畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 621-632.doi: 10.11843/j.issn.0366-6964.2025.02.014
龙怡舟1(), 娄文琦1, 黄上真1, 师睿1, 陈功2, 李斌3, 次桑卓玛3, 徐青2,*(
), 王雅春1,*(
)
收稿日期:
2024-06-26
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
徐青,王雅春
E-mail:2021304030321@cau.edu.cn;qingxu@bjtu.edu.cn;wangyachun@cau.edu.cn
作者简介:
龙怡舟(2003-),女,湖南湘潭人,本科生,主要从事动物遗传育种研究,E-mail: 2021304030321@cau.edu.cn
基金资助:
LONG Yizhou1(), LOU Wenqi1, HUANG Shangzhen1, SHI Rui1, CHEN Gong2, LI Bin3, CISANG Zhuoma3, XU Qing2,*(
), WANG Yachun1,*(
)
Received:
2024-06-26
Online:
2025-02-23
Published:
2025-02-26
Contact:
XU Qing, WANG Yachun
E-mail:2021304030321@cau.edu.cn;qingxu@bjtu.edu.cn;wangyachun@cau.edu.cn
摘要:
旨在基于奶牛血氧饱和度(blood oxygen saturation, BOS)高、低组的血液代谢物,尝试筛选BOS相关差异代谢物及通路。本研究所用血样及个体信息采集自西藏地区两个规模化牧场的60头荷斯坦牛。使用质子核磁共振光谱(proton nuclear magnetic resonance spectroscopy, 1H NMR)绝对定量法测定BOS高、低组各30头荷斯坦牛的43种血液代谢物图谱,经差异倍数分析、t检验和变量投影重要性3种方法筛选BOS相关差异代谢物并进行富集分析。结果,共筛选到17种差异代谢物,其中与低BOS组相比,高BOS组血液中甘氨酸、甘露醇和尿素浓度更高(P < 0.05),柠檬酸盐、甲酸盐、丙酮酸盐等14种指标浓度更低(P < 0.05)。这些差异代谢物富集到乙醛酸和二羧酸代谢,甘氨酸、丝氨酸和苏氨酸代谢等16条显著的代谢通路。差异代谢物与奶牛机体氨基酸和有机酸等多种代谢有关,起到保护组织、治疗损伤、调节细胞稳态、缓解低氧应激等积极作用。综上,本研究筛选到BOS水平相关的差异代谢物以及通路,为后续深入研究奶牛高原适应机制和缓解高原低氧应激提供了参考。
中图分类号:
龙怡舟, 娄文琦, 黄上真, 师睿, 陈功, 李斌, 次桑卓玛, 徐青, 王雅春. 基于血液代谢组筛选奶牛血氧饱和度相关代谢物及通路[J]. 畜牧兽医学报, 2025, 56(2): 621-632.
LONG Yizhou, LOU Wenqi, HUANG Shangzhen, SHI Rui, CHEN Gong, LI Bin, CISANG Zhuoma, XU Qing, WANG Yachun. Analyses of Metabolites and Pathways Related to Hypoxic Stress in Dairy Cows Based on Blood Metabolome[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 621-632.
