后平均活力为0.42;精子低耐冻组公牛75头,鲜精平均活力为0.65,冻后平均活力为0.32。结果最终检测到14个重要SNPs位点,其中ATP5F1A基因外显子上的rs110909003 SNP(C/T)位点与公牛精子的耐冻性显著相关(P=0.009)。利用Western blot检测该位点不同基因型公牛精子中ATP5F1A蛋白的表达,结果显示与TT型个体相比,CC型个体精子中ATP5F1A蛋白表达量显著上升。本研究挖掘到与公牛精子耐冻性显著相关的基因ATP5F1A,以及位于该基因内的重要分子标记rs110909003,推测其可能通过影响线粒体的氧化磷酸化过程影响精子的耐冻性。研究结果为荷斯坦种公牛冻后精液品质性状分子选育提供了重要信息。
中图分类号:
李晓彤, 王鹏宇, 方颖妍, 于鸿希, 张毅, 王雅春, 张元沛, 李彦芹, 姜力. 公牛精子耐冻性相关基因多态性位点的挖掘与功能验证[J]. 畜牧兽医学报, 2025, 56(4): 1981-1988.
LI Xiaotong, WANG Pengyu, FANG Yingyan, YU Hongxi, ZHANG Yi, WANG Yachun, ZHANG Yuanpei, LI Yanqin, JIANG Li. Mining and Functional Verification of Gene Polymorphisms Loci Related to Bull Sperm Freezability[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1981-1988.
表 1
候选基因扩增的引物信息"
引物名称 Primer name | 引物序列(5′→3′) Primer sequence | 扩增区域/bp Amplification region | 退火温度/℃ Annealing temperature |
ATP5F1A-E-1-F | GCCAGTTCCGCTATAACCAT | chr24:45850514~45851138 | 56 |
ATP5F1A-E-1-R | GCCATCTCAAGACACCACGAA | ||
ATP5F1A-E-7-F | TGATGGATGGTGCTCATG | chr24:45842218~45842747 | 52 |
ATP5F1A-E-7-R | TTTCCATCGGTCCTATTT | ||
DNASE2-E-4-F | CCCCTACAGACTGAGTGTTC | chr7:12677669~12678118 | 60 |
DNASE2-E-4-R | ATGGCCCTTGACTACCTC | ||
DNASE2-E-2-F | TCCTTCCTGTCTTCCTCCAT | chr7:12677037~12677506 | 60 |
DNASE2-E-2-R | CAGGCAGGTCAGGAATCAG | ||
LPO-E-5-F | AGCGGCAACCCTCTGATT | chr19:9227370~9227883 | 59 |
LPO-E-5-R | CTGACCTGACTGTCCTCCC | ||
LPO-E-9-F | GTCAACCTTATTATCCCCATT | chr19:9234022~9234651 | 58 |
LPO-E-9-R | CTGACACCCCAAATCCAG | ||
LPO-E-11-F | TGGGAAGGAGAATTGGAC | chr19:9242716~9243351 | 54 |
LPO-E-11-R | ACCACTGTAGGGCACTTT | ||
CUTA-E-1-F | TGCAGATCCAGGTGTTGA | chr23:7593114~7593706 | 54 |
CUTA-E-1-R | GCATCCAAAACAGCGACA | ||
ITGA6-E-1-F | GAACGGCAACCACAACTCAAGC | chr2:24178781~24179629 | 60 |
ITGA6-E-1-R | GGCTGAACTGGGGAAGGC | ||
ITGA6-E-7-F | TTACTGTTGATGTTCTCCTTTG | chr2:24128249~24129073 | 54 |
ITGA6-E-7-R | AAAACAAGCAGCTCATTG | ||
ACSL4-E-2-F | TTTGTTATGGTGATTGAA | chrX:58099374~58100231 | 57 |
ACSL4-E-2-R | TTTCTACTCTATTTGTCTG | ||
ACSL4-E-9-F | ACCCCTCTACTTGCTCTT | chrX:58051804~58052313 | 54 |
ACSL4-E-9-R | GGTCCTCTGCTTGCTATA | ||
ACSL4-E-17-F | ACATCGGAAACCATTTTA | chrX:58034060~58034806 | 59 |
ACSL4-E-17-R | GCACAAATATCAGTCCCT |
表 2
SNPs位点信息"
基因名 Gene name | SNP ID SNP_ID | 位置 Location | 等位基因 Allele | 突变类型 Mutation type |
