1 |
崔晟頔, 王凯, 赵真坚, 等. 利用GWAS和DNA甲基化共定位鉴定猪肉质性状的候选基因[J]. 畜牧兽医学报, 2024, 55 (5): 1945- 1957.
|
|
CUI S D , WANG K , ZHAO Z J , et al. Identification of candidate genes for pork texture traits using GWAS combined with Co-localisation of DNA methylation[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 1945- 1957.
|
2 |
DREWNOWSKI A . Perspective: the place of pork meat in sustainable healthy diets[J]. Adv Nutr, 2024, 15 (5): 100213.
doi: 10.1016/j.advnut.2024.100213
|
3 |
张润, 刘海, 杨曼, 等. 北京黑猪肌内脂肪含量高、低组间脂质组差异分析[J]. 畜牧兽医学报, 2022, 53 (9): 3262- 71.
|
|
ZHANG R , LIU H , YANG M , et al. Analysis of lipidome difference between high and low intramuscular fat content groups in Beijing Black Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 3262- 3271.
|
4 |
LIM K S , LEE K T , PARK J E , et al. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequencing[J]. Anim Genet, 2017, 48 (2): 166- 174.
doi: 10.1111/age.12518
|
5 |
GUO Z Y , CHEN X L , CHEN D W , et al. Effects of slaughter age on carcass traits and meat quality of crossbred (Duroc×Landrace×Yorkshire) finishing pigs[J]. Anim Biotechnol, 2022, 33 (2): 339- 345.
doi: 10.1080/10495398.2021.1916512
|
6 |
GONG X L , ZHENG M , ZHANG J , et al. Transcriptomics-based study of differentially expressed genes related to fat deposition in Tibetan and Yorkshire Pigs[J]. Front Vet Sci, 2022, 9, 919904.
doi: 10.3389/fvets.2022.919904
|
7 |
高振伟. 一种全自动测膘情和眼肌系统[J]. 湖北农机化, 2019, (21): 138.
doi: 10.3969/j.issn.1009-1440.2019.21.106
|
|
GAO Z W . A fully automated fat and eye muscle measurement system[J]. Hubei Agricultural Mechanization, 2019, (21): 138.
doi: 10.3969/j.issn.1009-1440.2019.21.106
|
8 |
FOLCH J , LEES M , SLOANE STANLEY G H . A simple method for the isolation and purification of total lipides from animal tissues[J]. J Biol Chem, 1957, 226 (1): 497- 509.
doi: 10.1016/S0021-9258(18)64849-5
|
9 |
杨海悦. 肌纤维内脂肪含量测定方法的建立及其与肌肉相关基因表达的相关分析[D]. 南京: 南京农业大学, 2021.
|
|
YANG H Y. The establishment of a method for measuring intrafiber fat content and its correlation withmuscle-related genes[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese)
|
10 |
LIN Y D , MA J , WANG Q J , et al. Applications of machine learning techniques for enhancing nondestructive food quality and safety detection[J]. Crit Rev Food Sci Nutr, 2023, 63 (12): 1649- 1669.
doi: 10.1080/10408398.2022.2131725
|
11 |
HE Y , BAI X L , XIAO Q L , et al. Detection of adulteration in food based on nondestructive analysis techniques: a review[J]. Crit Rev Food Sci Nutr, 2021, 61 (14): 2351- 2371.
doi: 10.1080/10408398.2020.1777526
|
12 |
ZHANG L H , ZHANG M , MUJUMDAR A S . Technological innovations or advancement in detecting frozen and thawed meat quality: a review[J]. Crit Rev Food Sci Nutr, 2023, 63 (11): 1483- 1499.
doi: 10.1080/10408398.2021.1964434
|
13 |
MUNEKATA P E S , FINARDI S , DE SOUZA C K , et al. Applications of electronic nose, electronic eye and electronic tongue in quality, safety and shelf life of meat and meat products: a review[J]. Sensors (Basel), 2023, 23 (2): 672.
doi: 10.3390/s23020672
|
14 |
TANG X , RAO L , XIE L , et al. Quantification and visualization of meat quality traits in pork using hyperspectral imaging[J]. Meat Sci, 2023, 196, 109052.
doi: 10.1016/j.meatsci.2022.109052
|
15 |
KATEMALA S , MOLEE A , THUMANU K , et al. A comparative study of meat quality and vibrational spectroscopic properties of different chicken breeds[J]. Poult Sci, 2022, 101 (6): 101829.
doi: 10.1016/j.psj.2022.101829
|
16 |
FAN K J , SU W H . Applications of fluorescence spectroscopy, RGB- and MultiSpectral imaging for quality determinations of white meat: a review[J]. Biosensors (Basel), 2022, 12 (2): 76.
|
17 |
PEREZ DE VARGAS-SANSALVADOR I M , ERENAS M M , MARTíNEZ-OLMOS A , et al. Smartphone based meat freshness detection[J]. Talanta, 2020, 216, 120985.
doi: 10.1016/j.talanta.2020.120985
|
18 |
COLLINS L M , SMITH L M . Review: smart agri-systems for the pig industry[J]. Animal, 2022, 16 (S2): 100518.
|
19 |
PANERU S , JEELANI I . Computer vision applications in construction: current state, opportunities & challenges[J]. Autom Constr, 2021, 132 (1): 103940.
