畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 5147-5158.doi: 10.11843/j.issn.0366-6964.2024.11.030
李常营1(), 徐兰梦1, 黄榆智1, 何航2, 万堃1, 袁岩聪1,3,*(
), 章杰1,*(
)
收稿日期:
2024-02-27
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
袁岩聪,章杰
E-mail:licy1983@163.com;y1400510152@163.com;zhangjie813@163.com
作者简介:
李常营(1983-), 男, 山东枣庄人, 讲师, 博士, 主要从事畜禽肠道微生物研究, E-mail: licy1983@163.com
基金资助:
Changying LI1(), Lanmeng XU1, Yuzhi HUANG1, Hang HE2, Kun WAN1, Yancong YUAN1,3,*(
), Jie ZHANG1,*(
)
Received:
2024-02-27
Online:
2024-11-23
Published:
2024-11-30
Contact:
Yancong YUAN, Jie ZHANG
E-mail:licy1983@163.com;y1400510152@163.com;zhangjie813@163.com
摘要:
旨在阐明母乳和配方奶引起的猪肠道微生态差异。本研究选取12头健康、体重基本一致的1日龄雌性荣昌仔猪,随机分为两组,每组6头仔猪,分别进行母乳喂养(BF)和配方喂养(FF),30日龄断奶后继续饲喂至210日龄,测定体重和血清生化指标,并利用16S rRNA测序和LC-MS技术分别检测盲肠微生物和代谢物的组成。结果显示:与FF猪相比,BF猪平均日增重、血清谷丙转氨酶、谷氨酰氨基转移酶、碱性磷酸酶、白蛋白、总胆固醇、高密度脂蛋白和低密度脂蛋白水平以及白蛋白/球蛋白比值均显著升高(P < 0.05),而肌酐水平和谷草转氨酶/谷丙转氨酶比值显著降低(P < 0.05)。肠道微生物方面,与FF猪相比,BF猪chao1、ace和simpson指数以及Actinobacteria、Bacteroidetes、Lactobacillus、Clostridium_XlVa、Streptococcus、Oscillibacter和Megasphaera相对丰度显著升高(P < 0.05),而shannon指数以及Clostridium_sensu_stricto、Turicibacter、Terrisporobacter和Mogibacterium相对丰度显著降低(P < 0.05)。并且,与FF猪相比,BF猪丰度下调的差异微生物富集于氨基酸代谢、辅助因子与维生素代谢、脂质代谢及核苷酸代谢(P < 0.05),BF猪丰度上调的差异微生物富集于碳水化合物代谢、聚糖生物合成与代谢及异种生物降解与代谢(P < 0.05)。差异代谢物主要参与氨基酸代谢,比如组氨酸代谢、精氨酸和脯氨酸代谢以及色氨酸代谢,其次是嘧啶代谢和促乳素信号通路(P < 0.05)。此外,属水平丰度top 8的微生物绝大多数与特定代谢物之间均呈现显著相关(P < 0.05)。综上所述,母乳在提高有益菌丰度和促进氨基酸代谢方面具有积极的作用,结果将为与仔猪哺乳方式相关的一些风险和益处提供可能的解释,并将为仔猪配方奶的开发提供理论指导。
中图分类号:
李常营, 徐兰梦, 黄榆智, 何航, 万堃, 袁岩聪, 章杰. 哺乳方式对猪生长、血清生化、肠道微生物及代谢物的影响[J]. 畜牧兽医学报, 2024, 55(11): 5147-5158.
Changying LI, Lanmeng XU, Yuzhi HUANG, Hang HE, Kun WAN, Yancong YUAN, Jie ZHANG. Effect of Feeding Regimes on Growth, Serum Biochemistry, Gut Microbiota and Their Metabolites of Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5147-5158.
