畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (10): 4028-4039.doi: 10.11843/j.issn.0366-6964.2023.10.003
孙东晓1*, 张胜利1, 张勤1,2, 李姣3, 张桂香3, 刘丑生3, 郑伟杰1
收稿日期:
2023-04-14
出版日期:
2023-10-23
发布日期:
2023-10-26
通讯作者:
孙东晓,主要从事动物分子数量遗传学与奶牛育种研究,E-mail:sundx@cau.edu.cn
作者简介:
孙东晓(1972-),女,河北衡水人,博士,教授,主要从事动物分子数量遗传学与奶牛育种研究,E-mail:sundx@cau.edu.cn
基金资助:
SUN Dongxiao1*, ZHANG Shengli1, ZHANG Qin1,2, LI Jiao3, ZHANG Guixiang3, LIU Chousheng3, ZHENG Weijie1
Received:
2023-04-14
Online:
2023-10-23
Published:
2023-10-26
摘要: 基因组选择(GS)的基本原理是基于全基因组高密度标记(主要是SNPs)来评估和选择基因优良的个体。利用该技术,可以实现不依赖表型信息对青年公牛及后备母牛进行早期准确选择,将奶牛育种周期由5~6年缩短至2年左右,大幅度缩短世代间隔,从而显著降低育种成本,加快群体遗传进展。2009年美国率先公布荷斯坦青年公牛的基因组综合选择指数,标志着奶牛育种进入了基因组选择时代。本文从1)基因组选择基本过程及优势;2)奶业发达国家的基因组选择应用现状,包括参考群体大小、选育性状及应用效果;3)我国奶牛基因组选择分子育种技术体系的建立与应用效果这3个方面进行了系统综述,旨在为我国的奶牛育种工作提供借鉴与指导。
中图分类号:
孙东晓, 张胜利, 张勤, 李姣, 张桂香, 刘丑生, 郑伟杰. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54(10): 4028-4039.
SUN Dongxiao, ZHANG Shengli, ZHANG Qin, LI Jiao, ZHANG Guixiang, LIU Chousheng, ZHENG Weijie. Application Progress on Genomic Selection Technology for Dairy Cattle in China[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4028-4039.
[1] | VISSCHER P M, MEDLAND S E, FERREIRA M A R, et al.Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings[J].PLoS Genet, 2006, 2(3):e41. |
[2] | SELLNER E M, KIM J W, MCCLURE M C, et al.Board-invited review:applications of genomic information in livestock[J].J Anim Sci, 2007, 85(12):3148-3158. |
[3] | VANRADEN P M, VAN TASSELL C P, WIGGANS G R, et al.Invited review:reliability of genomic predictions for North American Holstein bulls[J].J Dairy Sci, 2009, 92(1):16-24. |
[4] | MEUWISSEN T H E, HAYES B J, GODDARD M E.Prediction of total genetic value using genome-wide dense marker maps[J].Genetics, 2001, 157(4):1819-1829. |
[5] | SCHAEFFER L R.Strategy for applying genome-wide selection in dairy cattle[J].J Anim Breed Genet, 2006, 123(4):218-223. |
[6] | MATUKUMALLI L K, LAWLEY C T, SCHNABEL R D, et al.Development and characterization of a high density SNP genotyping assay for cattle[J].PLoS One, 2009, 4(4):e5350. |
[7] | Illumina.BovineSNP50 Genotyping BeadChip[R].San Diego:Illumina, 2016. |
[8] | WIGGANS G R, COLE J B, HUBBARD S M, et al.Genomic selection in dairy cattle:the USDA experience[J].Annu Rev Anim Biosci, 2017, 5:309-327. |
[9] | CUYABANO B C, SU G S, LUND M S.Selection of haplotype variables from a high-density marker map for genomic prediction[J]. Genet Sel Evol, 2015, 47(1):61. |
[10] | HAYES B J, BOWMAN P J, CHAMBERLAIN A J, et al.Invited review:genomic selection in dairy cattle:progress and challenges[J]. J Dairy Sci, 2009, 92(2):433-443. |
[11] | LIU Z T, SEEFRIED F R, REINHARDT F, et al.Impacts of both reference population size and inclusion of a residual polygenic effect on the accuracy of genomic prediction[J].Genet Sel Evol, 2011, 43(1):19. |
