畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (5): 2312-2324.doi: 10.11843/j.issn.0366-6964.2025.05.029
贾超莹1(), 张华伟2, 罗修鑫2, 刘青芸1, 王湘如1,*(
)
收稿日期:
2024-06-24
出版日期:
2025-05-23
发布日期:
2025-05-27
通讯作者:
王湘如
E-mail:13752871611@163.com;wangxr228@mail.hzau.edu.cn
作者简介:
贾超莹(1995-),女,新疆乌鲁木齐人,博士生,主要从事动物细菌感染与疫苗研究,E-mail:13752871611@163.com
基金资助:
JIA Chaoying1(), ZHANG Huawei2, LUO Xiuxin2, LIU Qingyun1, WANG Xiangru1,*(
)
Received:
2024-06-24
Online:
2025-05-23
Published:
2025-05-27
Contact:
WANG Xiangru
E-mail:13752871611@163.com;wangxr228@mail.hzau.edu.cn
摘要:
牛溶血性曼氏杆菌(Mannheimia haemolytica,Mh)是引起牛呼吸道疾病(bovine respiratory disease,BRD)的最主要病原之一,严重影响牛群的健康养殖及食品安全。本研究采集了伴有发热、流鼻涕等呼吸道症状的犊牛鼻拭子进行细菌分离培养,并对分离株进行血清型鉴定、16S rRNA测序分析和PCR分型,测试了分离菌株对15种抗生素的耐药表型;同时通过小鼠死亡率以及临床剖检结果对小鼠作为Mh替代动物感染模型的可能性进行评估,构建小鼠细菌感染模型,并评估了分离株的致病性与免疫原性。结果显示:分离株纯化后经鉴定为A6型牛溶血性曼氏杆菌,将其命名为KQ-Mh-1。该菌株对阿米卡星、美洛西林、庆大霉素、链霉素、阿莫西林和磺胺异恶唑等多种药物耐药,对头孢噻肟、诺氟沙星、头孢哌酮、环丙沙星、多黏菌素、新霉素和多西环素表现出较高的敏感性。分离株KQ-Mh-1对BALB/c小鼠的半数致死量(LD50)为7.29×109 CFU ·mL-1,感染死亡小鼠均表现为肺脏、脾脏严重出血。将KQ-Mh-1制备成不同抗原含量的灭活疫苗进行其免疫原性评估,其中高抗原含量(2.5×1010 CFU ·mL-1)的灭活疫苗免疫小鼠后对于A6型溶血性曼氏杆菌的攻毒具有70%的保护率。本研究成功分离出一株可导致牛BRD的Mh菌株,并对其生物学特性、致病性和免疫原性进行探究,为牛BRD疫苗的研发提供了良好的疫苗候选菌株。
中图分类号:
贾超莹, 张华伟, 罗修鑫, 刘青芸, 王湘如. A6型牛溶血性曼氏杆菌生物学特性研究及免疫原性评价[J]. 畜牧兽医学报, 2025, 56(5): 2312-2324.
JIA Chaoying, ZHANG Huawei, LUO Xiuxin, LIU Qingyun, WANG Xiangru. Establishment of Mice Model Infected by Bovine Mannheimia haemolytica and the Immunogenicity of Inactivated Vaccine[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2312-2324.