表 1
配方奶营养成分表"
项目Item | 含量Content | 项目Item | 含量Content | |
粗蛋白质Crude protein | ~18% | 赖氨酸Lysine | ~1.11% | |
粗脂肪Crude fat | ~13% | 蛋氨酸Methionine | ~0.36% | |
粗纤维Crude fiber | ~2% | 氯化钠NaCl | ~0.5% | |
粗灰分Crude ash | ~8% | 维生素E Vitamin E | ~40 mg | |
水分Moisture | ~9% | 维生素K3 Vitamin K3 | ~100 mg | |
总钙Total calcium | ~0.99% | 铁Fe | ~8 g | |
总磷Total phosphorous | ~0.71% | 锌Zn | ~3 g |
1 |
ADKINS B , LECLERC C , MARSHALL-CLARKE S . Neonatal adaptive immunity comes of age[J]. Nat Rev Immunol, 2004, 4 (7): 553- 564.
doi: 10.1038/nri1394 |
2 |
BANDRICK M , ARIZA-NIETO C , BAIDOO S K , et al. Colostral antibody-mediated and cell-mediated immunity contributes to innate and antigen-specific immunity in piglets[J]. Dev Comp Immunol, 2014, 43 (1): 114- 120.
doi: 10.1016/j.dci.2013.11.005 |
3 | 杨玮. 不同饲喂方式对初生仔兔肠道菌群及成活率的影响[D]. 乌鲁木齐市: 新疆农业大学, 2021. |
YANG W. Effects of different feeding methods on intestinal flora and survival rate of newborn rabbits[D]. Urumqi: Xinjiang Agricultural University, 2021. (in Chinese) | |
4 |
BOUDRY G , MORISE A , SEVE B , et al. Effect of milk formula protein content on intestinal barrier function in a porcine model of LBW neonates[J]. Pediatr Res, 2011, 69 (1): 5- 9.
doi: 10.1203/PDR.0b013e3182068ff0 |
5 | WEAVER L T , LAKER M F , NELSON R , et al. Milk feeding and changes in intestinal permeability and morphology in the newborn[J]. J Pediatr Gastroenterol Nutr, 1987, 6 (3): 351- 358. |
6 |
UDALL J N , COLONY P , FRITZE L , et al. Development of gastrointestinal mucosal barrier.Ⅱ.The effect of natural versus artificial feeding on intestinal permeability to macromolecules[J]. Pediatr Res, 1981, 15 (3): 245- 249.
doi: 10.1203/00006450-198103000-00009 |
7 |
TEICHBERG S , ISOLAURI E , WAPNIR R A , et al. Development of the neonatal rat small intestinal barrier to nonspecific macromolecular absorption: effect of early weaning to artificial diets[J]. Pediatr Res, 1990, 28 (1): 31- 32.
doi: 10.1203/00006450-199007000-00008 |
8 |
DEWEY K G , HEINIG M J , NOMMSEN-RIVERS L A . Differences in morbidity between breast-fed and formula-fed infants[J]. J Pediatr, 1995, 126 (5): 696- 702.
doi: 10.1016/S0022-3476(95)70395-0 |
9 |
POROYKO V , WHITE J R , WANG M , et al. Gut microbial gene expression in mother-fed and formula-fed piglets[J]. PLoS One, 2010, 5 (8): e12459.
doi: 10.1371/journal.pone.0012459 |
10 |
ZHANG J , LONG X , LIAO Q F , et al. Distinct gut microbiome induced by different feeding regimes in weaned piglets[J]. Genes (Basel), 2022, 14 (1): 49.
doi: 10.3390/genes14010049 |
11 | LAWRENCE R M , PANE C A . Human breast milk: current concepts of immunology and infectious diseases[J]. Curr Probl Pediatr Adolesc Health Care, 2007, 37 (1): 7- 36. |
12 | PARAMASIVAM K , MICHIE C , OPARA E , et al. Human breast milk immunology: a review[J]. Int J Fertil Womens Med, 2006, 51 (5): 208- 217. |
13 |
DEWEY K G , HEINIG M J , NOMMSEN L A , et al. Breast-fed infants are leaner than formula-fed infants at 1 y of age: the DARLING study[J]. Am J Clin Nutr, 1993, 57 (2): 140- 145.