ATP5F1A | rs382264973 | 24:45850779 | G/C | synonymous variant |
rs110909003 | 24:45842378 | C/T | missense variant | |
DNASE2 | rs42312321 | 7:12677843 | T/C | missense variant |
rs380569688 | 7:12677265 | T/G | splice donor 5th base variant | |
LPO | rs136605698 | 19:9227664 | A/C | synonymous variant |
rs135860093 | 19:9234370 | G/T | missense variant | |
rs378135599 | 19:9242904 | C/T | synonymous variant | |
CUTA | rs136744810 | 23:7593210 | A/C | 5′ UTR variant |
ITGA6 | rs451676306 | 2:24179226 | G/T | 5′ UTR variant |
rs209381216 | 2:24128761 | T/C | missense variant | |
rs133912789 | 2:24128525 | A/C | synonymous variant | |
ACSL4 | rs3423605874 | X: 58099789 | A/G | |
rs384883555 | X: 58052098 | A/G | synonymous variant | |
rs135718815 | X: 58034271 | A/G |
表 3
χ2检验结果"
SNP_ID | 等位基因 Allele | 最小等位基因频率 Minor allele frequency (MAF) | 卡方值 χ2 | P值 P value | |
LF | HF | ||||
rs382264973 | G/C | 0.47(C) | 0.49(G) | 0.191 | 0.662 |
rs110909003 | C/T | 0.14(C) | 0.31(C) | 6.731 | 0.009* |
rs42312321 | T/C | 0.47(C) | 0.40(C) | 0.618 | 0.432 |
rs380569688 | T/G | 0.15(G) | 0.13(G) | 0.086 | 0.769 |
rs136605698 | A/C | 0.49(A) | 0.47(C) | 0.278 | 0.598 |
rs135860093 | G/T | 0.15(T) | 0.18(T) | 0.104 | 0.747 |
rs378135599 | C/T | 0.22(T) | 0.23(T) | 0.003 | 0.955 |
rs136744810 | A/C | 0.42(A) | 0.33(A) | 1.275 | 0.259 |
rs209381216 | T/C | 0.31(C) | 0.30(C) | 0.008 | 0.927 |
rs133912789 | A/C | 0.42(C) | 0.36(C) | 0.606 | 0.436 |
rs384883555 | A/G | 0.10(G) | 0.15(G) | 1.025 | 0.311 |
rs135718815 | A/G | 0.24(A) | 0.28(A) | 0.243 | 0.622 |
1 |
DRUET T , FRITZ S , SELLEM E , et al. Estimation of genetic parameters and genome scan for 15 semen characteristics traits of Holstein bulls[J]. J Anim Breed Genet, 2009, 126 (4): 269- 277.
doi: 10.1111/j.1439-0388.2008.00788.x |
2 | 李建斌. 中国荷斯坦种公牛精液生产性状遗传参数估计与候选基因分析[D]. 北京: 中国农业大学, 2011. |
LI J B. Estimation of genetic parameters and studies on candidate genes for semen production traits in Chinese Holstein bull[D]. Beijing: China Agricultural University, 2011. (in Chinese) | |
3 |
赵俊金, 王振云, 金穗华. 中国牛冷冻精液质量性状的评估与分析[J]. 中国农学通报, 2019, 35 (18): 160- 164.
doi: 10.11924/j.issn.1000-6850.casb18030008 |
ZHAO J J , WANG Z Y , JIN S H . Bovine frozen semen in china: evaluation and analysis of the quality traits[J]. Chinese Agricultural Science Bulletin, 2019, 35 (18): 160- 164.
