畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3936-3946.doi: 10.11843/j.issn.0366-6964.2024.09.018
杨柏高1,2(), 龙熙1, 张亮1, 徐皆欢3, 戴建军3, 赵学明2, 潘红梅1,*(
)
收稿日期:
2024-02-26
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
潘红梅
E-mail:Yangbaigao915@163.com;panhm_2118@163.com
作者简介:
杨柏高(1991-),男,重庆人,博士,主要从事动物繁殖研究,E-mail: Yangbaigao915@163.com
基金资助:
Baigao YANG1,2(), Xi LONG1, Liang ZHANG1, Jiehuan XU3, Jianjun DAI3, Xueming ZHAO2, Hongmei PAN1,*(
)
Received:
2024-02-26
Online:
2024-09-23
Published:
2024-09-27
Contact:
Hongmei PAN
E-mail:Yangbaigao915@163.com;panhm_2118@163.com
摘要:
旨在探究玻璃化冷冻对猪孤雌激活(parthenogenetic activation, PA)囊胚基因表达的影响。本研究以猪PA囊胚为研究对象,根据试验处理分为新鲜组、玻璃化冷冻组Ⅰ和玻璃化冷冻组Ⅱ,随后从每组挑选3枚形态良好的囊胚,利用Smart-seq2单细胞全长转录组测序技术进行转录组测序分析。结果显示,玻璃化冷冻组Ⅰ与新鲜组相比,共鉴定到772个差异表达基因(differential expression genes,DEGs),GO和KEGG富集分析结果显示,这些DEGs与细胞脂质代谢过程、细胞葡萄糖稳态、MAPK信号通路、PI3K-Akt信号通路等相关;玻璃化冷冻组Ⅱ与新鲜组相比,共鉴定到1 613个DEGs,主要与糖异生、代谢途径、氨基酸生物合成等相关;玻璃化冷冻组Ⅱ与玻璃化冷冻组Ⅰ相比,鉴定到822个DEGs,主要与丙酮酸代谢过程、N-聚糖生物合成、细胞衰老等相关。综上,本研究基于Smart-seq2单细胞全长转录组测序技术揭示了玻璃化冷冻对猪PA囊胚脂质代谢、能量代谢、MAPK信号通路等相关基因表达的影响。
中图分类号:
杨柏高, 龙熙, 张亮, 徐皆欢, 戴建军, 赵学明, 潘红梅. 基于Smart-seq2探究玻璃化冷冻对猪孤雌激活囊胚基因表达的影响[J]. 畜牧兽医学报, 2024, 55(9): 3936-3946.
Baigao YANG, Xi LONG, Liang ZHANG, Jiehuan XU, Jianjun DAI, Xueming ZHAO, Hongmei PAN. Exploring the Effect of Vitrification on Gene Expression in Porcine Parthenogenetic Blastocysts by Smart-seq2[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3936-3946.
表 1
与新鲜组相比,玻璃化冷冻组Ⅰ猪PA囊胚显著性最高的前5个上调和前5个下调基因"
基因ID Gene ID | 基因名称 Gene name | log2(FC) | P值 P value | 上调或下调 Up or Down |
ENSSSCG00000003333 | C1QTNF12 | 20.68 | 8.76×10-14 | UP |
ENSSSCG00000049746 | ENSSSCG00000049746 | 6.06 | 6.16×10-8 | UP |
ENSSSCG00000052366 | ENSSSCG00000052366 | 9.46 | 7.49×10-8 | UP |
ENSSSCG00000061727 | ENSSSCG00000061727 | 5.22 | 1.79×10-7 | UP |
ENSSSCG00000059571 | ENSSSCG00000059571 | 9.77 | 2.80×10-7 | UP |
ENSSSCG00000032135 | ENSSSCG00000032135 | -7.10 | 1.16×10-7 | Down |
ENSSSCG00000008294 | ACTG2 | -8.19 | 3.51×10-7 | Down |
ENSSSCG00000011657 | CLDN18 | -7.29 | 2.41×10-5 | Down |
ENSSSCG00000022774 | NOP53 | -3.09 | 3.67×10-5 | Down |
ENSSSCG00000038718 | ADRM1 | -4.35 | 5.93×10-5 | Down |
表 2
与新鲜组相比,玻璃化冷冻组Ⅱ猪PA囊胚显著性最高的前5个上调和前5个下调基因"
基因ID Gene ID | 基因名称 Gene name | log2(FC) | P值 P value | 上调或下调 Up or Down |