doi: 10.1093/ajcn/57.2.140 |
14 |
RENDINA D N , LUBACH G R , PHILLIPS G J , et al. Maternal and breast milk influences on the infant gut microbiome, enteric health and growth outcomes of rhesus monkeys[J]. J Pediatr Gastroenterol Nutr, 2019, 69 (3): 363- 369.
doi: 10.1097/MPG.0000000000002394 |
15 |
HEINIG M J , NOMMSEN L A , PEERSON J M , et al. Energy and protein intakes of breast-fed and formula-fed infants during the first year of life and their association with growth velocity: the DARLING Study[J]. Am J Clin Nutr, 1993, 58 (2): 152- 161.
doi: 10.1093/ajcn/58.2.152 |
16 |
LE HUËROU-LURON I , BLAT S , BOUDRY G . Breast-v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects[J]. Nutr Res Rev, 2010, 23 (1): 23- 36.
doi: 10.1017/S0954422410000065 |
17 | ZABIELSKI R , GODLEWSKI M M , GUILLOTEAU P . Control of development of gastrointestinal system in neonates[J]. J Physiol Pharmacol, 2008, 59 Suppl 1, 35- 54. |
18 |
CATASSI C , BONUCCI A , COPPA G V , et al. Intestinal permeability.Changes during the first month: effect of natural versus artificial feeding[J]. J Pediatr Gastroenterol Nutr, 1995, 21 (4): 383- 386.
doi: 10.1002/j.1536-4801.1995.tb11955.x |
19 |
TAYLOR S N , BASILE L A , EBELING M , et al. Intestinal permeability in preterm infants by feeding type: mother's milk versus formula[J]. Breastfeed Med, 2009, 4 (1): 11- 15.
doi: 10.1089/bfm.2008.0114 |
20 | CAMPBELL T W . Chemical chemistry of mammals: laboratory animals and miscellaneous species[M]. USA: In Veterinary Hematology and Clinical Chemistry, 2012: 571- 581. |
21 |
KIM J S , INGALE S L , LEE S H , et al. Effects of energy levels of diet and β-mannanase supplementation on growth performance, apparent total tract digestibility and blood metabolites in growing pigs[J]. Anim Feed Sci Technol, 2013, 186 (1-2): 64- 70.
doi: 10.1016/j.anifeedsci.2013.08.008 |
22 |
FUJITA H , OKADA T , INAMI I , et al. Low-density lipoprotein profile changes during the neonatal period[J]. J Perinatol, 2008, 28 (5): 335- 340.
doi: 10.1038/jp.2008.8 |
23 |
OWEN C G , WHINCUP P H , KAYE S J , et al. Does initial breastfeeding lead to lower blood cholesterol in adult life?A quantitative review of the evidence[J]. Am J Clin Nutr, 2008, 88 (2): 305- 314.
doi: 10.1093/ajcn/88.2.305 |
24 |
RENZ H , BRANDTZAEG P , HORNEF M . The impact of perinatal immune development on mucosal homeostasis and chronic inflammation[J]. Nat Rev Immunol, 2012, 12 (1): 9- 23.
doi: 10.1038/nri3112 |
25 |
TAKⅡSHI T , FENERO C I M , CAMARA N O S . Intestinal barrier and gut microbiota: shaping our immune responses throughout life[J]. Tissue Barriers, 2017, 5 (4): e1373208.
doi: 10.1080/21688370.2017.1373208 |
26 |
TANNOCK G W , LAWLEY B , MUNRO K , et al. Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk[J]. Appl Environ Microbiol, 2013, 79 (9): 3040- 3048.
doi: 10.1128/AEM.03910-12 |
27 |
REID G . When microbe meets human[J]. Clin Infect Dis, 2004, 39 (6): 827- 830.