[12] | 张胜利, 孙东晓.奶牛种业的昨天、今天和明天[J].中国畜牧业, 2021(15):22-26.ZHANG S L, SUN D X.Past, now and future of daory breeding in dustry[J].China Animal Industry, 2021(15):22-26.(in Chinese) |
[13] | 郑伟杰, 李厚诚, 苏丁然, 等.国际奶牛遗传评估体系概况[J].中国畜牧杂志, 2020, 56(6):161-168.ZHENG W J, LI H C, SU D R, et al.General status of international genetic evaluation system of dairy cattle[J].Chinese Journal of Animal Science, 2020, 56(6):161-168.(in Chinese) |
[14] | DING X, ZHANG Z, LI X, et al.Accuracy of genomic prediction for milk production traits in the Chinese Holstein population using a reference population consisting of cows[J].J Dairy Sci, 2013, 96(8):5315-5323. |
[15] | 张 哲, 张 勤, 丁向东.畜禽基因组选择研究进展[J].科学通报, 2011, 56(26):2212-2222.ZHANG Z, ZHANG Q, DING X D.Advances in genomic selection in domestic animals[J].Chinese Science Bulletin, 2011, 56(26):2212-2222.(in Chinese) |
[16] | MA P P, LUND M S, AAMAND G P, et al.Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population[J].J Dairy Sci, 2019, 102(8):7237-7247. |
[17] | DRUET T, MACLEOD I M, HAYES B J.Toward genomic prediction from whole-genome sequence data:impact of sequencing design on genotype imputation and accuracy of predictions[J].Heredity (Edinb), 2014, 112(1):39-47. |
[18] | ERBE M, HAYES B J, MATUKUMALLI L K, et al.Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels[J].J Dairy Sci, 2012, 95(7):4114-4129. |
[19] | VAN BINSBERGEN R, CALUS M P L, BINK M C A M, et al.Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle[J].Genet Sel Evol, 2015, 47(1):71. |
[20] | CALUS M P L, MEUWISSEN T H E, WINDIG J J, et al.Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values[J].Genet Sel Evol, 2009, 41(1):11. |
[21] | CALUS M P L, MEUWISSEN T H E, DE ROOS A P W, et al.Accuracy of genomic selection using different methods to define haplotypes[J].Genetics, 2008, 178(1):553-561. |
[22] | DOUBLET A C, CROISEAU P, FRITZ S, et al.The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds[J].Genet Sel Evol, 2019, 51(1):52. |
[23] | HABIER D, TETENS J, SEEFRIED F R, et al.The impact of genetic relationship information on genomic breeding values in German Holstein cattle[J].Genet Sel Evol, 2010, 42(1):5. |
[24] | SONESSON A K, MEUWISSEN T H E.Testing strategies for genomic selection in aquaculture breeding programs[J].Genet Sel Evol, 2009, 41(1):37. |
[25] | VANRADEN P M.Efficient methods to compute genomic predictions[J].J Dairy Sci, 2008, 91(11):4414-4423. |
[26] | CAI W T, LI C, LIU S L, et al.Genome wide identification of novel long non-coding RNAs and their potential associations with milk proteins in Chinese Holstein cows[J].Front Genet, 2018, 9:281. |
