畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3843-3852.doi: 10.11843/j.issn.0366-6964.2024.09.010

• 遗传育种 • 上一篇    下一篇

基于计算机视觉技术的猪肌内脂肪含量和眼肌面积测定系统的研发

陈栋1,2,3(), 周文譞1,2,3, 赵真坚1,2,3, 申琦1,2,3, 余杨1,2,3, 崔晟頔1,2,3, 王俊戈1,2,3, 陈子旸1,2,3, 禹世欣1,2,3, 陈佳苗1,2,3, 王翔枫1,2,3, 吴平先4, 郭宗义4, 王金勇4, 唐国庆1,2,3,*()   

  1. 1. 四川农业大学动物科技学院,猪禽种业全国重点实验室,成都 611130
    2. 四川农业大学动物科技学院,农业农村部畜禽生物组学重点实验室,成都 611130
    3. 四川农业大学“畜禽遗传资源发掘与创新利用四川省重点实验室”,成都 611130
    4. 国家生猪技术创新中心,重庆 402460
  • 收稿日期:2024-03-18 出版日期:2024-09-23 发布日期:2024-09-27
  • 通讯作者: 唐国庆 E-mail:1123278154@qq.com;tyq003@163.com
  • 作者简介:陈栋(1997-),男,宁夏银川人,博士,主要从事动物遗传育种相关研究,E-mail: 1123278154@qq.com
  • 基金资助:
    国家生猪技术创新中心先导科技项目(NCTIP-XD/B01);四川省科技厅项目(2020YFN0024);四川省科技厅项目(2021ZDZX0008);四川省科技厅项目(2021YFYZ0030);四川省猪创新团队(sccxtd-2022-08)

Development of a Pig Intramuscular Fat Content and Eye Muscle Area Measurement System Based on Computer Vision Technology

Dong CHEN1,2,3(), Wenxuan ZHOU1,2,3, Zhenjian ZHAO1,2,3, Qi SHEN1,2,3, Yang YU1,2,3, Shengdi CUI1,2,3, Junge WANG1,2,3, Ziyang CHEN1,2,3, Shixin YU1,2,3, Jiamiao CHEN1,2,3, Xiangfeng WANG1,2,3, Pingxian WU4, Zongyi GUO4, Jinyong WANG4, Guoqing TANG1,2,3,*()   

  1. 1. State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
    2. Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
    3. Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
    4. National Center of Technology Innovation for Pigs, Chongqing 402460, China
  • Received:2024-03-18 Online:2024-09-23 Published:2024-09-27
  • Contact: Guoqing TANG E-mail:1123278154@qq.com;tyq003@163.com

摘要:

旨在开发基于计算机视觉技术的猪肉质图像快速鉴别方法,为解决猪肉质传统测定方法缺陷和构建猪肉质快速测定系统奠定技术基础。本研究采用canny边缘检测算法、归一化、伽马校正、自适应直方图均衡化和阈值化等方法进行图像处理,利用二维信息模拟了猪背最长肌的三维模型,开发了基于图像的猪肌内脂肪含量计算机视觉测定方法。利用人工描绘和计算机视觉轮廓搜寻技术开发了基于图像处理的眼肌面积识别方法。利用Open CV和C++实现各方法的底层算法程序,研发了一套猪肌内脂肪含量和眼肌面积的测定系统,并利用250头不同品种的试验猪进行了应用测试。测试结果显示,肌内脂肪含量检测模块能够快速实现肌内脂肪图形信息的提取与预测,单个样品检测时间平均不超过2 min,准确性可达0.54,且测定离散系数为0.062,具有较强的稳定性。眼肌面积与背膘厚检测模块能够通过人工与计算机结合的方式快速测定眼肌面积和背膘厚。本研究建立的检测方法和软件系统能够实现猪肌内脂肪含量、背膘厚和眼肌面积的快速检测。

关键词: 计算机视觉, 图像处理, 肌内脂肪含量,

Abstract:

The aim of this study was to develop a rapid identification method of pork quality images based on computer vision technology, and to lay a technical foundation for solving the defects of traditional pork quality determination methods and constructing a rapid pork quality determination system. In this study, canny edge detection algorithm, normalization, gamma correction, adaptive histogram equalization and thresholding were used for image processing to simulate a three-dimensional model of porcine dorsal longest muscle using two-dimensional information, and an image-based computer vision method for determining porcine intramuscular fat content was developed. An image-processing-based eye muscle area recognition method was developed using manual depiction and computer vision contour search techniques. The underlying algorithmic programs of each method were implemented using Open CV and C++, and a system for the determination of porcine intramuscular fat content and eye muscle area was developed and tested using 250 test pigs of different breeds. The test results showed that the intramuscular fat content detection module could quickly realize the extraction and prediction of intramuscular fat graphical information, with an average detection time of no more than 2 minutes for a single sample, an accuracy of up to 0.54, and a discrete coefficient of 0.062, which was highly stable. The eye muscle area and backfat thickness detection module can quickly determine eye muscle area and backfat thickness by combining manual and computerized methods. The assay method and software system developed in this study enable rapid detection of intramuscular fat content, backfat thickness and eye muscle area in pigs.

Key words: computer vision, image processing, intramuscular fat content, pig

中图分类号: