畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (10): 4489-4499.doi: 10.11843/j.issn.0366-6964.2024.10.021
赖婉仪1(), 陶欣月1, 杨庚新2, 余文莉2, 李树静2, Tahir Usman3, 俞英1,*(
)
收稿日期:
2024-04-07
出版日期:
2024-10-23
发布日期:
2024-11-04
通讯作者:
俞英
E-mail:laiwanyi@cau.edu.cn;yuying@cau.edu.cn
作者简介:
赖婉仪(2003-), 女, 福建漳州人, 本科生, 主要从事奶牛抗病育种研究, E-mail: laiwanyi@cau.edu.cn
基金资助:
Wanyi LAI1(), Xinyue TAO1, Gengxin YANG2, Wenli YU2, Shujing LI2, Tahir USMAN3, Ying YU1,*(
)
Received:
2024-04-07
Online:
2024-10-23
Published:
2024-11-04
Contact:
Ying YU
E-mail:laiwanyi@cau.edu.cn;yuying@cau.edu.cn
摘要:
旨在筛选与奶牛乳房健康相关的SNP位点或组合,提升奶牛乳房健康水平,同时促进“一带一路”国家的奶牛产业健康发展。本研究基于1 097头中国荷斯坦牛、161头巴基斯坦荷斯坦牛的尾静脉血及116头Achai牛、104头辛地红牛的尾根毛囊,提取基因组DNA,使用奶牛乳房健康分子检测芯片(Chinese Cow's SNPs Chip-Ⅰ, CCSC-Ⅰ)获得基因型,结合相应DHI数据报告中的乳房健康指标——体细胞数(somatic cell count, SCC)及体细胞评分(somatic cell score, SCS),通过单个SNP和成对SNP关联分析,鉴定有意义的SNP位点或组合。单位点关联分析结果显示,SNP3、6、8、11、19、20在中国荷斯坦牛群体中为显著位点(P<0.05),针对巴基斯坦奶牛群同样鉴定出SNP3和SNP11为显著位点(P<0.05);在成对位点关联分析中,中国荷斯坦牛群体使用大样本(北京、浙江、河北地区牧场)和河北地区样本分别分析,保留稳定的SNP11-SNP15组合,SNP19和SNP20的AA基因型同占优势,针对巴基斯坦荷斯坦牛鉴定了SNP11-SNP2、4、8、9、12、16、19等极显著组合(P<0.01),而针对巴基斯坦本地奶牛Achai鉴定出了SNP3-SNP11、15等极显著组合(P<0.01)。本研究结果显示,奶牛乳房健康分子检测芯片具有广泛适用性。SNP11、15、19、20等位点对奶牛乳房健康具有重要影响。在荷斯坦牛群体中,CD4、TRAPPC9和PTK2基因表现出潜在的乳房炎抗性;而在巴基斯坦本地奶牛中,CD4、DGAT1和TRAPPC9基因则表现出显著的抗性特征。这些发现为未来的精准选育提供了有力的科学依据。
中图分类号:
赖婉仪, 陶欣月, 杨庚新, 余文莉, 李树静, Tahir Usman, 俞英. 奶牛乳房健康基因检测芯片在中国荷斯坦牛及巴基斯坦本地奶牛群中的应用研究[J]. 畜牧兽医学报, 2024, 55(10): 4489-4499.
Wanyi LAI, Xinyue TAO, Gengxin YANG, Wenli YU, Shujing LI, Tahir USMAN, Ying YU. Application Study of Chinese Cow's SNPs Chip-Ⅰ in Chinese Holstein and Pakistani Indigenous Dairy Cattle Populations[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4489-4499.