[27] | PRYCE J E, HAILE-MARIAM M.Symposium review:genomic selection for reducing environmental impact and adapting to climate change[J].J Dairy Sci, 2020, 103(6):5366-5375. |
[28] | WIGGANS G R, COOPER T A, VAN TASSELL C P, et al.Technical note:characteristics and use of the Illumina BovineLD and GeneSeek genomic profiler low-density bead chips for genomic evaluation[J].J Dairy Sci, 2013, 96(2):1258-1263. |
[29] | VAN DOORMAAL B J, KISTEMAKER G J, SULLIVAN P G, et al.Canadian implementation of genomic evaluations[C]//Proceedings of the 2009 Interbull Meeting.Barcelona:Interbull Bulletin, 2009:214-218. |
[30] | DAVID X, DE VRIES A, FEDDERSEN E, et al.International genomic cooperation-Euro Genomics significantly improves reliability of genomic evaluations[C]//Proceedings of the Interbull International Workshop.Paris:Interbull Bulletin, 2010:77-78. |
[31] | DRUET T, SCHROOTEN C, ROOS A P W D.In silico genotyping of thousands of SNP in dairy cattle for the EuroGenomics project.2010. |
[32] | 方美英, 刘剑锋, 张 勤, 等.加速优秀基因传递开辟动物遗传育种新时代[J].中国农村科技, 2016(6):61-63.FANG M Y, LIU J F, ZHANG Q, et al.Accelerating the transfer of excellent genes and opening up a new era of animal genetic breeding[J].China Rural Science & Technology, 2016(6):61-63.(in Chinese) |
[33] | 吴晓平.基于SNP芯片和全测序数据的奶牛全基因组关联分析和基因组选择研究[D].北京:中国农业大学, 2014.WU X P.GWAS and genomic prediction based on markers of SNP-Chips and sequence data in dairy cattle populations[D]. Beijing:China Agricultural University, 2014.(in Chinese) |
[34] | 张 哲.畜禽基因组选择方法及其应用研究[D].北京:中国农业大学, 2011.ZHANG Z.Development and application of genomic selection methodology in livestock[D].Beijing:China Agricultural University, 2011.(in Chinese) |
[35] | ZHANG Q Q, SAHANA G, SU G S, et al.Impact of rare and low-frequency sequence variants on reliability of genomic prediction in dairy cattle[J].Genet Sel Evol, 2018, 50(1):62. |
[36] | 郑伟杰.比较研究不同密度芯片和估计方法对我国奶牛基因组预测准确性的影响[D].北京:中国农业大学, 2021.ZHENG W J.Comparative study on accuracy of genomic prediction based on different chips and estimation methods for Holstein cows[D].Beijing:China Agricultural University, 2021.(in Chinese) |
[37] | ZHANG Z, DING X D, LIU J F, et al.Genomic selection for QTL-MAS data using a trait-specific relationship matrix[J].BMC Proc, 2011, 5 Suppl 3(Suppl 3):S15. |
[38] | DE ROOS A P W, HAYES B J, GODDARD M E.Reliability of genomic predictions across multiple populations[J].Genetics, 2009, 183(4):1545-1553. |
[39] | GODDARD M.Genomic selection:prediction of accuracy and maximisation of long term response[J].Genetica, 2009, 136(2):245-257. |
[40] | GODDARD M E, HAYES B J.Genomic selection[J].J Anim Breed Genet, 2007, 124(6):323-330. |
[41] | 农业农村部种业管理司, 全国畜牧总站.中国乳用种公牛遗传评估概要2021[M].北京:中国农业出版社, 2022.Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Animal Husbandry Services.Sire summaries on national dairy genetic evaluation 2021[M].Beijing:China Agriculture Press, 2022.(in Chinese) |