ENSSSCG00000045128 | ENSSSCG00000045128 | 6.11 | 2.10×10-28 | UP |
ENSSSCG00000008801 | SLC30A9 | 4.32 | 4.49×10-27 | UP |
ENSSSCG00000041449 | ENSSSCG00000041449 | 5.41 | 2.77×10-24 | UP |
ENSSSCG00000013448 | MKNK2 | 4.68 | 2.05×10-23 | UP |
ENSSSCG00000055081 | ENSSSCG00000055081 | 7.55 | 1.98×10-21 | UP |
ENSSSCG00000036649 | FAM151A | -4.30 | 2.03×10-19 | Down |
ENSSSCG00000007984 | MRPL28 | -3.25 | 5.21×10-18 | Down |
ENSSSCG00000016461 | ZYX | -3.31 | 2.16×10-16 | Down |
ENSSSCG00000003153 | FTL | -4.07 | 2.45×10-16 | Down |
ENSSSCG00000028197 | PFKL | -3.74 | 1.15×10-14 | Down |
表 3
与玻璃化冷冻组Ⅰ相比,玻璃化冷冻组Ⅱ猪PA囊胚显著性最高的前5个上调和前5个下调基因"
基因ID Gene ID | 基因名称 Gene name | log2(FC) | P值 P value | 上调或下调 Up or Down |
ENSSSCG00000059025 | RAB21 | 2.93 | 4.92×10-6 | UP |
ENSSSCG00000036491 | PCNP | 2.79 | 1.76×10-5 | UP |
ENSSSCG00000031337 | SNX18 | 3.18 | 1.89×10-5 | UP |
ENSSSCG00000008801 | SLC30A9 | 3.03 | 2.45×10-5 | UP |
ENSSSCG00000028737 | USP3 | 2.86 | 3.49×10-5 | UP |
ENSSSCG00000049267 | ENSSSCG00000049267 | -21.72 | 1.57×10-11 | Down |
ENSSSCG00000051983 | ENSSSCG00000051983 | -21.68 | 1.81×10-11 | Down |
ENSSSCG00000038832 | U2 | -21.63 | 2.49×10-11 | Down |
ENSSSCG00000063160 | ENSSSCG00000063160 | -21.63 | 2.49×10-11 | Down |
ENSSSCG00000051866 | ENSSSCG00000051866 | -21.61 | 2.73×10-11 | Down |
1 |
DU X Z , ZHUAN Q R , CHENG K R , et al. Cryopreservation of porcine embryos: recent updates and progress[J]. Biopreserv Biobank, 2021, 19 (3): 210- 218.
doi: 10.1089/bio.2020.0074 |
2 |
XU H X , WANG X G , TAO R X , et al. Optimal stage for cryotop vitrification of porcine embryos[J]. Cell Reprogram, 2022, 24 (3): 132- 141.
doi: 10.1089/cell.2022.0001 |
3 |
ALMIÑANA C , DUBUISSON F , BAUERSACHS S , et al. Unveiling how vitrification affects the porcine blastocyst: clues from a transcriptomic study[J]. J Anim Sci Biotechnol, 2022, 13 (1): 46.
doi: 10.1186/s40104-021-00672-1 |
4 |
WIESAK T , GORYSZEWSKA-SZCZUREK E . Effect of vitrification on the expression of genes in porcine blastocysts derived from in vitro matured oocytes[J]. Syst Biol Reprod Med, 2022, 68 (4): 239- 246.
doi: 10.1080/19396368.2022.2072788 |
5 |
CUELLO C , MARTINEZ C A , CAMBRA J M , et al. Effects of vitrification on the blastocyst gene expression profile in a porcine model[J]. Int J Mol Sci, 2021, 22 (3): 1222.