表 1
中国荷斯坦牛成对位点关联分析结果"
成对位点Pairwise SNP | 基因1 Gene1 | 基因2 Gene2 | 模式 Model | P值 P-value | 优势基因型 Advantage genotype | |
位点1 SNP1 | 位点2 SNP2 | |||||
SNP4 | SNP9 | JAK2 | STAT5A | DD_int_rr_1vs0 | 0.002 8 | TC+CC/CA+AA |
SNP6 | SNP8 | JAK2 | JAK2 | RD_int_ro_1vs0 | 0.000 1 | CC/CC |
SNP8 | SNP11 | JAK2 | CD4 | DD_int_oo_1vs0 | 0.002 0 | CT+TT/CT+TT |
SNP8 | SNP15 | JAK2 | DGAT1 | DD_int_or_1vs0 | 0.005 4 | CT+TT/AA |
SNP11 | SNP15 | CD4 | DGAT1 | RD_int_or_1vs0 | 0.004 7 | CC+CT/AG+GG |
SNP11 | SNP17 | CD4 | DGAT1 | DD_int_ro_1vs0 | 0.002 1 | CT+TT/TT |
SNP15 | SNP19 | DGAT1 | TRAPPC9 | DD_int_rr_1vs0 | 0.000 6 | AG+GG/GA+AA |
SNP15 | SNP20 | DGAT1 | PTK2 | DD_int_rr_1vs0 | 0.000 7 | AG+GG/GA+AA |
表 2
河北地区中国荷斯坦牛成对位点关联分析结果"
成对位点Pairwise SNP | 基因1 Gene1 | 基因2 Gene2 | 模式 Model | P值 P-value | 优势基因型 Advantage genotype | |
位点1 SNP1 | 位点2 SNP2 | |||||
SNP6 | SNP18 | JAK2 | TRAPPC9 | RD_int_rr_1vs0 | 0.006 7 | TT+TC/GG |
SNP6 | SNP19 | JAK2 | TRAPPC9 | AA_int_ro_12 | 0.003 9 | TT/AA |
SNP6 | SNP20 | JAK2 | PTK2 | AA_int_ro_12 | 0.003 3 | TT/AA |
SNP9 | SNP19 | STAT5A | TRAPPC9 | AA_int_rr_12 | 0.001 5 | AA/AA |
SNP9 | SNP20 | STAT5A | PTK2 | AA_int_rr_12 | 0.001 5 | AA/AA |
SNP11 | SNP15 | CD4 | DGAT1 | AA_int_ro_12 | 0.008 9 | CC/GG |
SNP11 | SNP18 | CD4 | TRAPPC9 | DD_int_rr_1vs0 | 0.004 8 | CT+TT/AG+GG |
SNP12 | SNP15 | LAG3 | DGAT1 | AA_int_rr_12 | 0.002 2 | AA/GG |
SNP12 | SNP17 | LAG3 | DGAT1 | AA_int_rr_12 | 0.002 8 | AA/CC |
表 3
巴基斯坦本地奶牛Achai及荷斯坦牛成对位点关联分析结果"
品种 Breed | 成对位点Pairwise SNP | 基因1 Gene1 | 基因2 Gene2 | 模式 Model | P值 P-value | 优势基因型 Advantage genotype | |
位点1 SNP1 | 位点2 SNP2 | ||||||
阿卡牛Achai | SNP3 | SNP11 | TRAPPC9 | CD4 | DD_int_rr_1vs0 | 0.043 7 | TT/TT |
SNP3 | SNP15 | TRAPPC9 | DGAT1 | AA_int_rr_12 | 0.032 5 | TT/GG | |
SNP16 | SNP17 | DGAT1 | DGAT1 | DD_int_rr_1vs0 | 0.010 0 | GG/CC | |
SNP17 | SNP18 | DGAT1 | TRAPPC9 | DR_int_or_1vs0 | 0.015 4 | CC/GG | |
SNP17 | SNP19 | DGAT1 | TRAPPC9 | DR_int_rr_1vs0 | 0.015 4 | CC/GG+GA | |
巴基斯坦荷斯坦牛 | SNP2 | SNP11 | TRAPPC9 | CD4 | AA_int_ro_12 | 0.015 0 | CC/TT |
Pakistani Holstein | SNP4 | SNP11 | JAK2 | CD4 | AA_int_ro_12 | 0.003 9 | TT/TT |
SNP8 | SNP11 | JAK2 | CD4 | AA_int_ro_12 | 0.004 4 | CC/TT | |
SNP8 | SNP15 | JAK2 | DGAT1 | DD_int_ro_1vs0 | 0.019 6 | CC/AG+GG | |
SNP8 | SNP19 | JAK2 | TRAPPC9 | AA_int_ro_12 | 0.026 2 | CC/AA | |
SNP8 | SNP20 | JAK2 | PTK2 | DD_int_rr_1vs0 | 0.034 5 | CC/GG | |
SNP9 | SNP11 | STAT5A | CD4 | AA_int_oo_12 | 0.008 9 | AA/TT | |
SNP9 | SNP19 | STAT5A | TRAPPC9 | AA_int_oo_12 | 0.009 2 | AA/AA | |
SNP11 | SNP12 | CD4 | LAG3 | AA_int_rr_12 | 0.012 5 | TT/AA | |
SNP11 | SNP16 | CD4 | DGAT1 | RD_int_oo_1vs0 | 0.008 8 | TT/AG+GG | |
