畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 3833-3842.doi: 10.11843/j.issn.0366-6964.2024.09.009
田晶晶(), 王晓庆, 李棉燕, 王海玲, 吴启钿, 王立贤, 张龙超*(
), 赵福平*(
)
收稿日期:
2024-03-06
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
张龙超,赵福平
E-mail:tianjingjing9321@163.com;zhlchias@163.com; zhanglongchao@caas.cn;zhaofuping@caas.cn
作者简介:
田晶晶(1996-),女,河南周口人,硕士生,主要从事猪遗传育种研究,E-mail: tianjingjing9321@163.com
基金资助:
Jingjing TIAN(), Xiaoqing WANG, Mianyan LI, Hailing WANG, Qitian WU, Lixian WANG, Longchao ZHANG*(
), Fuping ZHAO*(
)
Received:
2024-03-06
Online:
2024-09-23
Published:
2024-09-27
Contact:
Longchao ZHANG, Fuping ZHAO
E-mail:tianjingjing9321@163.com;zhlchias@163.com; zhanglongchao@caas.cn;zhaofuping@caas.cn
摘要:
旨在基于长纯合片段(ROH)和选择信号iHS分析北京黑猪群体的遗传结构,挖掘与经济性状相关的候选基因。本研究的对象为北京黑猪群体,平均日龄为210 d。对729头北京黑猪的illumina Porcine 50K芯片数据进行质控和填充后,进行ROH和iHS的分析。本研究选择参与组成ROHs的前1%的SNPs作为ROH岛的阈值,将超过此阈值的区域称为ROH岛。保留标准化的|iHS|值中排在前1%的所有SNPs位点,将位点上下游各延伸200 kb作为选择信号iHS得到的强受选择区域。将选择信号的强受选择区域与ROH岛重叠的区段定为本研究的候选区域。本研究最终保留724个体和45 585个SNPs,通过ROH分析共识别到10个ROH岛,这些岛内包含449个SNPs。iHS分析的结果显示,保留得分排在前1%的位点后,共有376个强受选择位点。最终,在iHS的强受选择区域与ROH岛的5个重叠区域内注释到18个基因,其中包括一些已知的影响猪肉质和生长发育过程的基因。本研究分析了北京黑猪群体ROH的分布,并结合选择信号,揭示了北京黑猪受选择的位点和候选基因,该研究结果为深入探讨北京黑猪的群体特性及经济性状的遗传机制提供重要参考。
中图分类号:
田晶晶, 王晓庆, 李棉燕, 王海玲, 吴启钿, 王立贤, 张龙超, 赵福平. 北京黑猪全基因组ROH检测和选择信号分析[J]. 畜牧兽医学报, 2024, 55(9): 3833-3842.
Jingjing TIAN, Xiaoqing WANG, Mianyan LI, Hailing WANG, Qitian WU, Lixian WANG, Longchao ZHANG, Fuping ZHAO. Analysis of the Whole Genome Run of Homozygosity (ROH) and Selection Signal in Beijing Black Pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3833-3842.
表 1
五类ROHs的基本描述性统计"
ROH分类 Type of ROH | 数量 Number | 百分比/% Percentage | 均值/Mb Mean | 总长度/Mb Total length | 长度百分比/% Length percentage |
1~5 Mb | 28 315 | 59.99 | 3.07 | 86 848.9 | 28.68 |
5~10 Mb | 11 869 | 25.15 | 6.88 | 81 660.9 | 26.97 |
10~20 Mb | 4 994 | 10.58 | 13.59 | 67 863.5 | 22.41 |
20~40 Mb | 1 604 | 3.40 | 26.69 | 42 818.2 | 14.14 |
>40 Mb | 419 | 0.89 | 56.40 | 23 630.1 | 7.80 |
表 2
ROH岛位置信息及包含的基因数"
染色体 Chromosome | 起始位点/bp Start | 终止位点/bp End | SNPs数目 SNPs number | 基因数目 Gene number |
1 | 59 620 943 | 61 060 616 | 24 | 2 |
1 | 61 246 160 | 63 012 075 | 34 | 2 |
1 | 266 123 073 | 266 123 073 | 1 | 1 |
13 | 1 967 845 | 4 228 022 | 69 | 16 |
15 | 25 472 091 | 29 112 719 | 119 | 2 |
5 | 16 390 314 | 17 316 265 | 26 | 8 |
6 | 4 546 603 | 8 502 813 | 112 | 20 |
7 | 69 872 560 | 74 920 040 | 57 | 12 |
8 | 122 505 268 | 122 951 435 | 6 | 0 |
9 | 9 902 154 | 10 035 783 | 1 | 2 |
1 |
KIRIN M , MCQUILLAN R , FRANKLIN C S , et al. Genomic runs of homozygosity record population history and consanguinity[J]. PLoS One, 2010, 5 (11): e13996.