表 2
分离株KQ-Mh-1药敏试验结果"
抗生素 Antibiotic | 含量/(μg·片-1) Content | 判定标准 Standard of criterion | 抑菌圈直径/mm Diameter of inhibition zone | 判定 Judgement | ||
耐药 | 中介 | 敏感 | ||||
头孢噻肟 Cefotaxime | 30 | ≤25 | >25~<33 | ≥33 | 35 | 敏感 |
诺氟沙星 Norfloxacin | 10 | ≤15 | >15~<21 | ≥21 | 22 | 敏感 |
头孢哌酮 Cefoperazone | 75 | ≤12 | >12~<17 | ≥17 | 21 | 敏感 |
左氧氟沙星 Levofloxacin | 5 | ≤19 | >19~<26 | ≥26 | 23 | 中介 |
阿米卡星 Amikacin | 30 | ≤19 | >19~<26 | ≥26 | 11 | 耐药 |
美洛西林 Mezlocillin | 75 | ≤17 | >17~<21 | ≥21 | 0 | 耐药 |
妥布霉素 Tobramycin | 10 | ≤12 | >12~<17 | ≥17 | 14 | 中介 |
庆大霉素 Gentamycin | 10 | ≤19 | >19~<26 | ≥26 | 12 | 耐药 |
环丙沙星 Ciprofloxacin | 5 | ≤15 | >15~<21 | ≥21 | 22 | 敏感 |
多黏菌素 Polymyxin | 300 | ≤13 | >13~<19 | ≥19 | 20 | 敏感 |
新霉素 Neomycin | 30 | ≤12 | >12~<17 | ≥17 | 19 | 敏感 |
链霉素 Streptomycin | 10 | ≤12 | >12~<17 | ≥20 | 0 | 耐药 |
多西环素 Doxycycline | 30 | ≤18 | >18~<24 | ≥24 | 26 | 敏感 |
阿莫西林 Amoxicillin | 20 | ≤13 | >13~<21 | ≥21 | 0 | 耐药 |
磺胺异恶唑 Sulfisoxazole | 250 | ≤15 | >15~<23 | ≥23 | 0 | 耐药 |
1 |
CROUCHC F,LAFLEURR,RAMAGEC,et al.Cross protection of a Mannheimia haemolytica A1 Lkt-/Pasteurella multocida ΔhyaE bovine respiratory disease vaccine against experimental challenge with Mannheimia haemolytica A6 in calves[J].Vaccine,2012,30(13):2320-2328.
doi: 10.1016/j.vaccine.2012.01.063 |
2 |
CHAIJ M,CAPIKS F,KEGLEYB,et al.Bovine respiratory microbiota of feedlot cattle and its association with disease[J].Vet Res,2022,53(1):4.
doi: 10.1186/s13567-021-01020-x |
3 |
VALERIS-CHACINR,POWLEDGES,MCATEET,et al.Mycoplasma bovis is associated with Mannheimia haemolytica during acute bovine respiratory disease in feedlot cattle[J].Front Microbiol,2022,13,946792.
doi: 10.3389/fmicb.2022.946792 |
4 |
CONFERA W,AYALEWS.Mannheimia haemolytica in bovine respiratory disease: immunogens, potential immunogens, and vaccines[J].Anim Health Res Rev,2018,19(2):79-99.
doi: 10.1017/S1466252318000142 |
5 |
RICEJ A,CARRASCO-MEDINAL,HODGINSD C,et al.Mannheimia haemolytica and bovine respiratory disease[J].Anim Health Res Rev,2007,8(2):117-128.
doi: 10.1017/S1466252307001375 |
6 |
MASONC,ERRINGTONJ,FOSTERG,et al.Mannheimia haemolytica serovars associated with respiratory disease in cattle in Great Britain[J].BMC Vet Res,2022,18(1):5.
doi: 10.1186/s12917-021-03121-3 |
7 | 贾开文,操义恒,王子杰,等.新疆牛源溶血性曼氏杆菌和多杀性巴氏杆菌的分离鉴定及耐药性和毒力分析[J].中国预防兽医学报,2023,45(2):201-206. |
JIAK W,CAOY H,WANGZ J,et al.Isolation, identification, drug resistance and virulence analysis of Mannheimia haemolytica and Pasteurella multocida from a cattle farm in Xinjiang[J].Chinese Journal of Preventive Veterinary Medicine,2023,45(2):201-206. | |
8 |
MCGILLJ L,SACCOR E.The immunology of bovine respiratory disease: recent advancements[J].Vet Clin North Am: Food Anim Pract,2020,36(2):333-348.
doi: 10.1016/j.cvfa.2020.03.002 |
9 |
TUCCIP,ESTEVEZV,BECCOL,et al.Identification of Leukotoxin and other vaccine candidate proteins in a Mannheimia haemolytica commercial antigen[J].Heliyon,2016,2(9):e00158.
