畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (11): 5159-5172.doi: 10.11843/j.issn.0366-6964.2024.11.031
倪君丽1,2(), 刘欣超1(
), 孙栋1,2, 方肆云3, 王定爱3, 申翰钦3, 严专强3, 戚南山2, 孙铭飞2,*(
), 顾有方1,*(
)
收稿日期:
2024-01-11
出版日期:
2024-11-23
发布日期:
2024-11-30
通讯作者:
孙铭飞,顾有方
E-mail:1565452246@qq.com;304368107@qq.com;smf7810@126.com;youfanggu@163.com
作者简介:
倪君丽(1998-),女,浙江平湖人,硕士生,主要从事鸡球虫病综合防控技术研究,E-mail:1565452246@qq.com倪君丽和刘欣超是同等贡献作者
基金资助:
Junli NI1,2(), Xinchao LIU1(
), Dong SUN1,2, Siyun FANG3, Dingai WANG3, Hanqin SHEN3, Zhuanqiang YAN3, Nanshan QI2, Mingfei SUN2,*(
), Youfang GU1,*(
)
Received:
2024-01-11
Online:
2024-11-23
Published:
2024-11-30
Contact:
Mingfei SUN, Youfang GU
E-mail:1565452246@qq.com;304368107@qq.com;smf7810@126.com;youfanggu@163.com
摘要:
为构建以鸡柔嫩艾美耳球虫EtAMA1、EtAMA2、EtMIC3、EtMIC4、EtMIC13、EtROP5和EtSAG1等入侵相关蛋白分子为抗原基础的多表位嵌合重组抗原ET seven真核表达质粒,同时验证其在DF-1细胞中的表达和通过不同辅助递送方式在鸡体内的表达及其免疫功能。本研究利用生信分析获得7个抗原表位,分别提取柔嫩艾美耳球虫不同发育阶段虫体总RNA,通过RT-PCR扩增获得EtAMA1、EtAMA2、EtMIC3、EtMIC4、EtMIC13、EtROP5和EtSAG1等7个抗原的表位区域编码基因,构建基因图谱由公司合成以pcDNA3.1(+)为真核表达载体,构建真核表达质粒pcDNA3.1-ET seven;将鉴定阳性、测序正确的质粒pcDNA3.1-ET seven转染至DF-1细胞,利用RT-PCR和Western blot方法检测ET seven重组基因片段在DF-1细胞中的表达;以磷酸钙纳米颗粒作为辅助质粒递送佐剂检测pcDNA3.1-ET seven在鸡体内引起的细胞因子水平变化,间接ELISA检测特异性IgG抗体水平。结果显示:成功构建真核表达质粒pcDNA3.1-ET seven,RT-PCR和Western blot检测到ET seven的特异性表达,质粒通过磷酸钙纳米佐剂免疫鸡体后,检测细胞因子IL-2、IL-6、IL-10、IL-12、IFN-γ、CD-40均在三次免疫后7 d高水平表达,其中CD-40与IL-6的表达水平最高。pcDNA3.1-ET seven重组质粒结合磷酸钙佐剂肌肉注射二次免疫后7 d间接ELISA检测特异性IgG抗体呈阳性。结果表明,pcDNA3.1-ET seven重组质粒构建成功,在鸡体内有良好的免疫原性,为鸡球虫病的疫苗防控提供新的思路和技术支撑。
中图分类号:
倪君丽, 刘欣超, 孙栋, 方肆云, 王定爱, 申翰钦, 严专强, 戚南山, 孙铭飞, 顾有方. 鸡球虫病7价多表位嵌合重组抗原ET seven真核质粒的构建、表达及其初步功能分析[J]. 畜牧兽医学报, 2024, 55(11): 5159-5172.
Junli NI, Xinchao LIU, Dong SUN, Siyun FANG, Dingai WANG, Hanqin SHEN, Zhuanqiang YAN, Nanshan QI, Mingfei SUN, Youfang GU. Construction, Expression and Preliminary Functional Analysis of the Eukaryotic Plasmid ET Seven, a 7-valent Multiepitope Chimeric Recombinant Antigen of Chicken Coccidia[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5159-5172.