doi: 10.1371/journal.pone.0013996 |
2 |
GIBSON J , MORTON N E , COLLINS A . Extended tracts of homozygosity in outbred human populations[J]. Hum Mol Genet, 2006, 15 (5): 789- 795.
doi: 10.1093/hmg/ddi493 |
3 |
GORSSEN W , MEYERMANS R , JANSSENS S , et al. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species[J]. Genet Sel Evol, 2021, 53 (1): 2.
doi: 10.1186/s12711-020-00599-7 |
4 |
NANI J P , PEÑAGARICANO F . Whole-genome homozygosity mapping reveals candidate regions affecting bull fertility in US Holstein cattle[J]. BMC Genomics, 2020, 21 (1): 338.
doi: 10.1186/s12864-020-6758-y |
5 |
ZORC M , ŠKORPUT D , GVOZDANOVIĆ K , et al. Genetic diversity and population structure of six autochthonous pig breeds from Croatia, Serbia, and Slovenia[J]. Genet Sel Evol, 2022, 54 (1): 30.
doi: 10.1186/s12711-022-00718-6 |
6 |
SHI L Y , WANG L G , LIU J X , et al. Estimation of inbreeding and identification of regions under heavy selection based on runs of homozygosity in a Large White pig population[J]. J Anim Sci Biotechnol, 2020, 11, 46.
doi: 10.1186/s40104-020-00447-0 |
7 |
ZHAN H W , ZHANG S X , ZHANG K L , et al. Genome-wide patterns of homozygosity and relevant characterizations on the population structure in Piétrain pigs[J]. Genes (Basel), 2020, 11 (5): 577.
doi: 10.3390/genes11050577 |
8 |
JOAQUIM L B , CHUD T C S , MARCHESI J A P , et al. Genomic structure of a crossbred Landrace pig population[J]. PLoS One, 2019, 14 (2): e0212266.
doi: 10.1371/journal.pone.0212266 |
9 |
ZHAO F P , ZHANG P F , WANG X Q , et al. Genetic gain and inbreeding from simulation of different genomic mating schemes for pig improvement[J]. J Anim Sci Biotechnol, 2023, 14 (1): 87.
doi: 10.1186/s40104-023-00872-x |
10 |
VOIGHT B F , KUDARAVALLI S , WEN X Q , et al. A map of recent positive selection in the human genome[J]. PLoS Biol, 2006, 4 (3): e72.
doi: 10.1371/journal.pbio.0040072 |
11 |
WANG X P , ZHANG H , HUANG M , et al. Whole-genome SNP markers reveal conservation status, signatures of selection, and introgression in Chinese Laiwu pigs[J]. Evol Appl, 2021, 14 (2): 383- 398.
doi: 10.1111/eva.13124 |
12 |
ZHANG S X , ZHANG K L , PENG X , et al. Selective sweep analysis reveals extensive parallel selection traits between large white and Duroc pigs[J]. Evol Appl, 2020, 13 (10): 2807- 2820.
doi: 10.1111/eva.13085 |
13 |
A V , KUMAR A , MAHALA S , et al. Revelation of genetic diversity and genomic footprints of adaptation in Indian pig breeds[J]. Gene, 2024, 893, 147950.
doi: 10.1016/j.gene.2023.147950 |
14 | 龙熙, 陈力, 吴平先, 等. 合川黑猪保种群遗传结构及选择信号分析[J]. 畜牧兽医学报, 2023, 54 (5): 1854- 1867. |
LONG X , CHEN L , WU P X , et al. Evaluation of the genetic structure and selection signatures in Hechuan black pigs conserved population[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (5): 1854- 1867. | |
15 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
16 |
BROWNING S R , BROWNING B L . Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering[J]. Am J Hum Genet, 2007, 81 (5): 1084- 1097.