SNP11 | SNP19 | CD4 | TRAPPC9 | AA_int_rr_12 | 0.003 4 | TT/AA | |
SNP12 | SNP16 | LAG3 | DGAT1 | DD_int_or_1vs0 | 0.032 6 | GA+AA/AA | |
SNP15 | SNP16 | DGAT1 | DGAT1 | DD_int_or_1vs0 | 0.028 1 | AG+GG/AA | |
SNP17 | SNP19 | DGAT1 | TRAPPC9 | AA_int_ro_12 | 0.016 1 | TT/AA | |
SNP18 | SNP19 | TRAPPC9 | TRAPPC9 | DD_int_ro_1vs0 | 0.028 1 | AA/GA+AA | |
SNP19 | SNP20 | TRAPPC9 | PTK2 | DD_int_or_1vs0 | 0.000 3 | GA+AA/GG |
1 |
DODDF H,HOARER J T.Progress in the control of bovine mastitis[J].Aust Vet J,1985,62(S1):37-40.
doi: 10.1111/j.1751-0813.1985.tb13887.x |
2 |
MEKTRIRATR,CHUAMMITRIP,NAVATHONGD,et al.Exploring the potential immunomodulatory effects of gallic acid on milk phagocytes in bovine mastitis caused by Staphylococcus aureus[J].Front Vet Sci,2023,10,1255058.
doi: 10.3389/fvets.2023.1255058 |
3 | 叶雯,麻柱,俞英,等.我国奶牛乳房炎发病现状及防治措施[J].中国畜牧杂志,2023,59(9):343-348. |
YEW,MAZ,YUY,et al.Incidence status of mastitis in dairy cows and its prevention and treatment measures in China[J].Chinese Journal of Animal Science,2023,59(9):343-348. | |
4 |
WANGM Q,LIANGY,IBEAGHA-AWEMUE M,et al.Genome-wide DNA methylation analysis of mammary gland tissues from Chinese Holstein cows with Staphylococcus aureus induced mastitis[J].Front Genet,2020,11,550515.
doi: 10.3389/fgene.2020.550515 |
5 |
MARTINP,BARKEMAH W,BRITOL F,et al.Symposium review: novel strategies to genetically improve mastitis resistance in dairy cattle[J].J Dairy Sci,2018,101(3):2724-2736.
doi: 10.3168/jds.2017-13554 |
6 |
YUANZ R,CHUG Y,DANY,et al.BRCA1:a new candidate gene for bovine mastitis and its association analysis between single nucleotide polymorphisms and milk somatic cell score[J].Mol Biol Rep,2012,39(6):6625-6631.
doi: 10.1007/s11033-012-1467-5 |
7 |
MAGOTRAA,GUPTAI D,AHMADT,et al.Polymorphism in DNA repair gene BRCA1 associated with clinical mastitis and production traits in indigenous dairy cattle[J].Res Vet Sci,2020,133,194-201.
doi: 10.1016/j.rvsc.2020.09.013 |
8 | WANGC F,LIUM,LIQ L,et al.Three novel single-nucleotide polymorphisms of MBL1 gene in Chinese native cattle and their associations with milk performance traits[J].Vet Immunol Immunopathol,2011,139(2/4):229-236. |
9 |
LIUJ B,JUZ H,LIQ L,et al.Mannose-binding lectin 1 haplotypes influence serum MBL-A concentration, complement activity, and milk production traits in Chinese Holstein cattle[J].Immunogenetics,2011,63(11):727-742.
doi: 10.1007/s00251-011-0548-2 |
10 |
KAMALDEEP,MAGOTRAA,PANDERB L,et al.Evaluation of candidate genotype of immune gene MBL1 associated with udder health and performance traits in dairy cattle and buffalo of India[J].Trop Anim Health Prod,2021,53(4):429.