doi: 10.11924/j.issn.1000-6850.casb18030008 |
|
4 |
SABES-ALSINA M , JOHANNISSON A , LUNDEHEIM N , et al. Effects of season on bull sperm quality in thawed samples in northern Spain[J]. Vet Rec, 2017, 180 (10): 251.
doi: 10.1136/vr.103897 |
5 | UGUR M R , DINH T , HITIT M , et al. Amino acids of seminal plasma associated with freezability of bull sperm[J]. Front Cell Dev Biol, 2019, 7, 347. |
6 | KAMINSKI S , HERING D M , KORDAN W , et al. Missense mutation within cystic fibrosis transmembrane conductance regulator (CFTR) gene is associated with selected parameters of the frozen-thawed sperm in Holstein-Friesian bulls[J]. Pol J Vet Sci, 2019, 22 (2): 221- 225. |
7 |
MANKOWSKA A , BRYM P , PAUKSZTO L , et al. Gene polymorphisms in boar spermatozoa and their associations with post-thaw semen quality[J]. Int J Mol Sci, 2020, 21 (5): 1902.
doi: 10.3390/ijms21051902 |
8 |
FRASER L , BRYM P , PAREEK C S , et al. Transcriptome analysis of boar spermatozoa with different freezability using RNA-Seq[J]. Theriogenology, 2020, 142, 400- 413.
doi: 10.1016/j.theriogenology.2019.11.001 |
9 | LONGOBARDI V , KOSIOR M A , PAGANO N , et al. Changes in bull semen metabolome in relation to cryopreservation and fertility[J]. Animals (Basel), 2020, 10 (6): 1065. |
10 |
RYU D Y , SONG W H , PANG W K , et al. Freezability biomarkers in bull epididymal spermatozoa[J]. Sci Rep, 2019, 9 (1): 12797.
doi: 10.1038/s41598-019-49378-5 |
11 |
GOMES F P , PARK R , VIANA A G , et al. Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability[J]. Sci Rep, 2020, 10 (1): 14661.
doi: 10.1038/s41598-020-71015-9 |
12 |
HUI Y , LENG J , JIN D , et al. BRG1 promotes liver cancer cell proliferation and metastasis by enhancing mitochondrial function and ATP5A1 synthesis through TOMM40[J]. Cancer Biol Ther, 2024, 25 (1): 2375440.
doi: 10.1080/15384047.2024.2375440 |
13 | OKTANELLA Y , MUSTOFA I , AN-HARU F , et al. Conserving goat sperm post-thawed gene expression and cellular characteristics using the antioxidant coenzyme Q10 supplementation[J]. Vet World, 2024, 17 (7): 1637- 1647. |
14 |
YOU W , LIU S , JI J , et al. Growth arrest and DNA damage-inducible alpha regulates muscle repair and fat infiltration through ATP synthase F1 subunit alpha[J]. J Cachexia Sarcopenia Muscle, 2023, 14 (1): 326- 341.
doi: 10.1002/jcsm.13134 |
15 |
GHANEM N , NASR N H , ABU E N , et al. Molecular and physiochemical evaluation of buck semen cryopreserved with antioxidants[J]. Reprod Domest Anim, 2023, 58 (6): 813- 822.
doi: 10.1111/rda.14354 |
16 |
PEI H , QU J , CHEN J , et al. S100A9 as a key myocardial injury factor interacting with ATP5 exacerbates mitochondrial dysfunction and oxidative stress in sepsis-induced cardiomyopathy[J]. J Inflamm Res, 2024, 17, 4483- 4503.
doi: 10.2147/JIR.S457340 |
17 |
HOCK D H , RELJIC B , ANG C , et al. HIGD2A is required for assembly of the COX3 module of human mitochondrial complex Ⅳ[J]. Mol Cell Proteomics, 2020, 19 (7): 1145- 1160.