doi: 10.1086/521987 |
17 |
LENCZ T , LAMBERT C , DEROSSE P , et al. MALHOTRA.Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia[J]. Proc Natl Acad Sci U S A, 2007, 104 (50): 19942- 19947.
doi: 10.1073/pnas.0710021104 |
18 |
MASTRANGELO S , CIANI E , SARDINA M T , et al. Runs of homozygosity reveal genome-wide autozygosity in Italian sheep breeds[J]. Anim Genet, 2018, 49 (1): 71- 81.
doi: 10.1111/age.12634 |
19 | 莫家远, 李月月, 路玉洁, 等. 广西地方猪群体遗传结构、选择信号分析和ROH检测[J]. 中国畜牧杂志, 2021, 57 (S1): 206- 213. |
MO J Y , LI Y Y , LU Y J , et al. Genetic structure, selection signal analysis and ROH detection of pigs in the Guangxi province[J]. Chinese Journal of Animal Science, 2021, 57 (S1): 206- 213. | |
20 |
JIANG Y , LI X J , LIU J L , et al. Genome-wide detection of genetic structure and runs of homozygosity analysis in Anhui indigenous and Western commercial pig breeds using PorcineSNP80k data[J]. BMC Genomics, 2022, 23 (1): 373.
doi: 10.1186/s12864-022-08583-9 |
21 |
FANG Y F , HAO X Y , XU Z , et al. Genome-wide detection of runs of homozygosity in Laiwu pigs revealed by sequencing data[J]. Front Genet, 2021, 12, 629966.
doi: 10.3389/fgene.2021.629966 |
22 | XIE R , SHI L Y , LIU J X , et al. Genome-wide scan for runs of homozygosity identifies candidate genes in three pig breeds[J]. Animals (Basel), 2019, 9 (8): 518. |
23 |
XU Z , SUN H , ZHANG Z , et al. Assessment of autozygosity derived from runs of homozygosity in Jinhua pigs disclosed by sequencing data[J]. Front Genet, 2019, 10, 274.
doi: 10.3389/fgene.2019.00274 |
24 | TEIXEIRA S A , MARQUES D B D , COSTA T C , et al. Transcription landscape of the early developmental biology in pigs[J]. Animals (Basel), 2021, 11 (5): 1443. |
25 |
MARTINS T F , BRAGA MAGALHÃES A F , VERARDO L L , et al. Functional analysis of litter size and number of teats in pigs: from GWAS to post-GWAS[J]. Theriogenology, 2022, 193, 157- 166.
doi: 10.1016/j.theriogenology.2022.09.005 |
26 |
MIAO W W , MA Z Q , TANG Z Y , et al. Integrative ATAC-seq and RNA-seq analysis of the longissimus muscle of Luchuan and duroc pigs[J]. Front Nutr, 2021, 8, 742672.
doi: 10.3389/fnut.2021.742672 |
27 |
FU L , JIANG Y , WANG C L , et al. A genome-wide association study on feed efficiency related traits in landrace pigs[J]. Front Genet, 2020, 11, 692.
doi: 10.3389/fgene.2020.00692 |
28 |
VALDÉS-HERNÁNDEZ J , FOLCH J M , CRESPO-PIAZUELO D , et al. Identification of candidate regulatory genes for intramuscular fatty acid composition in pigs by transcriptome analysis[J]. Genet Sel Evol, 2024, 56 (1): 12.
doi: 10.1186/s12711-024-00882-x |
29 |
ZHANG J , WANG J Y , MA C , et al. Comparative transcriptomic analysis of mRNAs, miRNAs and lncRNAs in the Longissimus dorsi muscles between fat-type and lean-type pigs[J]. Biomolecules, 2022, 12 (9): 1294.
doi: 10.3390/biom12091294 |
30 |
MARQUES D B D , BASTIAANSEN J W M , BROEKHUIJSE M L W J , et al. Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs[J]. Genet Sel Evol, 2018, 50 (1): 40.