表 1
荷斯坦牛血氧饱和度高、低组的个体信息描述"
个体信息 Individual information | 低血氧饱和度组 Low blood oxygen saturation group | 高血氧饱和度组 High blood oxygen saturation group | |||||
均值 Average | 标准差 Standard deviation | 变异系数/% Coefficient of variation | 均值 Average | 标准差 Standard deviation | 变异系数/% Coefficient of variation | ||
荷斯坦牛血统比例/% Holstein cattle pedigree ratio | 85.83a | 13.63 | 16 | 88.80a | 13.83 | 16 | |
体况评分Body condition score | 3.37a | 1.18 | 35 | 3.28a | 1.06 | 32 | |
胎次Parity | 2.67a | 1.45 | 54 | 2.57a | 1.28 | 50 | |
泌乳天数/d Days in milk | 190.40a | 230.85 | 121 | 227.90a | 123.14 | 54 | |
日龄/d Daily age | 1 840.83a | 723.25 | 39 | 1 924.37a | 588.18 | 31 | |
血氧饱和度/% Blood oxygen saturation | 86.83a | 8.52 | 10 | 96.03b | 2.48 | 3 |
表 2
FC分析、t检验和VIP获得的17种差异代谢物"
差异代谢物 Differential metabolites | FC | t检验t-test | VIP | |
P-value | FDR | |||
3-羟基丁酸3-Hydroxybutyrate | — | — | — | 1.25 |
乙酰乙酸盐Acetoacetate | — | 4.88×10-3 | 3.50×10-2 | 1.47 |
丙酮Acetone | — | — | — | 1.14 |
甜菜碱Betaine | 0.666 | — | — | 1.29 |
柠檬酸盐Citrate | 0.665 | 4.75×10-4 | 6.81×10-3 | 1.80 |
肌酸Creatine | — | — | — | 1.35 |
肌酐Creatinine | — | — | — | 1.21 |
甲酸盐Formate | — | 2.84×10-5 | 1.22×10-3 | 2.10 |
甘氨酸Glycine | 5.130 | 1.16×10-3 | 1.24×10-2 | 1.68 |
异亮氨酸Isoleucine | — | — | — | 1.19 |
赖氨酸Lysine | — | — | — | 1.16 |
甘露醇Mannitol | — | — | — | 1.13 |
蛋氨酸Methionine | — | 1.48×10-3 | 1.27×10-2 | 1.64 |
脯氨酸Proline | — | — | — | 1.20 |
丙二醇Propylene glycol | 0.565 | — | — | 1.26 |
丙酮酸盐Pyruvate | — | 1.83×10-4 | 3.94×10-3 | 1.90 |
尿素Urea | 3.855 | — | — | 1.28 |
表 3
差异代谢物通路分析获得的16条富集通路"
代谢通路 Related pathway | 总数 Total | 匹配次数 Hits | 原始P Raw P |
乙醛酸和二羧酸代谢Glyoxylate and dicarboxylate metabolism | 31 | 4 | 6.78×10-5 |
甘氨酸、丝氨酸和苏氨酸代谢Glycine, serine and threonine metabolism | 33 | 4 | 7.33×10-4 |
硫辛酸代谢Lipoic acid metabolism | 28 | 2 | 8.39×10-4 |
柠檬酸盐循环(TCA循环)Citrate cycle (TCA cycle) | 20 | 2 | 1.49×10-3 |
丙氨酸、天冬氨酸和谷氨酸代谢Alanine, aspartate and glutamate metabolism | 28 | 2 | 1.49×10-3 |
初级胆汁酸生物合成Primary bile acid biosynthesis | 46 | 1 | 2.63×10-3 |
谷胱甘肽代谢Glutathione metabolism | 28 | 1 | 2.63×10-3 |
卟啉代谢Porphyrin metabolism | 31 | 1 | 2.63×10-3 |
酪氨酸代谢Tyrosine metabolism | 42 | 2 | 3.52×10-3 |
半胱氨酸和蛋氨酸代谢Cysteine and methionine metabolism | 33 | 2 | 7.18×10-3 |
丁酸甲酯代谢Butanoate metabolism | 15 | 1 | 1.19×10-2 |
精氨酸生物合成Arginine biosynthesis | 14 | 1 | 1.25×10-2 |
嘌呤代谢Purine metabolism | 70 | 1 | 1.25×10-2 |