doi: 10.1074/mcp.RA120.002076 |
18 |
曹晋康, 张纯, 王佳瑶, 等. 中国荷斯坦公牛不同耐冻性精子的蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55 (3): 1052- 1061.
doi: 10.11843/j.issn.0366-6964.2024.03.018 |
CAO J K , ZHANG C , WANG J Y , et al. Proteomic analysis of sperm with different freezability in Chinese Holstein bulls[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (3): 1052- 1061.
doi: 10.11843/j.issn.0366-6964.2024.03.018 |
|
19 |
HERTHNEK D , NIELSEN S S , LINDBERG A , et al. A robust method for bacterial lysis and DNA purification to be used with real-time PCR for detection of Mycobacterium avium subsp. paratuberculosis in milk[J]. J Microbiol Methods, 2008, 75 (2): 335- 340.
doi: 10.1016/j.mimet.2008.07.009 |
20 |
MCBRIDE H M , NEUSPIEL M , WASIAK S . Mitochondria: more than just a powerhouse[J]. Curr Biol, 2006, 16 (14): R551- R560.
doi: 10.1016/j.cub.2006.06.054 |
21 |
GREEN D R . Apoptotic pathways: the roads to ruin[J]. Cell, 1998, 94 (6): 695- 698.
doi: 10.1016/S0092-8674(00)81728-6 |
22 |
ZAMZAMI N , SUSIN S A , MARCHETTI P , et al. Mitochondrial control of nuclear apoptosis[J]. J Exp Med, 1996, 183 (4): 1533- 1544.
doi: 10.1084/jem.183.4.1533 |
23 |
LINES M A , CUILLERIER A , CHAKRABORTY P , et al. A recurrent de novo ATP5F1A substitution associated with neonatal complex Ⅴ deficiency[J]. Eur J Hum Genet, 2021, 29 (11): 1719- 1724.
doi: 10.1038/s41431-021-00956-0 |
24 |
GANAPATHI M , FRIOCOURT G , GUEGUEN N , et al. A homozygous splice variant in ATP5PO, disrupts mitochondrial complex Ⅴ function and causes Leigh syndrome in two unrelated families[J]. J Inherit Metab Dis, 2022, 45 (5): 996- 1012.
doi: 10.1002/jimd.12526 |
25 |
LAI Y , ZHANG Y , ZHOU S , et al. Structure of the human ATP synthase[J]. Mol Cell, 2023, 83 (12): 2137- 2147.
doi: 10.1016/j.molcel.2023.04.029 |
26 |
TATSUTA T , LANGER T . Quality control of mitochondria: protection against neurodegeneration and ageing[J]. EMBO J, 2008, 27 (2): 306- 314.
doi: 10.1038/sj.emboj.7601972 |
27 | 张建瑞. 冷冻对人精子核DNA损伤、凋亡、线粒体膜电位的影响[D]. 济南: 山东大学, 2010. |
ZHANG J R. The effect of cryopreservation on DNA intergrity, apoptosis and mitochondrial membranf potenntial of human sperm[D]. Jinan: Shandong University, 2010. (in Chinese) | |
28 |
HUNGERFORD A J , BAKOS H W , AITKEN R J . Addition of vitamin C mitigates the loss of antioxidant capacity, vitality and DNA integrity in cryopreserved human semen samples[J]. Antioxidants (Basel), 2024, 13 (2): 247.
doi: 10.3390/antiox13020247 |
29 |
SUN X , LIU S , CAI J , et al. Mitochondrial methionyl-tRNA formyltransferase deficiency alleviates metaflammation by modulating mitochondrial activity in mice[J]. Int J Mol Sci, 2023, 24 (6): 5999.
doi: 10.3390/ijms24065999 |
30 |
王建东, 张红, 刘湧. 线粒体自噬分子机制的研究进展[J]. 实用医学杂志, 2011, 27 (17): 3243- 3245.