doi: 10.3390/ijms22031222 |
6 |
SANTORO F , CHIEN K R , SAHARA M . Isolation of human ESC-derived cardiac derivatives and embryonic heart cells for population and single-cell RNA-seq analysis[J]. STAR Protoc, 2021, 2 (1): 100339.
doi: 10.1016/j.xpro.2021.100339 |
7 |
YANG T , YUAN X , XUE Q S , et al. Comparison of symmetrical and asymmetrical cleavage 2-cell embryos of porcine by Smart-seq2[J]. Theriogenology, 2023, 210, 221- 226.
doi: 10.1016/j.theriogenology.2023.07.029 |
8 |
FAN X Y , TANG D , LIAO Y H , et al. Single-cell RNA-seq analysis of mouse preimplantation embryos by third-generation sequencing[J]. PLoS Biol, 2020, 18 (12): e3001017.
doi: 10.1371/journal.pbio.3001017 |
9 |
QIAO Y B , REN C , HUANG S S , et al. High-resolution annotation of the mouse preimplantation embryo transcriptome using long-read sequencing[J]. Nat Commun, 2020, 11 (1): 2653.
doi: 10.1038/s41467-020-16444-w |
10 |
PICELLI S , FARIDANI O R , BJÖRKLUND Å K , et al. Full-length RNA-seq from single cells using Smart-seq2[J]. Nat Protoc, 2014, 9 (1): 171- 181.
doi: 10.1038/nprot.2014.006 |
11 |
LI Z S , LIU Y L , MA T , et al. Smart-seq2 technology reveals a novel mechanism that zearalenone inhibits the in vitro maturation of ovine oocytes by influencing TNFAIP6 expression[J]. Toxins (Basel), 2023, 15 (10): 617.
doi: 10.3390/toxins15100617 |
12 |
JIA B Y , XIANG D C , QUAN G B , et al. Transcriptome analysis of porcine immature oocytes and surrounding cumulus cells after vitrification and in vitro maturation[J]. Theriogenology, 2019, 134, 90- 97.
doi: 10.1016/j.theriogenology.2019.05.019 |
13 | XU T T , LIU C X , ZHANG M Y , et al. Vitrification of pronuclear zygotes perturbs porcine zygotic genome activation[J]. Animals (Basel), 2022, 12 (5): 610. |
14 |
KAJDASZ A , WARZYCH E , DEREBECKA N , et al. Lipid stores and lipid metabolism associated gene expression in porcine and bovine parthenogenetic embryos revealed by fluorescent staining and RNA-seq[J]. Int J Mol Sci, 2020, 21 (18): 6488.
doi: 10.3390/ijms21186488 |
15 |
LIPINSKA P , PAWLAK P , WARZYCH E . Species and embryo genome origin affect lipid droplets in preimplantation embryos[J]. Front Cell Dev Biol, 2023, 11, 1187832.
doi: 10.3389/fcell.2023.1187832 |
16 |
MASEK M , ETARD C , HOFMANN C , et al. Loss of the Bardet-Biedl protein Bbs1 alters photoreceptor outer segment protein and lipid composition[J]. Nat Commun, 2022, 13 (1): 1282.
doi: 10.1038/s41467-022-28982-6 |
17 |
ROUABHI M , GUO D F , MORGAN D A , et al. BBSome ablation in SF1 neurons causes obesity without comorbidities[J]. Mol Metab, 2021, 48, 101211.
doi: 10.1016/j.molmet.2021.101211 |
18 |
YAN L , RUST B M , PALMER D G . Time-restricted feeding restores metabolic flexibility in adult mice with excess adiposity[J]. Front Nutr, 2024, 11, 1340735.
doi: 10.3389/fnut.2024.1340735 |
19 |
WANG Y , MCNUTT M C , BANFI S , et al. Hepatic ANGPTL3 regulates adipose tissue energy homeostasis[J]. Proc Natl Acad Sci U S A, 2015, 112 (37): 11630- 11635.
doi: 10.1073/pnas.1515374112 |
20 |
KLID S , MAYMÓ-MASIP E , ALGABA-CHUECA F , et al. The ANGPTL3-4-8 axis in normal gestation and in gestational diabetes, and its potential involvement in fetal growth[J]. Int J Mol Sci, 2023, 24 (3): 2486.