缬氨酸、亮氨酸和异亮氨酸降解Valine, leucine and isoleucine degradation | 39 | 2 | 2.02×10-2 |
糖酵解/糖异生Glycolysis/Gluconeogenesis | 26 | 1 | 3.33×10-2 |
丙酮酸代谢Pyruvate metabolism | 23 | 1 | 3.33×10-2 |
1 | 赵霞玲, 白玛央金, 次桑卓玛, 等. 西藏主要引进奶牛品种适应性表现及养殖建议[J]. 西藏农业科技, 2022, 44 (4): 93- 95. |
ZHAO X L , BAIMAYANGJIN , CISANGZHUOMA , et al. Adaptability performance and breeding suggestions of main imported dairy cow varieties in Tibet[J]. Tibet Journal of Agricultural Sciences, 2022, 44 (4): 93- 95. | |
2 | 杨柏高, 郝海生, 杜卫华, 等. 牦牛高原适应研究进展[J]. 畜牧兽医学报, 2023, 54 (1): 12- 23. |
YANG B G , HAO H S , DU W H , et al. Advances in research on plateau adaptation of yak[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (1): 12- 23. | |
3 | 黄上真, 马龙刚, 娄文琦, 等. 高原地区奶牛血液指标的影响因素分析[J]. 畜牧兽医学报, 2023, 54 (5): 1964- 1978. |
HUANG S Z , MA L G , LOU W Q , et al. Analysis of influencing factors on blood indicators of dairy cows at high-altitude area[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 1964- 1978. | |
4 | 沈童, 王梦杰, 吴华, 等. 黑果枸杞花青素对低氧诱导的H9c2大鼠心肌细胞凋亡的影响[J]. 畜牧兽医学报, 2023, 54 (8): 3490- 3499. |
SHEN T , WANG M J , WU H , et al. Effect of Lycium ruthenicum murray anthocyanin on hypoxia-induced apoptosis in H9c2 rat cardiomyocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (8): 3490- 3499. | |
5 | 索朗曲吉, 巴桑珠扎, 赵丽, 等. 西藏引进良种奶牛高原适应性观察与研究[J]. 中国饲料, 2019, (2): 11- 15. |
SUOLANG Q J , BASANG Z Z , ZHAO L , et al. Observation and research on plateau adaptability of introduced breeding cows in Tibet[J]. China Feed, 2019, (2): 11- 15. | |
6 | 严爱萍. 奶牛引进高海拔地区后发生肺气肿的诊治[J]. 中国兽医杂志, 2008, 44 (4): 69- 70. |
YAN A P . Treatment of pulmonary emphysema in dairy cows after introduction to high altitudes[J]. Chinese Journal of Veterinary Medicine, 2008, 44 (4): 69- 70. | |
7 | 姚琨. 多组学技术解析荷斯坦奶牛高原病的发生机制[D]. 乌鲁木齐: 新疆农业大学, 2021. |
YAO K. Analyses of mechanism of brisket disease in Holstein heifers based on multi-omics technology[D]. Urumqi: Xinjiang Agricultural University, 2021. (in Chinese) | |
8 |
FLOYD J , WU L , HAY BURGESS D , et al. Evaluating the impact of pulse oximetry on childhood pneumonia mortality in resource-poor settings[J]. Nature, 2015, 528 (7580): S53- S59.
doi: 10.1038/nature16043 |
9 |
ZHU J J , WU Y C , JIANG A Y , et al. Effects of dietary N-carbamylglutamate on rumen fermentation parameters, and bacterial community diversity of Holstein dairy cows in Tibet[J]. Front Microbiol, 2023, 14, 1101620.