doi: 10.3969/j.issn.1006-5725.2011.17.064 |
WANG J D , ZHANG H , LIU Y . Advances in molecular mechanisms of mitochondrial autophagy[J]. The Journal of Practical Medicine, 2011, 27 (17): 3243- 3245.
doi: 10.3969/j.issn.1006-5725.2011.17.064 |
|
31 |
CHOONG C J , OKUNO T , IKENAKA K , et al. Alternative mitochondrial quality control mediated by extracellular release[J]. Autophagy, 2021, 17 (10): 2962- 2974.
doi: 10.1080/15548627.2020.1848130 |
32 | ZHU X , TAO F , ZHANG L , et al. Astragaloside Ⅳ protects detrusor from partial bladder outlet obstruction-induced oxidative stress by activating mitophagy through AMPK-ULK1 pathway[J]. Oxid Med Cell Longev, 2022, 2022, 5757367. |
33 |
LI G , XU Y , LI Y , et al. Qiangjing tablets ameliorate asthenozoospermia via mitochondrial ubiquitination and mitophagy mediated by LKB1/AMPK/ULK1 signaling[J]. Pharm Biol, 2023, 61 (1): 271- 280.
doi: 10.1080/13880209.2023.2168021 |
34 |
YAN C , GONG L , CHEN L , et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis[J]. Autophagy, 2020, 16 (3): 419- 434.
doi: 10.1080/15548627.2019.1628520 |
35 | 王凯立, 高凯, 杨涛, 等. 特发性弱精子症精子前向运动率与DNA碎片指数、高活性氧率及高线粒体膜电位率的相关性分析[J]. 临床检验杂志, 2024, 42 (6): 421- 424. |
WANG K L , GAO K , YANG T , et al. Correlation analysis between sperm progressive motility and sperm DNA fragments, reactive oxygen species and mitochondri-al membrane potential levels in patients with idiopathic asthenozoospermia[J]. Chinese Journal of Clinical Laboratory Science, 2024, 42 (6): 421- 424. | |
36 |
WANG H , CHENG C , DING J , et al. Trifluoperazine effect on human sperm: The accumulation of reactive oxygen species and the decrease in the mitochondrial membrane potential[J]. Reprod Toxicol, 2024, 130, 108730.
doi: 10.1016/j.reprotox.2024.108730 |
37 |
SANTIANI A , JUÁREZ J , ALLAUCA P , et al. Cryopreservation effect on sperm viability, mitochondrial membrane potential, acrosome integrity and sperm capacitation of alpaca spermatozoa detected by imaging flow cytometry[J]. Reprod Domest Anim, 2023, 58 (4): 560- 563.
doi: 10.1111/rda.14318 |
38 |
CHOUHAN S , SAWANT M , WEIMHOLT C , et al. TNK2/ACK1-mediated phosphorylation of ATP5F1A (ATP synthase F1 subunit alpha) selectively augments survival of prostate cancer while engendering mitochondrial vulnerability[J]. Autophagy, 2023, 19 (3): 1000- 1025.
doi: 10.1080/15548627.2022.2103961 |
39 |
SHARMA R K , CHAFIK A , BERTOLIN G . Aurora kinase A/AURKA functionally interacts with the mitochondrial ATP synthase to regulate energy metabolism and cell death[J]. Cell Death Discov, 2023, 9 (1): 203.
doi: 10.1038/s41420-023-01501-2 |
40 |
BARAN A A , SILVERMAN K A , ZESKAND J , et al. The modifier of Min 2 (Mom2) locus: embryonic lethality of a mutation in the Atp5a1 gene suggests a novel mechanism of polyp suppression[J]. Genome Res, 2007, 17 (5): 566- 576.