[42] | 农业农村部种业管理司, 全国畜牧总站.中国畜禽种业发展报告2020-2021[M].北京:中国农业出版社, 2022.Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Animal Husbandry Station.China livestock and poultry breeding industry development report 2020-2021[M].Beijing:China Agriculture Press, 2022.(in Chinese) |
[43] | 苏丁然, 彭 朋, 闫青霞, 等.我国荷斯坦青年公牛基因组选择效果分析[J].畜牧兽医学报, 2021, 52(6):1550-1562.SU D R, PENG P, YAN Q X, et al.Analysis of the effects for genomic selection in Holstein young bulls in China[J].Acta Veterinaria et Zootechnica Sinica, 2021, 52(6):1550-1562.(in Chinese) |
[44] | VAN VLECK L D.Selection index and introduction to mixed model methods[M].Boca Raton:CRC Press, 1993. |
[45] | HENDERSON C R.Sire evaluation and genetic trends[J].J Anim Sci, 1973, 1973(S1):10-41. |
[46] | GIANOLA D, DE LOS CAMPOS G, HILL W G, et al.Additive genetic variability and the Bayesian alphabet[J].Genetics, 2009, 183(1):347-363. |
[47] | HABIER D, FERNANDO R L, KIZILKAYA K, et al.Extension of the Bayesian alphabet for genomic selection[J].BMC Bioinformatics, 2011, 12:186. |
[48] | GIANOLA D.Priors in whole-genome regression:the bayesian alphabet returns[J].Genetics, 2013, 194(3):573-596. |
[49] | MOSER G, LEE S H, HAYES B J, et al.Simultaneous discovery, estimation and prediction analysis of complex traits using a bayesian mixture model[J].PLoS Genet, 2015, 11(4):e1004969. |
[50] | PARK T, CASELLA G.The Bayesian lasso[J].J Am Stat Assoc, 2008, 103(482):681-686. |
[51] | TIBSHIRANI R.Regression shrinkage and selection via the lasso[J].J Roy Stat Soc B Methodol, 1996, 58(1):267-288. |
[52] | BOSER B E, GUYON I M, VAPNIK V N.A training algorithm for optimal margin classifiers[C]//Proceedings of the Fifth Annual Workshop on Computational Learning Theory.Pittsburgh:ACM, 1992:144-152. |
[53] | MVLLER A C, GUIDO S.Introduction to machine learning with python:a guide for data scientists[M].Sebastopol:O'Reilly Media, 2016. |
[54] | SAUNDERS C, GAMMERMAN A, VOVK V.Ridge regression learning algorithm in dual variables[C]//Proceedings of the Fifteenth International Conference on Machine Learning.Madison:ICML, 1998:515-521. |
[55] | EXTERKATE P, GROENEN P J F, HEIJ C, et al.Nonlinear forecasting with many predictors using kernel ridge regression[J].Int J Forecast, 2016, 32(3):736-753. |
[56] | BREIMAN L.Random forests[J].Mach Learn, 2001, 45(1):5-32. |
[57] | GONZÁLEZ-CAMACHO J M, ORNELLA L, PÉREZ-RODRÍGUEZ P, et al.Applications of machine learning methods to genomic selection in breeding wheat for rust resistance[J].Plant Genome, 2018, 11(2):170104. |
[58] | KONONENKO I, KUKAR M.Machine learning and data mining:introduction to principles and algorithms[M].Chichester:Horwood Pub, 2007. |