doi: 10.3389/fmicb.2023.1101620 |
10 | 王宏运, 高亮. 适应性训练预防急性高原反应的疗效观察[J]. 临床军医杂志, 2008, 36 (1): 107- 108. |
WANG H Y , GAO L . Effect of adaptation training on prevention of acute high altitude reaction[J]. Clinical Journal of Medical Officers, 2008, 36 (1): 107- 108. | |
11 | HUANG M Z , ZHANG X , YAN W J , et al. Metabolomics reveals potential plateau adaptability by regulating inflammatory response and oxidative stress-related metabolism and energy metabolism pathways in yak[J]. J Anim Sci Technol, 2022, 64 (1): 97- 109. |
12 | KONG Z W , LI B , ZHOU C S , et al. Comparative analysis of metabolic differences of jersey cattle in different high-altitude areas[J]. Front Vet Sci, 2021, 8, 713913. |
13 | 黄上真. 西藏地区奶牛血液指标规律分析及高原适应性基因挖掘[D]. 北京: 中国农业大学, 2023. |
HUANG S Z. Analysis of blood indicators features of dairy cattle in Tibet and high-altitude adaptation genes mining[D]. Beijing: China Agricultural University, 2023. (in Chinese) | |
14 | CSALA A , VOORBRAAK F P J M , ZWINDERMAN A H , et al. Sparse redundancy analysis of high-dimensional genetic and genomic data[J]. Bioinformatics, 2017, 33 (20): 3228- 3234. |
15 | MEI S H , HE G X , CHEN Z , et al. Probiotic-fermented distillers grain alters the rumen microbiome, metabolome, and enzyme activity, enhancing the immune status of finishing cattle[J]. Animals (Basel), 2023, 13 (24): 3774. |
16 | 胡丽蓉. 基于多组学分析策略的奶牛热应激调控机制研究[D]. 北京: 中国农业大学, 2023. |
HU L R. Investigation of regulatory mechanisms of heat stress in dairy cows on the basis of a multi-omics analysis strategy[D]. Beijing: China Agricultural University, 2023. (in Chinese) | |
17 | CONTRERAS-CORREA Z E , SÁNCHEZ-RODRÍGUEZ H L , ARICK Ⅱ M A , et al. Thermotolerance capabilities, blood metabolomics, and mammary gland hemodynamics and transcriptomic profiles of slick-haired Holstein cattle during mid lactation in Puerto Rico[J]. J Dairy Sci, 2024, 107 (6): 4017- 4032. |
18 | HU L R , BRITO L F , ABBAS Z , et al. Investigating the short-term effects of cold stress on metabolite responses and metabolic pathways in Inner-Mongolia Sanhe cattle[J]. Animals (Basel), 2021, 11 (9): 2493. |
19 | SHIBATA R , ITOH N , NAKANISHI Y , et al. Gut microbiota and fecal metabolites in sustained unresponsiveness by oral immunotherapy in school-age children with cow's milk allergy[J]. Allergol Int, 2024, 73 (1): 126- 136. |
20 | 巴桑旺堆, 罗布, 平错占堆. 娟姗种公牛和荷斯坦种公牛在西藏高原地区饲养效果[J]. 中国动物保健, 2017, 19 (9): 34- 35. |
BA S , LUO B , PING C . Effects of rearing Jersey and Holstein bulls in the Tibetan Plateau region[J]. China Animal Health, 2017, 19 (9): 34- 35. | |
21 | 王书祥, 李红丽, 戴东文, 等. 荷斯坦奶牛高山病的发生情况调查研究[J]. 现代畜牧兽医, 2021, (4): 71- 73. |
WANG S X , LI H L , DAI D W , et al. Investigation on the occurrence of high-altitude sickness in Holstein cows[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2021, (4): 71- 73. | |