|
20 |
KAKANI V , NGUYEN V H , KUMAR B P , et al. A critical review on computer vision and artificial intelligence in food industry[J]. J Agric Food Res, 2020, 2, 100033.
|
21 |
HE H J , WU D , SUN D W . Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products[J]. Crit Rev Food Sci Nutr, 2015, 55 (6): 864- 886.
doi: 10.1080/10408398.2012.746638
|
22 |
WEINSTEIN B G . A computer vision for animal ecology[J]. J Anim Ecol, 2018, 87 (3): 533- 545.
doi: 10.1111/1365-2656.12780
|
23 |
BLEHM C , VISHNU S , KHATTAK A , et al. Computer vision syndrome: a review[J]. Surv Ophthalmol, 2005, 50 (3): 253- 262.
doi: 10.1016/j.survophthal.2005.02.008
|
24 |
D'ANTONI F , RUSSO F , AMBROSIO L , et al. Artificial intelligence and computer vision in low back pain: a systematic review[J]. Int J Environ Res Public Health, 2021, 18 (20): 10909.
doi: 10.3390/ijerph182010909
|
25 |
TIAN J . Computer vision and machine learning for intelligent sensing systems[J]. Sensors (Basel), 2023, 23 (9): 4214.
doi: 10.3390/s23094214
|
26 |
CHEN D , WU P X , WANG K , et al. Combining computer vision score and conventional meat quality traits to estimate the intramuscular fat content using machine learning in pigs[J]. Meat Sci, 2022, 185, 108727.
doi: 10.1016/j.meatsci.2021.108727
|
27 |
WAIMIN J , GOPALAKRISHNAN S , HEREDIA-RIVERA U , et al. Low-cost nonreversible electronic-free wireless pH sensor for spoilage detection in packaged meat products[J]. ACS Appl Mater Interfaces, 2022, 14 (40): 45752- 45764.
doi: 10.1021/acsami.2c09265
|
28 |
ISTIF E , MIRZAJANI H , DAĞ Ç , et al. Miniaturized wireless sensor enables real-time monitoring of food spoilage[J]. Nat Food, 2023, 4 (5): 427- 436.
doi: 10.1038/s43016-023-00750-9
|
29 |
NIE W G , CHEN Y F , ZHANG H , et al. A novel colorimetric sensor array for real-time and on-site monitoring of meat freshness[J]. Anal Bioanal Chem, 2022, 414 (20): 6017- 6027.
doi: 10.1007/s00216-022-04176-3
|
30 |
DUAN X Y , LI Z R , WANG L , et al. Engineered nanomaterials-based sensing systems for assessing the freshness of meat and aquatic products: a state-of-the-art review[J]. Comp Rev Food Sci Food Safe, 2023, 22 (1): 430- 450.
doi: 10.1111/1541-4337.13074
|
31 |
ZHOU L , ZHANG C , LIU F , et al. Application of deep learning in food: a review[J]. Comp Rev Food Sci Food Safe, 2019, 18 (6): 1793- 1811.
doi: 10.1111/1541-4337.12492
|
32 |
MA J , SUN D W , QU J H , et al. Applications of computer vision for assessing quality of Agri-food products: a review of recent research advances[J]. Crit Rev Food Sci Nutr, 2016, 56 (1): 113- 127.
doi: 10.1080/10408398.2013.873885
|
33 |
HUANG L , ZHAO J W , CHEN Q S , et al. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques[J]. Food Chem, 2014, 145 (1): 228- 236.
|
34 |
LIU J H , SUN X , YOUNG J M , et al. Predicting pork loin intramuscular fat using computer vision system[J]. Meat Sci, 2018, 143, 18- 23.
doi: 10.1016/j.meatsci.2018.03.020
|
35 |
LIN L L , GUO J X , LIU L C . Multi-scene application of intelligent inspection robot based on computer vision in power plant[J]. Sci Rep, 2024, 14 (1): 10657.
doi: 10.1038/s41598-024-56795-8
|
36 |
ZHANG J J , HUANG H X , SONG G C , et al. Intelligent biosensing strategies for rapid detection in food safety: a review[J]. Biosens Bioelectron, 2022, 202, 114003.
doi: 10.1016/j.bios.2022.114003
|
37 |
GUO L L , WANG T , WU Z H , et al. Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks[J]. Adv Mater, 2020, 32 (45): 2004805.
doi: 10.1002/adma.202004805
|
38 |
AHETO J H , HUANG X Y , TIAN X Y , et al. Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat[J]. Anal Bioanal Chem, 2020, 412 (5): 1169- 1179.
doi: 10.1007/s00216-019-02345-5
|
39 |
OPPEN D , ATTIG T , WEISS J , et al. Anticipating food structure of meat products from mastication physics applying machine learning[J]. Food Res Int, 2023, 174, 113576.
doi: 10.1016/j.foodres.2023.113576
|
40 |
HUANG C Q , GU Y . A machine learning method for the quantitative detection of adulterated meat using a MOS-based E-nose[J]. Foods, 2022, 11 (4): 602.
doi: 10.3390/foods11040602
|
41 |
LIM H R , KHOO K S , CHIA W Y , et al. Smart microalgae farming with internet-of-things for sustainable agriculture[J]. Biotechnol Adv, 2022, 57, 107931.
doi: 10.1016/j.biotechadv.2022.107931
|