doi: 10.1086/423387 |
28 |
GORVITOVSKAIA A , HOLMES S P , HUSE S M . Interpreting prevotella and bacteroides as biomarkers of diet and lifestyle[J]. Microbiome, 2016, 4, 15.
doi: 10.1186/s40168-016-0160-7 |
29 | KOENIG J E , SPOR A , SCALFONE N , et al. Succession of microbial consortia in the developing infant gut microbiome[J]. Proc Natl Acad Sci U S A, 2010, 108 (S1): 4578- 4585. |
30 |
OH J K , CHAE J P , PAJARILLO E A B , et al. Association between the body weight of growing pigs and the functional capacity of their gut microbiota[J]. Anim Sci J, 2020, 91 (1): e13418.
doi: 10.1111/asj.13418 |
31 |
ZHU Z M , ZHU L Y , JIANG L . Dynamic regulation of gut Clostridium-derived short-chain fatty acids[J]. Trends Biotechnol, 2022, 40 (3): 266- 270.
doi: 10.1016/j.tibtech.2021.10.005 |
32 |
KONIKOFF T , GOPHNA U . Oscillospira: a central, enigmatic component of the human gut microbiota[J]. Trends Microbiol, 2016, 24 (7): 523- 524.
doi: 10.1016/j.tim.2016.02.015 |
33 |
CZEPIEL J , DRÓŻDŻ M , PITUCH H , et al. Clostridium difficile infection: review[J]. Eur J Clin Microbiol Infect Dis, 2019, 38 (7): 1211- 1221.
doi: 10.1007/s10096-019-03539-6 |
34 | WOODS J A , ALLEN J M , MILLER M E B , et al. Exercise alters the gut microbiome and microbial metabolites: implications for colorectal cancer and inflammatory bowel disease[J]. Brain Behav Immun, 2015, 49 Suppl, e7. |
35 |
CANI P D , VAN HUL M , LEFORT C , et al. Microbial regulation of organismal energy homeostasis[J]. Nat Metab, 2019, 1 (1): 34- 46.
doi: 10.1038/s42255-018-0017-4 |
36 |
GONZALEZ R , KLAASSENS E S , MALINEN E , et al. Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide[J]. Appl Environ Microbiol, 2008, 74 (15): 4686- 4694.
doi: 10.1128/AEM.00122-08 |
37 |
EIDELS L , OSBORN M J . Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium[J]. Proc Natl Acad Sci U S A, 1971, 68 (8): 1673- 1677.
doi: 10.1073/pnas.68.8.1673 |
38 | HU J , NIE Y F , CHEN J W , et al. Gradual changes of gut microbiota in weaned miniature piglets[J]. Front Microbiol, 2016, 7, 1727. |
39 |
BARRETT E , ROSS R P , O'TOOLE P W , et al. γ-aminobutyric acid production by culturable bacteria from the human intestine[J]. J Appl Microbiol, 2012, 113 (2): 411- 417.
doi: 10.1111/j.1365-2672.2012.05344.x |
40 |
ALKHALAF L M , RYAN K S . Biosynthetic manipulation of tryptophan in bacteria: pathways and mechanisms[J]. Chem Biol, 2015, 22 (3): 317- 328.
doi: 10.1016/j.chembiol.2015.02.005 |
41 |
LEE J H , WOOD T K , LEE J . Roles of indole as an interspecies and interkingdom signaling molecule[J]. Trends Microbiol, 2015, 23 (11): 707- 718.
doi: 10.1016/j.tim.2015.08.001 |
42 |
LIANG H W , DAI Z L , LIU N , et al. Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets[J]. Front Microbiol, 2018, 9, 1736.
doi: 10.3389/fmicb.2018.01736 |
43 |
GERNER E W , MEYSKENS JR F L . Polyamines and cancer: old molecules, new understanding[J]. Nat Rev Cancer, 2004, 4 (10): 781- 792.