22 | HALL J C . Glycine[J]. JPEN J Parenter Enteral Nutr, 1998, 22 (6): 393- 398. |
23 | DETERS M , SIEGERS C P , STRUBELT O . Influence of glycine on the damage induced in isolated perfused rat liver by five hepatotoxic agents[J]. Toxicology, 1998, 128 (1): 63- 72. |
24 | QU W , IKEJIMA K , ZHONG Z , et al. Glycine blocks the increase in intracellular free Ca2+ due to vasoactive mediators in hepatic parenchymal cells[J]. Am J Physiol Gastrointest Liver Physiol, 2002, 283 (6): G1249- G1256. |
25 | JAGETIA G C , GANAPATHI N G , UNNIKRISHNAN M K . Copperglycinate protects mice exposed to various doses of gamma radiation[J]. Strahlenther Onkol, 1993, 169 (5): 323- 328. |
26 | BAINES A D , SHAIKH N , HO P . Mechanisms of perfused kidney cytoprotection by alanine and glycine[J]. Am J Physiol, 1990, 259, F80- F87. |
27 | WHEELER M D , IKEJEMA K , ENOMOTO N , et al. Glycine: a new anti-inflammatory immunonutrient[J]. Cell Mol Life Sci, 1999, 56 (9-10): 843- 856. |
28 | 吕尚军. 谷氨酰胺、甘氨酸及甘谷二肽对烧伤大鼠心肌保护作用及其信号机制的实验研究[D]. 重庆: 第三军医大学, 2007. |
LV S J. The effects of glutamine, glycine and glycyl-glutamine dipeptide on cardiac cytoprotection and its mechanism after burn injury[D]. Chongqing: Army Medical University, 2007. (in Chinese) | |
29 | 陈梦飞, 陆大祥, 戚仁斌, 等. 甘氨酸脂质体对心肌细胞线粒体膜电位及凋亡的影响[J]. 中国病理生理杂志, 2008, 24 (7): 1254- 1258. |
CHEN M F , LU D X , QI R B , et al. Effect of glycine liposomes on mitochondrial membrane potential and apoptosis in cultured cardiomyocytes[J]. Chinese Journal of Pathophysiology, 2008, 24 (7): 1254- 1258. | |
30 | MCCARTY M F , O'KEEFE J H , DINICOLANTONIO J J . Dietary glycine is rate-limiting for glutathione synthesis and may have broad potential for health protection[J]. Ochsner J, 2018, 18 (1): 81- 87. |
31 | 陶文迪, 田秀玉, 李茂星, 等. 黄芪水提取物对高原缺氧大鼠运动能力的影响[J]. 解放军医药杂志, 2019, 31 (12): 12- 18. |
TAO W D , TIAN X Y , LI M X , et al. Effect of astragalus membranaceus aqueous extract on ability of plateau hypoxia exercise in rats[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 2019, 31 (12): 12- 18. | |
32 | 范小庆, 扈金萍. 甘氨酸生理功能与代谢研究进展[J]. 国际药学研究杂志, 2018, 45 (2): 102- 107. |
FAN X Q , HU J P . Physiological function of glycine and its role in metabolism: research advances[J]. Journal of International Pharmaceutical Research, 2018, 45 (2): 102- 107. | |
33 | 卢劲晔, 高亚兵, 韩心茹, 等. 乳房链球菌感染对乳腺上皮细胞中氨基酸代谢的影响[J]. 畜牧兽医学报, 2024, 55 (4): 1766- 1776. |
LU J Y , GAO Y B , HAN X R , et al. The Effect of Streptococcus uberis infection on amino acid metabolism in mammary epithelial cells[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (4): 1766- 1776. | |
34 | 李孟阳. 青海田鼠、布氏田鼠和昆明小鼠骨骼肌低氧适应分子机制[D]. 郑州: 郑州大学, 2022. |