doi: 10.1016/j.heliyon.2016.e00158 |
10 | 谢艺萌,刘珊珊,苏思雨,等.牛溶血性曼氏杆菌对BT细胞炎症因子及其TLR4/NF-κB信号通路影响的研究[J].中国预防兽医学报,2023,45(10):1061-1065. |
XIEY M,LIUS S,SUS Y,et al.Effects of bovine Mannheimia hemolytica on cytokines and its TLR4/NF-κB signaling pathway in BT cells[J].Chinese Journal of Preventive Veterinary Medicine,2023,45(10):1061-1065. | |
11 |
FIGUEROA-VALENZUELAC,MONTES-GARCÍAJ F,VAZQUEZ-CRUZC,et al.Mannheimia haemolytica OmpH binds fibrinogen and fibronectin and participates in biofilm formation[J].Microb Pathog,2022,172,105788.
doi: 10.1016/j.micpath.2022.105788 |
12 |
RAMÍREZ-RICOG,MARTINEZ-CASTILLOM,RUIZ-MAZÓNL,et al.Identification, biochemical characterization, and in vivo detection of a Zn-Metalloprotease with collagenase activity from Mannheimia haemolytica A2[J].Int J Mol Sci,2024,25(2):1289.
doi: 10.3390/ijms25021289 |
13 |
MENGHWARH,TATUMF M,BRIGGSR E,et al.Enhanced phagocytosis and complement-mediated killing of Mannheimia haemolytica serotype 1 following in-frame CMP-sialic acid synthetase (neuA) gene deletion[J].Microbiol Spectr,2023,11(6):e0294423.
doi: 10.1128/spectrum.02944-23 |
14 |
AMATS,TIMSITE,BAINESD,et al.Development of bacterial therapeutics against the bovine respiratory pathogen Mannheimia haemolytica[J].Appl Environ Microb,2019,85(21):e0135919.
doi: 10.1128/AEM.01359-19 |
15 |
CONFERA W,AYALEWS,MONTELONGOM,et al.Immunity of cattle following vaccination with a Mannheimia haemolytica chimeric PlpE-LKT (SAC89) protein[J].Vaccine,2009,27(11):1771-1776.
doi: 10.1016/j.vaccine.2008.09.028 |
16 |
AYALEWS,SHRESTHAB,MONTELONGOM,et al.Identification and immunogenicity of Mannheimia haemolytica S1 outer membrane lipoprotein PlpF[J].Vaccine,2011,29(47):8712-8718.
doi: 10.1016/j.vaccine.2011.08.074 |
17 |
UDDINM S,KALDISA,MENASSAR,et al.Mucosal immunization with spore-based vaccines against Mannheimia haemolytica enhances antigen-specific immunity[J].Vaccines,2024,12(4):375.
doi: 10.3390/vaccines12040375 |
18 |
KALDISA,UDDINM S,GULUARTEJ O,et al.Development of a plant-based oral vaccine candidate against the bovine respiratory pathogen Mannheimia haemolytica[J].Front Plant Sci,2023,14,1251046.
doi: 10.3389/fpls.2023.1251046 |
19 | 高佳滨,陈为宏,尹辉,等.牛溶血性曼氏杆菌灭活疫苗的制备与检定[J].中国生物制品学杂志,2014,27(8):990-993. |
GAOJ B,CHENW H,YIH,et al.Preparation and quality control of inactivated bovine Mannheimia haemolytica vaccine[J].Chinese Journal of Biologicals,2014,27(8):990-993. | |
20 | 韩小丽,任静静,杨铭伟,等.致肉牛运输热溶血曼氏杆菌的分离鉴定及部分生物学特性研究[J].中国畜牧兽医,2019,46(2):548-556. |
HANX L,RENJ J,YANGM W,et al.Isolation, identification and partial biological characteristics of Mannheimia haemolytica in shipping fever of beef cattle[J].China Animal Husbandry & Veterinary Medicine,2019,46(2):548-556. | |
21 | YEKTASERESHTA,HEMATIZ,SABET SARVESTANIF,et al.Immunization with recombinant PlpE of ovine Mannheimia haemolytica isolate provides protection against lethal challenge in mice[J].Iran J Vet Res,2021,22(4):272-276. |
22 | CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed[R]. Wayne: Clinical and Laboratory Standards Institute, 2020. |
23 | 韩瑞,郝成武,马长宾,等.牛源溶血性曼氏杆菌新疆株的分离鉴定和生物学特性[J].中国兽医杂志,2023,59(10):70-75. |
HANR,HAOC W,MAC B,et al.Isolation, identification and biological characteristics of Mannheimia hacmolytica strains from bovine sources in Xinjiang[J].Chinese Journal of Veterinary Medicine,2023,59(10):70-75. | |
24 |
HOLSCHBACHC L,AULIKN,POULSENK,et al.Prevalence and temporal trends in antimicrobial resistance of bovine respiratory disease pathogen isolates submitted to the Wisconsin Veterinary Diagnostic Laboratory: 2008-2017[J].J Dairy Sci,2020,103(10):9464-9472.