doi: 10.1038/nrc1454 |
44 |
BUTS J P , DE KEYSER N , KOLANOWSKI J , et al. Maturation of villus and crypt cell functions in rat small intestine: role of dietary polyamines[J]. Dig Dis Sci, 1993, 38 (6): 1091- 1098.
doi: 10.1007/BF01295726 |
45 |
MORO J , TOMÉ D , SCHMIDELY P , et al. Histidine: a systematic review on metabolism and physiological effects in human and different animal species[J]. Nutrients, 2020, 12 (5): 1414.
doi: 10.3390/nu12051414 |
46 |
FENG R N , NIU Y C , SUN X W , et al. Histidine supplementation improves insulin resistance through suppressed inflammation in obese women with the metabolic syndrome: a randomised controlled trial[J]. Diabetologia, 2013, 56 (5): 985- 994.
doi: 10.1007/s00125-013-2839-7 |
47 |
WU X , GAO L M , LIU Y L , et al. Maternal dietary uridine supplementation reduces diarrhea incidence in piglets by regulating the intestinal mucosal barrier and cytokine profiles[J]. J Sci Food Agric, 2020, 100 (9): 3709- 3718.
doi: 10.1002/jsfa.10410 |
48 |
XIE C Y , WANG Q H , LI G Y , et al. Dietary supplement with nucleotides in the form of uridine monophosphate or uridine stimulate intestinal development and promote nucleotide transport in weaned piglets[J]. J Sci Food Agric, 2019, 99 (13): 6108- 6113.
doi: 10.1002/jsfa.9850 |
49 |
LÖFFLER M , CARREY E A , ZAMEITAT E . Orotic acid, more than just an intermediate of pyrimidine de novo synthesis[J]. J Genet Genomics, 2015, 42 (5): 207- 219.
doi: 10.1016/j.jgg.2015.04.001 |
50 |
CHA J Y , MAMEDA Y , YAMAMOTO K , et al. Association between hepatic triacylglycerol accumulation induced by administering orotic acid and enhanced phosphatidate phosphohydrolase activity in rats[J]. Biosci Biotechnol Biochem, 1998, 62 (3): 508- 513.
doi: 10.1271/bbb.62.508 |
51 |
ZELANTE T , IANNITTI R G , CUNHA C , et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J]. Immunity, 2013, 39 (2): 372- 385.
doi: 10.1016/j.immuni.2013.08.003 |
52 |
COOK K L , ROTHROCK JR M J , LOUGHRIN J H , et al. Characterization of skatole-producing microbial populations in enriched swine lagoon slurry[J]. FEMS Microbiol Ecol, 2007, 60 (2): 329- 340.
doi: 10.1111/j.1574-6941.2007.00299.x |
53 |
BEAUMONT M , NEYRINCK A M , OLIVARES M , et al. The gut microbiota metabolite indole alleviates liver inflammation in mice[J]. FASEB J, 2018, 32 (12): 6681- 6693.
doi: 10.1096/fj.201800544 |
54 |
HENDRIKX T , SCHNABL B . Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation[J]. J Intern Med, 2019, 286 (1): 32- 40.
doi: 10.1111/joim.12892 |
55 |
LI J J , ZHANG L , WU T , et al. Indole-3-propionic acid improved the intestinal barrier by enhancing epithelial barrier and mucus barrier[J]. J Agric Food Chem, 2021, 69 (5): 1487- 1495.