LI M Y. Molecular mechanism of hypoxia adaptation in skeletal muscle of plateau vole, Brandt's vole and Kunming mice[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese) | |
35 | IMENSHAHIDI M , HOSSENZADEH H . Effects of glycine on metabolic syndrome components: a review[J]. J Endocrinol Invest, 2022, 45 (5): 927- 939. |
36 | PEREA-GIL I , SEEGER T , BRUYNEEL A A N , et al. Serine biosynthesis as a novel therapeutic target for dilated cardiomyopathy[J]. Eur Heart J, 2022, 43 (36): 3477- 3489. |
37 | CHEN Y K , ZENG A , HE S M , et al. Autophagy-related genes in atherosclerosis[J]. J Healthc Eng, 2021, 2021, 6402206. |
38 | WANG M H , YUAN F C , BAI H , et al. SHMT2 promotes liver regeneration through glycine-activated Akt/mTOR pathway[J]. Transplantation, 2019, 103 (7): e188- e197. |
39 | 汪泉, 刘红. 柠檬酸钠对肾缺血再灌注损伤模型小鼠肾损伤指标及炎症细胞因子的影响[J]. 中国免疫学杂志, 2021, 37 (2): 145-148, 154. |
WANG Q , LIU H . Effects of sodium citrate on renal injury index and inflammatory cytokines in mice with renal ischemia-reperfusion injury[J]. Chinese Journal of Immunology, 2021, 37 (2): 145-148, 154. | |
40 | LU Q , LI Z G , ZHOU N , et al. Impact of citrate pretreatment on ventricular arrhythmia and myocardial capase-3 expression in ischemia/reperfusion injury[J]. Genet Mol Res, 2016, 15 (4): gmr15048848. |
41 | WU F , HUANG W F , TAN Q , et al. ZFP36L2 regulates myocardial ischemia/reperfusion injury and attenuates mitochondrial fusion and fission by LncRNA PVT1[J]. Cell Death Dis, 2021, 12 (6): 614. |
42 | 张博, 周学才, 朱冬梅, 等. 柠檬酸盐对缺氧/复氧诱导的心肌细胞损伤及LKB1/AMPK信号通路的影响[J]. 中西医结合心脑血管病杂志, 2023, 21 (10): 1782- 1787. |
ZHANG B , ZHOU X C , ZHU D M , et al. The effects of citrate on hypoxia/reoxygenation-induced myocardial cell injury and LKB1/AMPK signal pathway[J]. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease, 2023, 21 (10): 1782- 1787. | |
43 | 项海燕. 柠檬酸盐预处理对心肌缺血/再灌注损伤的影响及其机制研究[D]. 南昌: 南昌大学, 2020. |
XIANG H Y. Effects and mechanism of citrate pretreatment on myocardial ischemia/reperfusion injury[D]. Nanchang: Nanchang University, 2020. (in Chinese) | |
44 | ANDERSON N M , MUCKA P , KERN J G , et al. The emerging role and targetability of the TCA cycle in cancer metabolism[J]. Protein Cell, 2018, 9 (2): 216- 237. |
45 | LIU G W , LI Y H , LIAO N , et al. Energy metabolic mechanisms for high altitude sickness: downregulation of glycolysis and upregulation of the lactic acid/amino acid-pyruvate-TCA pathways and fatty acid oxidation[J]. Sci Total Environ, 2023, 894, 164998. |
46 | LE A , LANE A N , HAMAKER M , et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells[J]. Cell Metab, 2012, 15 (1): 110- 121. |
47 | KIM J W , TCHERNYSHYOV I , SEMENZA G L , et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia[J]. Cell Metab, 2006, 3 (3): 177- 185. |
48 | 郭志丽, 朱妍, 肖红斌, 等. 与脑梗死关联的氨基酸代谢通路研究进展与发现[J]. 中国医药导报, 2013, 10 (26): 24- 27. |