doi: 10.1007/s11250-021-02865-2 |
11 | BEECHERC,DALYM,CHILDSS,et al.Polymorphisms in bovine immune genes and their associations with somatic cell count and milk production in dairy cattle[J].BMC Genet,2010,11,99. |
12 |
DE MESQUITAA Q,REZENDEC S M E,DE MESQUITAA J,et al.Association of TLR4 polymorphisms with subclinical mastitis in Brazilian holsteins[J].Braz J Microbiol,2012,43(2):692-697.
doi: 10.1590/S1517-83822012000200034 |
13 |
LIJ,WANGQ,CHENF H,et al.SNPs of CD14 change the mastitis morbidity of Chinese Holstein[J].Mol Med Rep,2017,16(6):9102-9110.
doi: 10.3892/mmr.2017.7727 |
14 |
KHANM Z,WANGJ J,MAY L,et al.Genetic polymorphisms in immune- and inflammation-associated genes and their association with bovine mastitis resistance/susceptibility[J].Front Immunol,2023,14,1082144.
doi: 10.3389/fimmu.2023.1082144 |
15 |
KHANM Z,WANGD,LIUL,et al.Significant genetic effects of JAK2 and DGAT1 mutations on milk fat content and mastitis resistance in Holsteins[J].J Dairy Res,2019,86(4):388-393.
doi: 10.1017/S0022029919000682 |
16 |
KHANM Z,DARIG,KHANA,et al.Genetic polymorphisms of TRAPPC9 and CD4 genes and their association with milk production and mastitis resistance phenotypic traits in Chinese Holstein[J].Front Vet Sci,2022,9,1008497.
doi: 10.3389/fvets.2022.1008497 |
17 | GONZÁLEZJ R,ARMENGOLL,SOLÉX,et al.SNPassoc: an R package to perform whole genome association studies[J].Bioinformatics,2007,23(5):654-655. |
18 | 马裴裴,俞英,张沅,等.中国荷斯坦牛SCC变化规律及其与产奶性状之间的关系[J].畜牧兽医学报,2010,41(12):1529-1535. |
MAP P,YUY,ZHANGY,et al.The distribution of SCC and its correlation with milk production traits in Chinese Holsteins[J].Acta Veterinaria et Zootechnica Sinica,2010,41(12):1529-1535. | |
19 |
LINH Y,CHEND T,HUANGP Y,et al.SNP interaction pattern identifier (SIPI): an intensive search for SNP-SNP interaction patterns[J].Bioinformatics,2017,33(6):822-833.
doi: 10.1093/bioinformatics/btw762 |
20 |
RUTERBUSCHM,PRUNERK B,SHEHATAL,et al.In vivo CD4+ T cell differentiation and function: revisiting the Th1/Th2 paradigm[J].Annu Rev Immunol,2020,38,705-725.
doi: 10.1146/annurev-immunol-103019-085803 |
21 | LUX B,ARBABA A I,ABDALLAI M,et al.Genetic parameter estimation and genome-wide association study-based loci identification of milk-related traits in Chinese Holstein[J].Front Genet,2021,12,799664. |
22 | LIUL Y,ZHOUJ H,CHENC J,et al.GWAS-based identification of new loci for milk yield, fat, and protein in Holstein cattle[J].Animals (Basel),2020,10(11):2048. |
23 |
PARVEENA,ASHRAFS,AKTASM,et al.Molecular epidemiology of Theileria annulata infection of cattle in Layyah District, Pakistan[J].Exp Appl Acarol,2021,83(3):461-473.
doi: 10.1007/s10493-021-00595-6 |
24 |
IQBALN,LIUX,YANGT,et al.Genomic variants identified from whole-genome resequencing of indicine cattle breeds from Pakistan[J].PLoS One,2019,14(4):e0215065.
doi: 10.1371/journal.pone.0215065 |
25 |
RAFIQA,ZAREENG,AKBARS,et al.Association of genotypes at rs438228855 in bovine SLC35A3 receptor gene of Pakistani cattle with the susceptibility to develop complex vertebral malformation[J].Reprod Domest Anim,2023,58(6):754-761.