doi: 10.1186/s12711-018-0412-z |
31 |
SELL-KUBIAK E , DOBRZANSKI J , DERKS M F L , et al. Meta-analysis of SNPs determining litter traits in pigs[J]. Genes (Basel), 2022, 13 (10): 1730.
doi: 10.3390/genes13101730 |
32 |
CHEN Z T , YE S P , TENG J Y , et al. Genome-wide association studies for the number of animals born alive and dead in duroc pigs[J]. Theriogenology, 2019, 139, 36- 42.
doi: 10.1016/j.theriogenology.2019.07.013 |
33 |
VAHEDI S M , SALEK ARDESTANI S , KARIMI K , et al. Weighted single-step GWAS for body mass index and scans for recent signatures of selection in Yorkshire pigs[J]. J Hered, 2022, 113 (3): 325- 335.
doi: 10.1093/jhered/esac004 |
34 |
LIU X , TIAN W L , WANG L G , et al. Integrated analysis of long non-coding RNA and mRNA to reveal putative candidate genes associated with backfat quality in Beijing black pig[J]. Foods, 2022, 11 (22): 3654.
doi: 10.3390/foods11223654 |
35 |
ZANG L , WANG Y D , SUN B X , et al. Identification of a 13bp indel polymorphism in the 3′-UTR of DGAT2 gene associated with backfat thickness and lean percentage in pigs[J]. Gene, 2016, 576 (2): 729- 733.
doi: 10.1016/j.gene.2015.09.047 |
36 |
CUI Z J , WANG X Z , LIAO S M , et al. Effects of medium-chain fatty acid glycerides on nutrient metabolism and energy utilization in weaned piglets[J]. Front Vet Sci, 2022, 9, 938888.
doi: 10.3389/fvets.2022.938888 |
37 |
CORONEL J , YU J S , PILLI N , et al. The conversion of β-carotene to vitamin A in adipocytes drives the anti-obesogenic effects of β-carotene in mice[J]. Mol Metab, 2022, 66, 101640.
doi: 10.1016/j.molmet.2022.101640 |
38 | 杨欣婷, 郑麦青, 谭晓冬, 等. 快大型黄羽肉鸡肉品质性状的遗传参数估计和关键基因挖掘[J]. 畜牧兽医学报, 2021, 52 (9): 2416- 2428. |
YANG X T , ZHENG M Q , TAN X D , et al. Genetic parameters estimation and key genes identification for meat quality traits of fast-growing yellow-feather meat-type chickens[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (9): 2416- 2428. | |
39 |
PRAUD C , AL AHMADIEH S , VOLDOIRE E , et al. Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production[J]. Exp Cell Res, 2017, 358 (2): 140- 146.
doi: 10.1016/j.yexcr.2017.06.011 |
40 |
LIU H T , SONG H L , JIANG Y F , et al. A single-step genome wide association study on body size traits using imputation-based whole-genome sequence data in Yorkshire pigs[J]. Front Genet, 2021, 12, 629049.
doi: 10.3389/fgene.2021.629049 |
41 |
WANG H Y , WANG X Y , LI M L , et al. Genome-wide association study reveals genetic loci and candidate genes for meat quality traits in a four-way crossbred pig population[J]. Front Gene, 2023, 14, 1001352.
doi: 10.3389/fgene.2023.1001352 |
42 | LIU Z Z , LI H , ZHONG Z X , et al. A whole genome sequencing-based genome-wide association study reveals the potential associations of teat number in Qingping pigs[J]. Animals (Basel), 2022, 12 (9): 1057. |
43 |
HARIYONO D N H , PRIHANDINI P W . Association of selected gene polymorphisms with thermotolerance traits in cattle-A review[J]. Anim Biosci, 2022, 35 (11): 1635- 1648.