doi: 10.3168/jds.2019-17570 |
25 | 朱杰,赵旭,东笑,等.牛多杀性巴氏杆菌和溶血性曼氏杆菌的分离鉴定及致病力评估[J].中国兽医学报,2024,44(1):80-87. |
ZHUJ,ZHAOX,DONGX,et al.Isolation, identification, and pathogenicity evaluation of Pasteurella multocida and Mannheimia haemolytica[J].Chinese Journal of Veterinary Science,2024,44(1):80-87. | |
26 | 高磊,李旭雯,宫枫举,等.牛源溶血性曼氏杆菌的分离鉴定及其生物学特性分析[J].畜牧与兽医,2023,55(8):57-63. |
GAOL,LIX W,GONGF J,et al.Isolation, identification and biological characterization of Mannheimia haemolytica from cattle[J].Animal Husbandry & Veterinary Medicine,2023,55(8):57-63. | |
27 |
ANDRÉS-LASHERASS,ZAHEERR,KLIMAC,et al.Serotyping and antimicrobial resistance of Mannheimia haemolytica strains from European cattle with bovine respiratory disease[J].Res Vet Sci,2019,124,10-12.
doi: 10.1016/j.rvsc.2018.12.021 |
28 |
ALHAJIN B,ODETOKUNI A,ADAMUA M,et al.Antimicrobial usage and associated residues and resistance emergence in smallholder beef cattle production systems in Nigeria: a One Health challenge[J].Vet Res Commun,2023,47(1):233-245.
doi: 10.1007/s11259-022-09944-1 |
29 |
TIMSITE,HALLEWELLJ,BOOKERC,et al.Prevalence and antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from the lower respiratory tract of healthy feedlot cattle and those diagnosed with bovine respiratory disease[J].Vet Microbiol,2017,208,118-125.
doi: 10.1016/j.vetmic.2017.07.013 |
30 |
KOSTOVAV,HANKED,KASPARH,et al.Macrolide resistance in Mannheimia haemolytica isolates associated with bovine respiratory disease from the German national resistance monitoring program GERM-Vet 2009 to 2020[J].Front Microbiol,2024,15,1356208.
doi: 10.3389/fmicb.2024.1356208 |
31 |
BACANLIM,BAŞARANN.Importance of antibiotic residues in animal food[J].Food Chem Toxicol,2019,125,462-466.
doi: 10.1016/j.fct.2019.01.033 |
32 |
ROIERS,FENNINGERJ C,LEITNERD R,et al.Immunogenicity of Pasteurella multocida and Mannheimia haemolytica outer membrane vesicles[J].Int J Med Microbiol,2013,303(5):247-256.
doi: 10.1016/j.ijmm.2013.05.001 |
33 |
李甜,杨洋,谢黎卿,等.牛溶血性曼氏杆菌及牛荚膜A型多杀性巴氏杆菌灭活疫苗对小鼠的保护性研究[J].畜牧兽医学报,2021,52(9):2579-2588.
doi: 10.11843/j.issn.0366-6964.2021.09.021 |
LIT,YANGY,XIEL Q,et al.Study on the Immunoprotection of inactivated vaccine of bovine Mannheimia haemolytica and bovine Pasteurella multocida capsular serotype a in mouse model[J].Acta Veterinaria et Zootechnica Sinica,2021,52(9):2579-2588.