doi: 10.3390/ijms24032486 |
21 |
PAWLAK P , MALYSZKA N , SZCZERBAL I , et al. Fatty acid induced lipolysis influences embryo development, gene expression and lipid droplet Formation in the porcine cumulus cells[J]. Biol Reprod, 2020, 103 (1): 36- 48.
doi: 10.1093/biolre/ioaa045 |
22 |
FRAGOULI E , WELLS D . Mitochondrial DNA assessment to determine oocyte and embryo viability[J]. Semin Reprod Med, 2015, 33 (6): 401- 409.
doi: 10.1055/s-0035-1567821 |
23 | BARBE A , KUROWSKA P , RAME C , et al. Adipolin (C1QTNF12) is a new adipokine in female reproduction: expression and function in porcine granulosa cells[J]. Reproduction, 2023, 167 (1): e230272. |
24 |
OSBAK K K , COLCLOUGH K , SAINT-MARTIN C , et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia[J]. Hum Mutat, 2009, 30 (11): 1512- 1526.
doi: 10.1002/humu.21110 |
25 |
ZHANG Y L , GUO L Y , HAN S , et al. Adult mesenchymal stem cell ageing interplays with depressed mitochondrial Ndufs6[J]. Cell Death Dis, 2020, 11 (12): 1075.
doi: 10.1038/s41419-020-03289-w |
26 |
XIANG D C , JIA B Y , ZHANG B , et al. Astaxanthin supplementation improves the subsequent developmental competence of vitrified porcine zygotes[J]. Front Vet Sci, 2022, 9, 871289.
doi: 10.3389/fvets.2022.871289 |
27 |
LI G L , FLODBY P , LUO J , et al. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis[J]. Am J Respir Cell Mol Biol, 2014, 51 (2): 210- 222.
doi: 10.1165/rcmb.2013-0353OC |
28 |
SOMFAI T . Vitrification of immature oocytes in pigs[J]. Anim Sci J, 2024, 95 (1): e13943.
doi: 10.1111/asj.13943 |
29 |
JØRGENSEN J P , LAURIDSEN A M , KRISTENSEN P , et al. Adrm1, a putative cell adhesion regulating protein, is a novel proteasome-associated factor[J]. J Mol Biol, 2006, 360 (5): 1043- 1052.
doi: 10.1016/j.jmb.2006.06.011 |
30 |
MO X H , WU G Q , YUAN D S , et al. Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development[J]. Mol Reprod Dev, 2014, 81 (7): 608- 618.
doi: 10.1002/mrd.22327 |
31 |
WANG S H , HAO J , ZHANG C , et al. KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2[J]. Sci China Life Sci, 2022, 65 (10): 1985- 1997.
doi: 10.1007/s11427-021-2076-x |
32 |
DE SOUZA D K , SALLES L P , CAMARGO R , et al. Effects of PI3K and FSH on steroidogenesis, viability and embryo development of the cumulus-oocyte complex after in vitro culture[J]. Zygote, 2018, 26 (1): 50- 61.
doi: 10.1017/S0967199417000703 |
33 |
PEREZ Y , SHORER Z , LIANI-LEIBSON K , et al. SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome[J]. Brain, 2017, 140 (4): 928- 939.
doi: 10.1093/brain/awx013 |
34 |
JEON Y , YOON J D , CAI L , et al. Effect of zinc on in vitro development of porcine embryos[J]. Theriogenology, 2015, 84 (4): 531- 537.
doi: 10.1016/j.theriogenology.2015.04.006 |
35 |
WANG J , DA C L , SU Y , et al. MKNK2 enhances chemoresistance of ovarian cancer by suppressing autophagy via miR-125b[J]. Biochem Biophys Res Commun, 2021, 556, 31- 38.
doi: 10.1016/j.bbrc.2021.02.084 |
36 |
LYNCH A M , ZHU Y Y , LUCAS B G , et al. TES-1/Tes and ZYX-1/Zyxin protect junctional actin networks under tension during epidermal morphogenesis in the C. elegans embryo[J]. Curr Biol, 2022, 32 (23): 5189- 5199.e6.