GUO Z L , ZHU Y , XIAO H B , et al. Progress and discovery of research on the amino acid metabolic pathways associated with cerebral infarction[J]. China Medical Herald, 2013, 10 (26): 24- 27. | |
49 | 林金艳. 低氧环境下甘肃鼢鼠肠道菌群和肝、脑糖代谢的适应性重塑研究[D]. 西安: 陕西师范大学, 2022. |
LIN J Y. Adaptive remodeling of Eospalax cansus intestinal flora and liver and brain glucose metabolism in a hypoxic environment[D]. Xi'an: Shaanxi Normal University, 2022. (in Chinese) | |
50 | 于静波, 韩越, 谢新, 等. 脾胃湿热证大鼠模型的尿液代谢组学分析[J]. 中国实验方剂学杂志, 2023, 29 (10): 166- 173. |
YU J B , HAN Y , XIE X , et al. Metabolomic analysis of urine in rat model with spleen-stomach damp-heat syndrome[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29 (10): 166- 173. | |
51 | 张宁, 于栋华, 王宇, 等. 穿山龙抗急性痛风性关节炎的肾脏代谢组学研究[J]. 中华中医药杂志, 2017, 32 (5): 2034- 2039. |
ZHANG N , YU D H , WANG Y , et al. Kidney metabonomics study on acute gouty arthritis treated by Dioscorea Nipponica Makino[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2017, 32 (5): 2034- 2039. |
[1] | 陈丽丽, 赵康, 夏敏, 芦娜, 马毅. 不同出生季节对天津地区荷斯坦牛泌乳性能的影响[J]. 畜牧兽医学报, 2024, 55(5): 1970-1977. |
[2] | 夏淑雯, 陈坤琳, 沈阳阳, 安振江, 赵芳, 丁强, 仲跻峰, 林志平, 王慧利. 江苏地区荷斯坦成母牛长寿性状遗传参数估计[J]. 畜牧兽医学报, 2024, 55(3): 1030-1039. |
[3] | 张淼, 裴芬, 鞠林, 赵秀新, 杨健, 薛光辉, 徐千雯, 刘燕, 张元沛, 蔡高占, 高运东, 俞英, 王晓, 李建斌. 头胎荷斯坦牛乳尿素氮及其与产奶性状和体细胞评分的遗传分析[J]. 畜牧兽医学报, 2024, 55(12): 5527-5537. |
[4] | 赖婉仪, 陶欣月, 杨庚新, 余文莉, 李树静, Tahir Usman, 俞英. 奶牛乳房健康基因检测芯片在中国荷斯坦牛及巴基斯坦本地奶牛群中的应用研究[J]. 畜牧兽医学报, 2024, 55(10): 4489-4499. |
[5] | 王振宇, 张赛博, 刘文慧, 梁栋, 任小丽, 闫磊, 闫跃飞, 高腾云, 张震, 黄河天. 基于SNP芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因[J]. 畜牧兽医学报, 2023, 54(7): 2848-2857. |
[6] | 张俊星, 张海亮, 韩丽云, 马燕芬, 温万, 周佳敏, 田佳, 路婷婷, 马云, 王雅春. 宁夏地区荷斯坦泌乳牛健康性状影响因素分析[J]. 畜牧兽医学报, 2023, 54(6): 2389-2401. |
[7] | 孙东晓, 张胜利, 张勤, 李姣, 张桂香, 刘丑生, 郑伟杰. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54(10): 4028-4039. |
[8] | 周福振, 周部, 代旭, 王海洋, 郭梦玲, 梁艳, 杨章平, 毛永江. 荷斯坦牛泌乳前期体况评分及其对泌乳性能和离群寿命的影响[J]. 畜牧兽医学报, 2022, 53(9): 2955-2969. |
[9] | 范婷婷, 王文翔, 马毅, 赵国耀, 徐凌洋, 陈燕, 张路培, 高会江, 李俊雅, 高雪. 西门塔尔牛、和牛与荷斯坦牛杂种优势预测及实际杂交效果分析[J]. 畜牧兽医学报, 2022, 53(8): 2568-2577. |
[10] | 宋月通, 张汝美, 李彦芹, 李荣岭, 高运东, 仲跻峰, 薛光辉, 王玉东, 李建斌, 孙东晓. 山东省荷斯坦奶牛体型性状遗传参数估计及系谱世代数的影响[J]. 畜牧兽医学报, 2022, 53(5): 1384-1395. |
[11] | 常瑶, 苏国生, 李艳华, 李想, 麻柱, 王雅春. 基于系谱和基因组信息估计荷斯坦青年母牛体重性状遗传参数[J]. 畜牧兽医学报, 2022, 53(11): 3759-3768. |
[12] | 万涛, 王澳, 张海亮, 胡丽蓉, 赵善江, 张翰霖, 王炎, 郭刚, 俞英, 王雅春. 荷斯坦牛血浆抗缪勒氏管激素浓度的影响因素分析及遗传参数估计[J]. 畜牧兽医学报, 2022, 53(1): 161-168. |
[13] | 苏丁然, 彭朋, 闫青霞, 陈绍祜, 张胜利, 李姣, 刘丑生, 孙东晓. 我国荷斯坦青年公牛基因组选择效果分析[J]. 畜牧兽医学报, 2021, 52(6): 1550-1562. |
[14] | 陈紫薇, 师睿, 罗汉鹏, 田佳, 魏趁, 张伟新, 李委奇, 温万, 王雅晶, 王雅春. 宁夏地区荷斯坦牛青年牛繁殖性状遗传参数估计[J]. 畜牧兽医学报, 2021, 52(2): 344-351. |
[15] | 梁艳, 王海洋, 郭梦玲, 张强, 高启松, 李明勋, 张慧敏, 杨章平, 毛永江. 荷斯坦牛产后前60 d患隐性乳房炎次数对各泌乳月SCS的影响[J]. 畜牧兽医学报, 2021, 52(2): 352-363. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||