doi: 10.11843/j.issn.0366-6964.2021.09.021 |
|
34 | 周金玲. 牛溶血性曼氏杆菌小鼠感染模型建立及灭活疫苗免疫原性研究[D]. 大庆: 黑龙江八一农垦大学, 2018. |
ZHOU J L. Establishment of mice model infected by bovine Mannheimia haemolytica and the immunogenicity of inactivated vaccine[D]. Daqing: Heilongjiang Bayi Agricultural University, 2018. (in Chinese) | |
35 | 张继鑫,彭远义,李能章.溶血性曼氏杆菌白细胞毒素研究进展[J].中国预防兽医学报,2019,41(11):1178-1182. |
ZHANGJ X,PENGY Y,LIN Z.The immunogenicity of leukotoxin, PlpE and OmpA of bovine Mannheimia haemolytica[J].Chinese Journal of Preventive Veterinary Medicine,2019,41(11):1178-1182. | |
36 |
CONLONJ A,SHEWENP E,LOR Y.Efficacy of recombinant leukotoxin in protection against pneumonic challenge with live Pasteurella haemolytica A1[J].Infect Immun,1991,59(2):587-591.
doi: 10.1128/iai.59.2.587-591.1991 |
37 |
GUZMÁN-BRAMBILAC,QUINTERO-FABIÁNS,GONZÁLEZ-CASTILLOC,et al.LKTA and PlpE small fragments fusion protein protect against Mannheimia haemolytica challenge[J].Res Vet Sci,2012,93(3):1293-1300.
doi: 10.1016/j.rvsc.2012.07.004 |
38 |
MOLAEEH,TAHAMTANY,SAEEDNEZHADE,et al.Isolation of the various serotypes of Mannheimia haemolytica and preparation of the first vaccine candidate in Iran[J].Mol Biol Rep,2022,49(11):10367-10375.
doi: 10.1007/s11033-022-07890-4 |
39 |
BOOKERC W,LUBBERSB V.Bovine respiratory disease treatment failure: impact and potential causes[J].Vet Clin North Am Food Anim Pract,2020,36(2):487-496.
doi: 10.1016/j.cvfa.2020.03.007 |
40 |
PILLAID K,CHAE,MOSIERD.Role of the stress-associated chemicals norepinephrine, epinephrine and substance P in dispersal of Mannheimia haemolytica from biofilms[J].Vet Microbiol,2018,215,11-17.
doi: 10.1016/j.vetmic.2017.11.025 |
41 | 陈平,王斐,何振富,等.牛呼吸道疾病综合征防治研究进展[J].中国兽医学报,2021,41(10):2064-2068. |
CHENP,WANGF,HEZ F,et al.Research advances on prophylaxis and treatment for bovine respiratory disease complex[J].Chinese Journal of Veterinary Science,2021,41(10):2064-2068. | |
42 | 陶乔孝慈,马雪,张丽媛,等.牛呼吸道疾病两种细菌性病原研究进展[J].动物医学进展,2021,42(9):96-102. |
TAOQ X C,MAX,ZHANGL Y,et al.Progress on two bacterial bovine respiratory pathogens[J].Progress in Veterinary Medicine,2021,42(9):96-102. | |
43 |
CUEVAS-GÓMEZI,MCGEEM,SÁNCHEZJ M,et al.Association between clinical respiratory signs, lung lesions detected by thoracic ultrasonography and growth performance in pre-weaned dairy calves[J].Irish Vet J,2021,74(1):7.
doi: 10.1186/s13620-021-00187-1 |
44 |
KAMELM S,DAVIDSONJ L,VERMAM S.Strategies for bovine respiratory disease (BRD) diagnosis and prognosis: a comprehensive overview[J].Animals,2024,14(4):627.
doi: 10.3390/ani14040627 |
45 |
UDDINM S,GULUARTEJ O,ABBOTTD W,et al.Development of a spore-based mucosal vaccine against the bovine respiratory pathogen Mannheimia haemolytica[J].Sci Rep,2023,13(1):12981.