[59] | LONG N Y, GIANOLA D, ROSA G J M, et al.Application of support vector regression to genome-assisted prediction of quantitative traits[J].Theor Appl Genet, 2011, 123(7):1065-1074. |
[60] | EIRÍKSSON J H, STRANDÉN I, SU G S, et al.Local breed proportions and local breed heterozygosity in genomic predictions for crossbred dairy cows[J].J Dairy Sci, 2022, 105(12):9822-9836. |
[61] | GUILLENEA A, SU G S, LUND M S, et al.Genomic prediction in Nordic Red dairy cattle considering breed origin of alleles[J].J Dairy Sci, 2022, 105(3):2426-2438. |
[62] | VANRADEN P M.Symposium review:how to implement genomic selection[J].J Dairy Sci, 2020, 103(6):5291-5301. |
[63] | WELLER J I, EZRA E, RON M.Invited review:a perspective on the future of genomic selection in dairy cattle[J].J Dairy Sci, 2017, 100(11):8633-8644. |
[64] | DE HAAS Y, PSZCZOLA M, SOYEURT H, et al.Invited review:phenotypes to genetically reduce greenhouse gas emissions in dairying[J].J Dairy Sci, 2017, 100(2):855-870. |
[65] | SCHÖPKE K, SWALVE H H.Review:opportunities and challenges for small populations of dairy cattle in the era of genomics[J]. Animal, 2016, 10(6):1050-1060. |
[1] | 费国庆, 宁致远, 赵泽芳, 刘艳秋, 刘腾飞, 李贤, 丛日华, 陈鸿, 陈树林. 妊娠期奶牛黄体细胞的分离鉴定及培养特性[J]. 畜牧兽医学报, 2024, 55(5): 2214-2225. |
[2] | 向辉, 桂林森, 杨迪, 魏士昊, 宫艳斌, 史远刚, 马云, 淡新刚. 奶牛同期发情-定时输精技术研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1412-1422. |
[3] | 沈文娟, 杨卓, 张馨蕊, 付予, 陶金忠. 奶牛生殖道微生物与繁殖及相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(3): 924-932. |
[4] | 康方圆, 刘镇滔, 吴奎显, 倪晗, 钟凯, 李和平, 杨国宇, 韩立强. 脂噬对奶牛乳腺上皮细胞脂滴大小的调控研究[J]. 畜牧兽医学报, 2024, 55(3): 1095-1101. |
[5] | 钟欣, 张晖, 张充, 刘小红. 母猪繁殖力基因遗传育种研究进展[J]. 畜牧兽医学报, 2024, 55(2): 438-450. |
[6] | 张馨蕊, 付予, 杨卓, 沈文娟, 陶金忠. 奶牛早期妊娠诊断蛋白的研究[J]. 畜牧兽医学报, 2024, 55(2): 451-460. |
[7] | 张志飞, 唐雪颖, 闵力, 童雄, 陈卫东, 巨向红, 李大刚. 荷斯坦奶牛肝脏组织中与泌乳时期及繁殖力相关的基因共表达网络构建[J]. 畜牧兽医学报, 2024, 55(2): 528-539. |
[8] | 庄翠翠, 韩博. 大肠杆菌感染奶牛乳腺上皮细胞和小鼠乳腺组织致其线粒体损伤的机制研究[J]. 畜牧兽医学报, 2024, 55(2): 822-833. |
[9] | 王元清, 王兢, 朱波, 陈燕, 徐凌洋, 王泽昭, 张路培, 高会江, 李俊雅, 高雪. 基因组选配研究及其在畜禽育种中的应用[J]. 畜牧兽医学报, 2024, 55(1): 1-10. |
[10] | 曹建华, 杨柏高, 张培培, 冯肖艺, 张航, 余洲, 牛一凡, 郝海生, 杜卫华, 朱化彬, 杨凌, 赵学明. 能量负平衡影响奶牛卵泡发育的机制[J]. 畜牧兽医学报, 2024, 55(1): 22-30. |
[11] | 严晓春, 习海娇, 李金泉, 王志英, 苏蕊. 内蒙古绒山羊绒毛性状基因组育种值估计准确性研究[J]. 畜牧兽医学报, 2024, 55(1): 120-128. |
[12] | 孟璐, 胡海燕, 董蕾, 郑楠, 王加启. 基于SourceTracker分析牧场环境对乳房炎乳菌群的影响[J]. 畜牧兽医学报, 2023, 54(9): 3872-3883. |
[13] | 张航, 杨柏高, 徐茜, 冯肖艺, 杜卫华, 郝海生, 朱化彬, 张培培, 赵学明. 热应激影响奶牛胚胎发育作用机制的研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2692-2700. |
[14] | 赵婉莉, 曹棋棋, 杨悦, 邓昭举, 徐闯. 胃肠道菌群与黏膜免疫在围产期奶牛健康中的作用[J]. 畜牧兽医学报, 2023, 54(7): 2751-2760. |
[15] | 王万年, 陈思佳, 郜金荣, 温中豪, 袁梦娇, 张洪志, 庞志旭, 乔利英, 刘文忠. 基于多层感知机的绵羊限性性状基因组选择模拟研究[J]. 畜牧兽医学报, 2023, 54(7): 2824-2835. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||