表 1
7个抗原片段信息"
抗原片段 Antigen fragments | 基因序列 Gene sequence | 序列长度/ bp Sequence length |
AMA1 | CAAATAACCGTCCCCAACCCCACGGAGTGCGGCAAAGCTGTCTTCA- AAGTTTCTTCTTCAGACAACCCCACGCAGTACACGAAGCCACCCAC- CACTGAGGCCAGCAGCAGCACCAGCTCCAGCAACGCAGTGGCCACC- ATGTGGCCTGTGGGCGCCTTTTCCAAGGACGAACCCCGCATGCAGG- GGGTGGGCACCAACTATGCCAACTGGTACACCAATGGTACTTGTG- AGATGTATGACATGGTCCCCACTTGCTTCACCCTCGCCCCTAAC | 273 |
AMA2 | CCAGGGGGGACTTGTGTTATTTTTGCTGCTGTACCCTCTTGCTTCCT- GAGGGCCCCCGGGCACACAGCCTACACCTCAGTGGGTTCTTTGGCGG- AGGAGGCCCTCCCGGACTCCGCGCCGGGGGGCCCCCCCTCTTCTGGG- GGCGGGGGGGGCCCCCAGGAGCCCCAGGGGCCCCAGGAGCCCCAGCC- GGGGGGCCCCGAACCCGAACCCAGCCCCGAACCCAGCCCCGAACCCG- GAGAGCCCGGCAGCGGCGAAGGAGGGGGGGAAGAGGGGGAAACAA- ATCCTCCAAAAGAGCCTCAAGAAGAGCCTTCCTTGCCGCCTGAAGA- GGGGGGAGGTCAAGAAGAA | 345 |
MIC3 | GAACAGGGAAAAATAGGAAACTGGTGTTCCCAGAGTTGGGTTTTTT- GCTCAACTGCCATCATCTACGACCCCGCCTACTCCTACGGCACCTGCA- AGTGCGAGTCGTACAGAAACCGCTGCCCCATAGGCAGCAGCTGCCTC- GACTCCAGCTTCGGGGCTTTTTGCAAATGCAATGAAGACTTAGAAG- AGCGAAACGGGGGCTGCCACTTCACCACAACGACCACAACCACCACC- ACCACCACCACCACCACAACCACCACCACCACAACAACCACCACCACC- ACGCCCCCCGCGCGATCTCTCTGCAAA | 309 |
MIC4 | TTGCTCAAGGGCAAGAGCCTTGAGGATTGCAGAAAGGCTTGCTCAG- CAGACCAGAAGTGCACCAACTTCACGAGCTGGCTAAATAAGGAGTG- CTATATCAAGGATGACCAGGACCACCGGATGCAGGAACCAATACCG- GAGGCTACATCCGGATGGGTTTCGTGCTCAACG | 171 |
MIC13 | GGCGCCCTCGGAGTCTGGCGCTGCTACGCAGGGGCCACCATCAACCTC- AGTGCCCACAGCCTAGCTTGCGTCACCAACTGTGGGGACCCCATGAA- CTGCTCCGGACAGCTCACCCACATCTCTCCAATCTATTTCGATAGCA- ACTCCGACATGGTGGCAATCATCAAGCAGGAAAAGGTCAGGTACTG- CGGAAACTCGCGCTCTCGGCTGTCCACC | 216 |
ROP5 | CTAACGATTCCGTCGACCCCTCAAGTTGACATGAGTGGAAAAAGCC- CCATCGTCGTGCCACCTGTTCCAGCCGTTTTAGTCACTCCTGGGTCC- ACACGTATTGCGGTTGAGAGCCGAGAGACGGAAAGTGCAGGACAT- GGCACAGCAAGTGGAGTAAGCGCCACTGCCGGCGATGCTGCCAGGA- TCTCAGCAGGTACTAGC | 201 |
SAG1 | GACAGGGCTGTTTCCTTTGTCGCCCTATACAACCCCAAAACCAGCCC- CGTTGTCAGTTGCGTGCTCCTCCAGTGCCCTAATGCA | 84 |
表 2
7个抗原片段基因引物"
引物名称 Primer name | 引物序列(5′→3′) Primer sequence | 片段大小/bp Fragment length | 退火温度/℃ Annealing temperature |
AMA1-F | CAAATAACCGTCCCCAACC | 273 | 54 |
AMA1-R | GTTAGGGGCGAGGGTGA | 56 | |
AMA2-F | CCAGGGGGGACTTGTGTTAT | 345 | 57 |
AMA2-R | TTCTTCTTGACCTCCCCCC | 56 | |
MIC3-F | GAACAGGGAAAAATAGGAAACT | 348 | 51 |
MIC3-R | ATCAATAACATCGCAGAAGCC | 54 | |
MIC4-F | GGCAGCGGAGAGAGCAAG | 285 | 59 |
MIC4-R | CGTTGAGCACGAAACCCAT | 57 | |
MIC13-F | AATGATTCTCTGTGCCAAAACC | 361 | 55 |
MIC13-R | ACTGCTGTTGCCCTTCCAT | 58 | |
ROP5-F | AACAGTGGTAAAATACACAAGGAC | 501 | 54 |
ROP5-R | TTTTGTGCTCCTTGAGGTGCT | 58 | |
SAG1-F | ATGCCCCAAAGTCTTAGGAG | 401 | 55 |
SAG1-R | TTTTCTTCCATTGCTCGTCGT | 56 |
表 3
磷酸钙纳米颗粒佐剂递送pcDNA3.1-ET seven体内试验分组"
分组 Group | 处理方式(肌肉多点位注射) Treatment (intramuscular multi-point injection) |
空载体质粒组 Empty plasmid group | 100 μg·羽-1 pcDNA3.1质粒+磷酸钙纳米颗粒+壳聚糖 |
磷酸钙纳米颗粒佐剂对照组 Calcium phosphate nanoparticles adjuvant control group | 磷酸钙纳米颗粒+壳聚糖(每羽剂量与免疫组相同) |
空白对照组 Blank control group | 不做任何处理 |
磷酸钙纳米颗粒免疫质粒组 Calcium phosphate nanoparticles immune plasmid group | 100 μg·羽-1 pcDNA3.1-ET seven质粒+磷酸钙纳米颗粒+壳聚糖 |
表 4
细胞因子qPCR引物"
引物名称 Primer name | 引物序列(5′→3′) Primer sequences | 退火温度/℃ Annealing temperature |
IL-2-F | TTGGAAAATATCAAGAACAAGATTCATC | 50.9 |