doi: 10.1038/s41598-023-29732-4 |
[1] | 胡米, 沈瑶歆, 范宝超, 孙敏, 周金柱, 郭容利, 李彬. Eudragit L100修饰的铝锰双金属有机框架作为猪流行性腹泻灭活疫苗口服递送载体的初步评价[J]. 畜牧兽医学报, 2025, 56(5): 2292-2230. |
[2] | 邬沛伶, 李依璇, 王浩杰, 李亚菲, 刘绍蒙, 刘青芸, 王湘如. 猪流行性腹泻疫苗研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1042-1058. |
[3] | 赵婉玥, 徐肖文, 常舒舒, 项志杰, 郭爱珍, 陈颖钰. 牛呼吸道疾病综合征主要病毒的流行病学调查[J]. 畜牧兽医学报, 2025, 56(3): 1324-1335. |
[4] | 朋璐, 张衡, 庞思琪, 乔竹林, 张小芬, 谭臣, 宋云峰, 周锐, 黎璐. 利用大蜡螟幼虫和小鼠感染模型筛选猪链球菌血清2、3和9型三价灭活疫苗候选菌株[J]. 畜牧兽医学报, 2024, 55(9): 4077-4090. |
[5] | 李瑞芳, 张曼玉, 孙卿, 杜晶莹, 蒋蔚, 李增强, 夏炉明, 王权. 弓形虫PRU株速殖子感染小鼠产生包囊的试验研究[J]. 畜牧兽医学报, 2024, 55(10): 4620-4629. |
[6] | 黄江, 李闯, 崔月琦, 袁雪莹, 赵志诚, 刘宇, 周玉龙, 朱战波, 张泽财. 基于小鼠模型研究肠道菌群紊乱对BVDV易感性的影响[J]. 畜牧兽医学报, 2023, 54(8): 3466-3473. |
[7] | 孟令宅, 陈春丽, 于蒙蒙, 王占新, 王素艳, 刘鹏, 何塔娜, 郭茹, 陈运通, 刘长军, 祁小乐, 吴志强, 高玉龙. B亚型禽偏肺病毒对黄羽肉鸡致病性分析及其灭活疫苗免疫效果评价[J]. 畜牧兽医学报, 2023, 54(12): 5154-5161. |
[8] | 何辰香, 高闪电, 田占成, 独军政, 王锦明, 关贵全, 殷宏. 基于GNS蛋白的牛流行热病毒感染与免疫鉴别诊断ELISA方法的建立[J]. 畜牧兽医学报, 2023, 54(10): 4320-4326. |
[9] | 郝建伟, 薛春宜, 曹永长. 猪流行性腹泻病毒全病毒灭活疫苗量效关系研究[J]. 畜牧兽医学报, 2022, 53(5): 1536-1543. |
[10] | 何姝凡, 岳华, 汤承, 刘杰. 牛腺病毒3型的研究进展[J]. 畜牧兽医学报, 2022, 53(4): 1030-1040. |
[11] | 翁翔, 张爱莲, 李泉晓, 吴道澄, 曹辉. 栽培一枝蒿粗多糖佐剂增强口蹄疫疫苗的皮下免疫效果[J]. 畜牧兽医学报, 2022, 53(1): 315-323. |
[12] | 李甜, 杨洋, 谢黎卿, 王远兰, 李攀, 彭远义, 李能章. 牛溶血性曼氏杆菌及牛荚膜A型多杀性巴氏杆菌灭活疫苗对小鼠的保护性研究[J]. 畜牧兽医学报, 2021, 52(9): 2579-2588. |
[13] | 王国辽, 张洁, 饶家榕, 莫睿文, 远立国. 博来霉素致小鼠肺纤维化模型的建立及生物标志物的筛选[J]. 畜牧兽医学报, 2021, 52(4): 1134-1140. |
[14] | 吕芬芬, 马晓慧, 汪丽, 马陈, 张宝江, 苏艳. 马链球菌马亚种3种抗原蛋白对小鼠免疫的免疫原性分析[J]. 畜牧兽医学报, 2021, 52(3): 752-762. |
[15] | 孙普, 何伟, 付元芳, 李冬, 杨林, 魏德陇, 曹轶梅, 李平花, 白兴文, 马雪青, 李坤, 包慧芳, 张婧, 朱新荣, 刘在新, 卢曾军. 口蹄疫灭活疫苗的免疫效果及其对鉴别诊断的干扰[J]. 畜牧兽医学报, 2020, 51(10): 2481-2489. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||