doi: 10.1016/j.cub.2022.10.045 |
37 |
CAI T Y , BAI J J , TAN P , et al. Zyxin promotes hepatocellular carcinoma progression via the activation of AKT/mTOR signaling pathway[J]. Oncol Res, 2023, 31 (5): 805- 817.
doi: 10.32604/or.2023.029549 |
38 |
ZHANG N , YU X Q , XIE J X , et al. New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases[J]. Mol Neurobiol, 2021, 58 (6): 2812- 2823.
doi: 10.1007/s12035-020-02277-7 |
39 |
NING N N , SHANG Z Q , LIU Z P , et al. A novel microtubule inhibitor promotes tumor ferroptosis by attenuating SLC7A11/GPX4 signaling[J]. Cell Death Discov, 2023, 9 (1): 453.
doi: 10.1038/s41420-023-01713-6 |
40 |
CHEN S M , WU Y R , GAO Y , et al. Allosterically inhibited PFKL via prostaglandin E2 withholds glucose metabolism and ovarian cancer invasiveness[J]. Cell Rep, 2023, 42 (10): 113246.
doi: 10.1016/j.celrep.2023.113246 |
41 |
PEI Y F , LV S N , SHI Y , et al. RAB21 controls autophagy and cellular energy homeostasis by regulating retromer-mediated recycling of SLC2A1/GLUT1[J]. Autophagy, 2023, 19 (4): 1070- 1086.
doi: 10.1080/15548627.2022.2114271 |
42 |
QI J J , ZHANG S X , QU H X , et al. Lysine-specific demethylase 1 (LSD1) participate in porcine early embryonic development by regulating cell autophagy and apoptosis through the mTOR signaling pathway[J]. Theriogenology, 2024, 224, 119- 133.
doi: 10.1016/j.theriogenology.2024.05.010 |
43 |
HARA T , KIN A , AOKI S , et al. Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos[J]. PLoS One, 2018, 13 (10): e0204571.
doi: 10.1371/journal.pone.0204571 |
44 |
ZHEN Y , STENMARK H . Autophagosome biogenesis[J]. Cells, 2023, 12 (4): 668.
doi: 10.3390/cells12040668 |
45 |
AFZAL A , SARFRAZ M , LI G L , et al. Taking a holistic view of PEST-containing nuclear protein (PCNP) in cancer biology[J]. Cancer Med, 2019, 8 (14): 6335- 6343.
doi: 10.1002/cam4.2465 |
46 |
ZHUANG W X , ZHANG L , ZHENG Y , et al. USP3 deubiquitinates and stabilizes the adapter protein ASC to regulate inflammasome activation[J]. Cell Mol Immunol, 2022, 19 (10): 1141- 1152.
doi: 10.1038/s41423-022-00917-7 |
47 |
DONG P Z , FU H , CHEN L , et al. PCNP promotes ovarian cancer progression by accelerating β-catenin nuclear accumulation and triggering EMT transition[J]. J Cell Mol Med, 2020, 24 (14): 8221- 8235.
doi: 10.1111/jcmm.15491 |
48 |
LI N , XIONG R , LI G R , et al. PM2.5 contributed to pulmonary epithelial senescence and ferroptosis by regulating USP3-SIRT3-P53 axis[J]. Free Radical Biol Med, 2023, 205, 291- 304.
doi: 10.1016/j.freeradbiomed.2023.06.017 |
49 |
KOWALCZYK A , GBADAMOSI O , KOLOR K , et al. Evolutionary rate covariation identifies SLC30A9 (ZnT9) as a mitochondrial zinc transporter[J]. Biochem J, 2021, 478 (17): 3205- 3220.
doi: 10.1042/BCJ20210342 |
50 |
EN A , TAKANASHI S , OKAZAKI R , et al. A mutation in SLC30A9, a zinc transporter, causes an increased sensitivity to oxidative stress in the nematode Caenorhabditis elegans[J]. Biochem Biophys Res Commun, 2022, 634, 175- 181.