doi: 10.1111/rda.14346 |
26 | 周月玲,达日格日乐,唐永杰,等.中国荷斯坦牛乳房炎抗性相关SNP效应扩群验证及分析[J].中国畜牧杂志,2022,58(12):92-98. |
ZHOUY L,DARIGERILE,TANGY J,et al.Genetic effect of SNP loci associated with mastitis resistance in an extended validation cohort of Chinese Holstein cattle[J].Chinese Journal of Animal Science,2022,58(12):92-98. | |
27 | WORKUD,GOWANEG R,MUKHERJEEA,et al.Associations between polymorphisms of LAP3 and SIRT1 genes with clinical mastitis and milk production traits in Sahiwal and Karan Fries dairy cattle[J].Vet Med Sci,2022,8(6):2593-2604. |
28 | WORKUD,VERMAA.Genetic variation in bovine LAP3 and SIRT1 genes associated with fertility traits in dairy cattle[J].BMC Genom Data,2024,25(1):32. |
29 | BOYEC,NIRMALANS,RANJBARANA,et al.Genotype×environment interactions in gene regulation and complex traits[J].Nat Genet,2024,56(6):1057-1068. |
30 | FLETCHERO,DUDBRIDGEF.Candidate gene-environment interactions in breast cancer[J].BMC Med,2014,12,195. |
31 | HANJ H,LIANGJ,ZHOUW Q,et al.Association between NUDT17 polymorphisms and breast cancer risk[J].Expert Rev Mol Diagn,2024,24(5):459-466. |
32 | 冯文,董易春,王晓,等.TRAPPC9基因对奶牛金葡菌乳房炎抗性性状的遗传效应[J].畜牧兽医学报,2016,47(2):276-283. |
FENGW,DONGY C,WANGX,et al.The genetic effect of TRAPPC9 on mastitis resistance to S.aureus in dairy cows[J].Acta Veterinaria et Zootechnica Sinica,2016,47(2):276-283. | |
33 | MBIMBAT,HUSSEINN J,NAJEEDA,et al.TRAPPC9:Novel insights into its trafficking and signaling pathways in health and disease (Review)[J].Int J Mol Med,2018,42(6):2991-2997. |
34 | BODNARB,DEGRUTTOLAA,ZHUY J,et al.Emerging role of NIK/IKK2-binding protein (NIBP)/trafficking protein particle complex 9 (TRAPPC9) in nervous system diseases[J].Transl Res,2020,224,55-70. |
35 | YOSHIMURAS,BONDESONJ,BRENNANF M,et al.Role of NFκB in antigen presentation and development of regulatory T cells elucidated by treatment of dendritic cells with the proteasome inhibitor PSI[J].Eur J Immunol,2001,31(6):1883-1893. |
36 | SHARUNK,DHAMAK,TIWARIR,et al.Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review[J].Vet Q,2021,41(1):107-136. |
37 | SALEEMA,SALEEMB S,OMONIJOF A,et al.Immunotherapy in mastitis: state of knowledge, research gaps and way forward[J].Vet Q,2024,44(1):1-23. |
38 | COSTAA,DE MARCHIM,NEGLIAG,et al.Milk somatic cell count-derived traits as new indicators to monitor udder health in dairy buffaloes[J].Ital J Anim Sci,2021,20(1):548-558. |
39 | HUMAZ I,SHARMAN,KOURS,et al.Phenotypic and molecular characterization of bovine mastitis milk origin bacteria and linkage of intramammary infection with milk quality[J].Front Vet Sci,2022,9,885134. |
40 |
杨晴,巩静,赵雪艳,等.芯片和重测序在猪遗传结构研究中的应用比较[J].畜牧兽医学报,2023,54(7):2772-2782.
doi: 10.11843/j.issn.0366-6964.2023.07.011 |
YANGQ,GONGJ,ZHAOX Y,et al.Comparison of array and resequencing in pig genetic structure studies[J].Acta Veterinaria et Zootechnica Sinica,2023,54(7):2772-2782.