doi: 10.1101/gr.6089707 |
41 | EPPIG J T , BLAKE J A , BULT C J , et al. The mouse genome database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse[J]. Nucleic Acids Res, 2012, 40 (Database issue): D881- D886. |
[1] | 王子晨, 张娜, 张琬婷, 朱浩, 卢徐斌, 田雨, 葛继文, 王永宽, 陈玉海, 王雅春, 杨章平, 毛永江. 荷斯坦牛日反刍时间和产奶量的影响因素分析及遗传参数估计[J]. 畜牧兽医学报, 2025, 56(3): 1180-1188. |
[2] | 郭茂川, 何冉. 疥螨功能基因及其应用的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 492-500. |
[3] | 龙怡舟, 娄文琦, 黄上真, 师睿, 陈功, 李斌, 次桑卓玛, 徐青, 王雅春. 基于血液代谢组筛选奶牛血氧饱和度相关代谢物及通路[J]. 畜牧兽医学报, 2025, 56(2): 621-632. |
[4] | 李远方, 吴冉, 李帅浩, 魏千然, 王亚东, 王丹丹, 李智, 李国喜, 刘翘铭. G3BP1基因在鸡肌内前脂肪细胞增殖与分化中的作用及其分子标记鉴定[J]. 畜牧兽医学报, 2025, 56(1): 159-167. |
[5] | 牛佳佳, 徐丹, 刘洋, 赵小玲. 鸡芦花羽性状遗传调控机制研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1883-1892. |
[6] | 陈丽丽, 赵康, 夏敏, 芦娜, 马毅. 不同出生季节对天津地区荷斯坦牛泌乳性能的影响[J]. 畜牧兽医学报, 2024, 55(5): 1970-1977. |
[7] | 陈虹宇, 魏雅婷, 李若玺, 高留涛, 刘深贺. 动物性别控制技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1370-1380. |
[8] | 姜丽君, 宗云鹤, 李云雷, 陈继兰, 耿照玉, 孙研研, 金四华. 抗氧化剂在家禽精液储存中的应用研究进展[J]. 畜牧兽医学报, 2024, 55(3): 913-923. |
[9] | 夏淑雯, 陈坤琳, 沈阳阳, 安振江, 赵芳, 丁强, 仲跻峰, 林志平, 王慧利. 江苏地区荷斯坦成母牛长寿性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(3): 1030-1039. |
[10] | 曹晋康, 张纯, 王佳瑶, 李晓彤, 王鹏宇, 方颖妍, 张昱, 丁宁, 姜力. 中国荷斯坦公牛不同耐冻性精子的蛋白质组学分析[J]. 畜牧兽医学报, 2024, 55(3): 1052-1061. |
[11] | 高龙, 常心怡, 李程, 赵晓亚, 李汶洁, 范浩谦, 马静云. 表达外源基因SPAM1重组CAV-2溶瘤病毒的构建与拯救[J]. 畜牧兽医学报, 2024, 55(3): 1228-1237. |
[12] | 王娜娜, 李颀菡, 马媛, 金昊延, 胡亚美, 马云, 张令锴. TLR7和TLR8在家畜性控技术中的研究进展[J]. 畜牧兽医学报, 2024, 55(2): 427-437. |
[13] | 翁雅娟, 李蓓, 芒来, 薛嘉宁, 特日格乐, 宋代玲, 王国庆, 蔺雅楠. 剪接因子hnRNPF对蒙古马精子生成的影响[J]. 畜牧兽医学报, 2024, 55(2): 598-606. |
[14] | 张淼, 裴芬, 鞠林, 赵秀新, 杨健, 薛光辉, 徐千雯, 刘燕, 张元沛, 蔡高占, 高运东, 俞英, 王晓, 李建斌. 头胎荷斯坦牛乳尿素氮及其与产奶性状和体细胞评分的遗传分析[J]. 畜牧兽医学报, 2024, 55(12): 5527-5537. |
[15] | 闵祥玉, 卫佳丽, 许彪, 刘汇涛, 郑军军, 王桂武. 梅花鹿鹿茸全长转录组测序及鹿茸产量相关基因的挖掘[J]. 畜牧兽医学报, 2024, 55(12): 5549-5566. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||