doi: 10.1016/j.bbrc.2022.09.107 |
[1] | 田晶晶, 王晓庆, 李棉燕, 王海玲, 吴启钿, 王立贤, 张龙超, 赵福平. 北京黑猪全基因组ROH检测和选择信号分析[J]. 畜牧兽医学报, 2024, 55(9): 3833-3842. |
[2] | 陈栋, 周文譞, 赵真坚, 申琦, 余杨, 崔晟頔, 王俊戈, 陈子旸, 禹世欣, 陈佳苗, 王翔枫, 吴平先, 郭宗义, 王金勇, 唐国庆. 基于计算机视觉技术的猪肌内脂肪含量和眼肌面积测定系统的研发[J]. 畜牧兽医学报, 2024, 55(9): 3843-3852. |
[3] | 陈南珠, 李俊良, 余大为, 周心仪, 王晶, 邹惠影, 杜卫华. 猪MKRN3基因的印记表达和DNA甲基化状态分析[J]. 畜牧兽医学报, 2024, 55(9): 3853-3863. |
[4] | 任聪, 张虎, 王钰明, 解竞静, 萨仁娜, 赵峰. 仿生消化法估测生长猪饲料有效能的准确性及可加性研究[J]. 畜牧兽医学报, 2024, 55(9): 3988-4000. |
[5] | 高力国, 申翰钦, 陈诒全, 陈胜, 蔺文成, 陈峰. 猪轮状病毒重组VP6*蛋白的原核表达及间接ELISA检测方法的建立[J]. 畜牧兽医学报, 2024, 55(9): 4021-4028. |
[6] | 朋璐, 张衡, 庞思琪, 乔竹林, 张小芬, 谭臣, 宋云峰, 周锐, 黎璐. 利用大蜡螟幼虫和小鼠感染模型筛选猪链球菌血清2、3和9型三价灭活疫苗候选菌株[J]. 畜牧兽医学报, 2024, 55(9): 4077-4090. |
[7] | 付艺乾, 梁东阁, 王铭洋, 潘佳佳, 杨彦宾, 曾磊, 康相涛. 干扰素调节因子敲减细胞系的构建及其对猪伪狂犬病病毒增殖的影响[J]. 畜牧兽医学报, 2024, 55(9): 4100-4109. |
[8] | 彭宁, 梁雅旭, 龙菲, 余东明, 钟翔. 白藜芦醇对轮状病毒感染猪肠上皮细胞IPEC-J2的抑制效应[J]. 畜牧兽医学报, 2024, 55(9): 4213-4225. |
[9] | 冯露, 田宏, 郑海学, 石正旺, 罗俊聪, 张晓阳, 尉娟娟, 周静, 廖焕程, 王婉莹. 基于酶促重组酶扩增的非洲猪瘟病毒检测方法[J]. 畜牧兽医学报, 2024, 55(9): 4226-4231. |
[10] | 夏振涛, 王楠, 王婉洁, 周期律, 黄雷, 牟玉莲. pAPN基因敲除的IPEC-J2介导的TGEV感染特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3395-3407. |
[11] | 王怡, 高娟, 胡悦旻, 杨跃飞, 范博钧, 鞠辉明. 短期血清饥饿胁迫对猪骨骼肌卫星细胞代谢及自噬发生的影响[J]. 畜牧兽医学报, 2024, 55(8): 3408-3417. |
[12] | 杨程, 刘野, 程宁, 王凯月, 李欣蕾, 孙久英, 韩俊平, 李文军, 王欢欢, 邵笑, 程雪娇, 孙英峰. 一株PRRSV-2谱系1.8与1.5重组毒株的基因组特征分析[J]. 畜牧兽医学报, 2024, 55(8): 3570-3578. |
[13] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[14] | 吕林丹, 牟豪, 胡霞, 刘明妮, 李绍梅, 李星, 宋振辉, 杨柳. 猪传染性胃肠炎病毒S基因RAA检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(8): 3590-3599. |
[15] | 鲜婷婷, 刘彦, 曹忻, 冯涛. 母猪子宫内膜炎阴道菌群与血清促炎细胞因子的变化及其相关性分析[J]. 畜牧兽医学报, 2024, 55(8): 3688-3698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||