doi: 10.11843/j.issn.0366-6964.2023.07.011 |
|
41 | 黄金明, 王秀革, 姜强, 等. 一套同时检测93种牛遗传缺陷基因和致死单倍型的引物组合及试剂盒: 中国, 201710438948.9[P]. 2020-03-17. |
HUANG J M, WANG X G, JIANG Q, et al. Primer combination and kit for simultaneous detection of 93 bovine genetic defect genes and lethal haplotypes: CN, 201710438948.9[P]. 2020-03-17. (in Chinese) |
[1] | 孟璐, 胡海燕, 董蕾, 郑楠, 王加启. 基于SourceTracker分析牧场环境对乳房炎乳菌群的影响[J]. 畜牧兽医学报, 2023, 54(9): 3872-3883. |
[2] | 路畅, 董磊, 张万锋, 高鹏飞, 郭晓红, 蔡春波, 曹果清, 李步高. 基于全基因组重测序对晋汾白猪单核苷酸多态性位点鉴定和筛选[J]. 畜牧兽医学报, 2023, 54(7): 2761-2771. |
[3] | 王振宇, 张赛博, 刘文慧, 梁栋, 任小丽, 闫磊, 闫跃飞, 高腾云, 张震, 黄河天. 基于SNP芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因[J]. 畜牧兽医学报, 2023, 54(7): 2848-2857. |
[4] | 单强, 王雪, 朱要宏, 王九峰. 鼠李糖乳杆菌抗炎机制及其在防治家畜疾病中的应用前景[J]. 畜牧兽医学报, 2023, 54(11): 4537-4550. |
[5] | 孙东晓, 张胜利, 张勤, 李姣, 张桂香, 刘丑生, 郑伟杰. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54(10): 4028-4039. |
[6] | 宋月通, 张汝美, 李彦芹, 李荣岭, 高运东, 仲跻峰, 薛光辉, 王玉东, 李建斌, 孙东晓. 山东省荷斯坦奶牛体型性状遗传参数估计及系谱世代数的影响[J]. 畜牧兽医学报, 2022, 53(5): 1384-1395. |
[7] | 王迪, 俞英. 奶牛金葡菌乳房炎抗性的转录组及表观遗传学研究进展[J]. 畜牧兽医学报, 2022, 53(2): 329-338. |
[8] | 任钰为, 王峰, 王成, 张艳, 孙瑞萍, 刘海隆, 乔传民, 邢漫萍, 黄丽丽, 曹宗喜, 晁哲. 五指山猪和杜洛克猪全基因组选择信号差异分析[J]. 畜牧兽医学报, 2022, 53(12): 4172-4182. |
[9] | 李宏伟, 徐凌洋, 王泽昭, 蔡文涛, 朱波, 陈燕, 高雪, 张路培, 高会江, 李俊雅. 基于单倍型肉牛屠宰性状全基因组关联分析研究[J]. 畜牧兽医学报, 2022, 53(12): 4232-4243. |
[10] | 许静漪, 徐昊祺, 胡丽蓉, 张帆, 高清, 罗汉鹏, 张海亮, 师睿, 李想, 刘林, 郭刚, 王雅春. MET基因多态性与中国荷斯坦牛繁殖和泌乳性状的关联分析[J]. 畜牧兽医学报, 2022, 53(11): 3769-3785. |
[11] | 左扬, 李田, 胡秀花, 宋志强, 孙城涛, 吴聪明, 王少林. 奶牛牧场养殖环境中产ESBL耐药菌的流行特征[J]. 畜牧兽医学报, 2022, 53(11): 4027-4034. |
[12] | 陶璇, 何志平, 梁艳, 杨雪梅, 雷云峰, 王言, 胡紫惠, 廖坤, 肖贤勋, 格桑, 马贵云, 吉绒丹增, 敖翔, 吕学斌, 顾以韧. 不同地方猪重要经济性状关联位点SNP芯片分型及群体遗传结构研究[J]. 畜牧兽医学报, 2022, 53(10): 3358-3367. |
[13] | 苏丁然, 彭朋, 闫青霞, 陈绍祜, 张胜利, 李姣, 刘丑生, 孙东晓. 我国荷斯坦青年公牛基因组选择效果分析[J]. 畜牧兽医学报, 2021, 52(6): 1550-1562. |
[14] | 陈紫薇, 师睿, 罗汉鹏, 田佳, 魏趁, 张伟新, 李委奇, 温万, 王雅晶, 王雅春. 宁夏地区荷斯坦牛青年牛繁殖性状遗传参数估计[J]. 畜牧兽医学报, 2021, 52(2): 344-351. |
[15] | 彭朋, 李建明, 蒋桂娥, 杨晨东, 马亚宾, 倪俊卿, 孙东晓. 河北省中国荷斯坦牛产奶和体型性状遗传参数分析[J]. 畜牧兽医学报, 2021, 52(1): 42-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||