doi: 10.5713/ab.22.0055 |
[1] | 梁小娟, 李雨爽, 李莹莹, 王守伟. 北京黑猪脂肪前体细胞的分离培养及成脂诱导分化研究[J]. 畜牧兽医学报, 2024, 55(7): 2877-2889. |
[2] | 屠芸, 曾雅楠, 张蒸豪, 洪瑞, 王震, 吴平, 周泽洋, 叶艺茹, 杜亚楠, 左福元, 张龚炜. 保种场涪陵水牛及西南地区水牛品种间遗传结构与ROH分析[J]. 畜牧兽医学报, 2024, 55(5): 1989-1998. |
[3] | 牛乃琪, 赵润泽, 宗文成, 刘先策, 刘海, 石国华, 井西涛, 张龙超. 北京黑猪GREB1L和MIB1基因多态性与肋骨数及胴体性状的关联分析[J]. 畜牧兽医学报, 2024, 55(1): 79-86. |
[4] | 祝雪丽, 张龙超, 王立贤, 蒲蕾, 刘欣. 北京黑猪AQP9和RPS10基因多态性及其与背膘厚的关联分析[J]. 畜牧兽医学报, 2024, 55(1): 87-98. |
[5] | 王振宇, 张赛博, 刘文慧, 梁栋, 任小丽, 闫磊, 闫跃飞, 高腾云, 张震, 黄河天. 基于SNP芯片数据分析不同奶牛场基因组近交系数及筛选功能性基因[J]. 畜牧兽医学报, 2023, 54(7): 2848-2857. |
[6] | 苏艳芳, 杨曼, 牛乃琪, 侯欣华, 张龙超. 北京黑猪FABP3和SCD基因多态性与肉品质性状关联分析[J]. 畜牧兽医学报, 2023, 54(3): 966-975. |
[7] | 高超群, 曹然然, 杜文苹, 胡晓玉, 雷艳茹, 李文婷, 康相涛. 基于全基因组SNP标记分析中国地方鸡品种的遗传多样性和种群结构[J]. 畜牧兽医学报, 2023, 54(2): 554-562. |
[8] | 胡紫平, 王立刚, 宗文成, 侯任达, 苏艳芳, 牛乃琪, 王立贤, 王源, 张龙超. 基于基因组SNP和ROH的剑白香猪群体遗传结构解析[J]. 畜牧兽医学报, 2023, 54(10): 4117-4125. |
[9] | 牛乃琪, 苏艳芳, 杨曼, 侯欣华, 王立刚, 张龙超. 北京黑猪HoxB簇基因多态性与脊椎数及胴体性状的关联分析[J]. 畜牧兽医学报, 2023, 54(1): 113-121. |
[10] | 张润, 刘海, 杨曼, 张龙超, 王源. 北京黑猪肌内脂肪含量高、低组间脂质组差异分析[J]. 畜牧兽医学报, 2022, 53(9): 3262-3271. |
[11] | 田威龙, 兰干球, 张龙超, 王立贤, 梁晶, 刘欣. 北京黑猪DKK3和CCR1基因多态性检测及其与背膘厚的关联分析[J]. 畜牧兽医学报, 2022, 53(7): 2083-2093. |
[12] | 牛乃琪, 刘倩, 侯欣华, 刘欣, 王立刚, 赵福平, 高红梅, 石丽君, 王立贤, 张龙超. 北京黑猪NR6A1、VSX2、VRTN、LTBP2基因多态性与脊椎数及胴体性状的关联分析[J]. 畜牧兽医学报, 2022, 53(6): 2005-2014. |
[13] | 刘宏祥, 沈永杰, 张丽华, 章双杰, 王靖, 朱杰, 陈瑜哲, 朱春红, 宋卫涛, 张丹, 陶志云, 徐文娟, 刘红林, 李慧芳. 基于简化基因组测序的娄门鸭遗传多样性评价[J]. 畜牧兽医学报, 2022, 53(6): 1735-1748. |
[14] | 陶伟, 侯黎明, 王彬彬, 刘航, 李开军, 尹彦镇, 郭皓, 牛培培, 张总平, 李强, 黄瑞华, 李平华. 利用全基因组选择信号方法鉴别影响猪肉滴水损失的候选基因[J]. 畜牧兽医学报, 2022, 53(5): 1373-1383. |
[15] | 冯雪燕, 刁淑琪, 刘玉强, 徐志婷, 魏趁, 袁晓龙, 李加琪, 张哲. 基于SNP芯片的海南猪全基因组选择信号分析[J]. 畜牧兽医学报, 2022, 53(2): 349-359. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||