doi: 10.1021/acs.jafc.0c05205 |
[1] | 田晶晶, 王晓庆, 李棉燕, 王海玲, 吴启钿, 王立贤, 张龙超, 赵福平. 北京黑猪全基因组ROH检测和选择信号分析[J]. 畜牧兽医学报, 2024, 55(9): 3833-3842. |
[2] | 陈栋, 周文譞, 赵真坚, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 吴平先, 郭宗义, 王金勇, 唐国庆. 基于计算机视觉技术的猪肌内脂肪含量和眼肌面积测定系统的研发[J]. 畜牧兽医学报, 2024, 55(9): 3843-3852. |
[3] | 陈南珠, 李俊良, 余大为, 周心仪, 王晶, 邹惠影, 杜卫华. 猪MKRN3基因的印记表达和DNA甲基化状态分析[J]. 畜牧兽医学报, 2024, 55(9): 3853-3863. |
[4] | 杨柏高, 龙熙, 张亮, 徐皆欢, 戴建军, 赵学明, 潘红梅. 基于Smart-seq2探究玻璃化冷冻对猪孤雌激活囊胚基因表达的影响[J]. 畜牧兽医学报, 2024, 55(9): 3936-3946. |
[5] | 任聪, 张虎, 王钰明, 解竞静, 萨仁娜, 赵峰. 仿生消化法估测生长猪饲料有效能的准确性及可加性研究[J]. 畜牧兽医学报, 2024, 55(9): 3988-4000. |
[6] | 张纪桥, 蔡瑛婕, 李雨笑, 曹敞, 李涛, 鲍秀瑜, 张建勤. 不同饲养模式下略阳乌鸡生长性能、免疫、肠道结构及盲肠菌群的对比分析[J]. 畜牧兽医学报, 2024, 55(9): 4001-4011. |
[7] | 高力国, 申翰钦, 陈诒全, 陈胜, 蔺文成, 陈峰. 猪轮状病毒重组VP6*蛋白的原核表达及间接ELISA检测方法的建立[J]. 畜牧兽医学报, 2024, 55(9): 4021-4028. |
[8] | 朋璐, 张衡, 庞思琪, 乔竹林, 张小芬, 谭臣, 宋云峰, 周锐, 黎璐. 利用大蜡螟幼虫和小鼠感染模型筛选猪链球菌血清2、3和9型三价灭活疫苗候选菌株[J]. 畜牧兽医学报, 2024, 55(9): 4077-4090. |
[9] | 何塔娜, 胡馨匀, 米洁兰, 高立, 张艳萍, 祁小乐, 崔红玉, 杨桂连, 高玉龙. 基于16S rDNA分析饲喂唾液乳杆菌XP132对白羽肉种鸡肠道菌群的影响[J]. 畜牧兽医学报, 2024, 55(9): 4091-4099. |
[10] | 付艺乾, 梁东阁, 王铭洋, 潘佳佳, 杨彦宾, 曾磊, 康相涛. 干扰素调节因子敲减细胞系的构建及其对猪伪狂犬病病毒增殖的影响[J]. 畜牧兽医学报, 2024, 55(9): 4100-4109. |
[11] | 于秀菊, 胡燕姣, 刘佳悦, 王海东, 朱芷葳, 范阔海, 王蓉蓉, 段承昊, 石佳炜, 杨丽华. 一株鸡源唾液乳杆菌的分离鉴定及其对育雏早期蛋鸡肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(9): 4161-4171. |
[12] | 彭宁, 梁雅旭, 龙菲, 余东明, 钟翔. 白藜芦醇对轮状病毒感染猪肠上皮细胞IPEC-J2的抑制效应[J]. 畜牧兽医学报, 2024, 55(9): 4213-4225. |
[13] | 冯露, 田宏, 郑海学, 石正旺, 罗俊聪, 张晓阳, 尉娟娟, 周静, 廖焕程, 王婉莹. 基于酶促重组酶扩增的非洲猪瘟病毒检测方法[J]. 畜牧兽医学报, 2024, 55(9): 4226-4231. |
[14] | 周佳丽, 丁宝隆, 马子明, 淡新刚, 赵洪喜. 奶牛子宫内膜炎与胃肠微生物相关性及益生菌作用的研究进展[J]. 畜牧兽医学报, 2024, 55(8): 3321-3330. |
[15] | 夏振涛, 王楠, 王婉洁, 周期律, 黄雷, 牟玉莲. pAPN基因敲除的IPEC-J2介导的TGEV感染特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3395-3407. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||