IL-2-R | TCCCAGGTAACACTGCAGAGTTT | 58.3 |
IL-6-F | CGTGTGCGAACAGCATGGAGA | 60.9 |
IL-6-R | TCAGGCATTTCTCCTCGTCGAAGC | 61.7 |
IL-10-F | AGCAGATCAAGGAGACGTTC | 54.4 |
IL-10-R | ATCAGCAGGTACTCCTCGAT | 55 |
IL-12-F | CCAAGACCTGGAGCACACACCGAAG | 64.8 |
IL-12-R | CGATCCCTGGCCTGCACAGAGA | 64.7 |
IFN-γ-F | ACACTGACAAGTCAAAGCCGCACA | 61.7 |
IFN-γ-R | AGTCGTTCATCGGGAGCTTGGC | 62.7 |
CD-40-F | CCTGGTGATGCTGTGAATTG | 54.1 |
CD-40-R | CTTCTGTGTCGTTGCATTCAG | 54.1 |
β-actin-F | CAACACAGTGCTGTCTGGTGGTA | 59.6 |
β-actin-R | ATCGTACTCCTGCTTGCTGATCC | 59.2 |
1 |
SIBLEY L D .Intracellular parasite invasion strategies[J].Science,2004,304(5668):248-253.
doi: 10.1126/science.1094717 |
2 |
BLAKE D P , KNOX J , DEHAECK B , et al.Re-calculating the cost of coccidiosis in chickens[J].Vet Res,2020,51(1):115.
doi: 10.1186/s13567-020-00837-2 |
3 |
ZHANG L F .Multi-epitope vaccines: a promising strategy against tumors and viral infections[J].Cell Mol Immunol,2018,15(2):182-184.
doi: 10.1038/cmi.2017.92 |
4 |
BIBI S , ULLAH I , ZHU B D , et al.In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology[J].Sci Rep,2021,11(1):1249.
doi: 10.1038/s41598-020-80899-6 |
5 |
FADAKA A O , SIBUYI N R S , MARTIN D R , et al.Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus[J].Sci Rep,2021,11(1):19707.
doi: 10.1038/s41598-021-99227-7 |
6 | TAHIR M J. Isolation and characterization of dense granules of Eimeria tenella sporozoites[D]. Guelph: The University of Guelph., 1998. |
7 |
TONKIN M L , ROQUES M , LAMARQUE M H , et al.Host cell invasion by Apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide[J].Science,2011,333(6041):463-467.
doi: 10.1126/science.1204988 |
8 |
VULLIEZ-LE NORMAND B , TONKIN M L , LAMARQUE M H , et al.Structural and functional insights into the malaria parasite moving junction complex[J].PLoS Pathog,2012,8(6):e1002755.
doi: 10.1371/journal.ppat.1002755 |
9 |
BESTEIRO S , MICHELIN A , PONCET J , et al.Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion[J].PLoS Pathog,2009,5(2):e1000309.
doi: 10.1371/journal.ppat.1000309 |
10 |
PASTOR-FERNÁNDEZ I , KIM S , BILLINGTON K , et al.Development of cross-protective Eimeria-vectored vaccines based on apical membrane antigens[J].Int J Parasitol,2018,48(7):505-518.
doi: 10.1016/j.ijpara.2018.01.003 |
11 |
OLAJIDE J S , QU Z G , YANG S L , et al.Eimeria proteins: order amidst disorder[J].Parasit Vectors,2022,15(1):38.
doi: 10.1186/s13071-022-05159-0 |
12 |
TOMLEY F M , SOLDATI D S .Mix and match modules: structure and function of microneme proteins in Apicomplexan parasites[J].Trends Parasitol,2001,17(2):81-88.
doi: 10.1016/S1471-4922(00)01761-X |
13 |
LI W Y , WANG M Y , CHEN Y F , et al.EtMIC3 and its receptors BAG1 and ENDOUL are essential for site-specific invasion of Eimeria tenella in chickens[J].Vet Res,2020,51(1):90.
doi: 10.1186/s13567-020-00809-6 |
14 |
WANG X Q , WU L L , GAO Y , et al.Evaluation of the protective effect of pVAX-EtMIC3-recombined plasmid against E. tenella in chicken[J].Parasitol Res,2017,116(3):1023-1028.
doi: 10.1007/s00436-017-5383-4 |
15 |
ZHANG X S , ZHAO Y J , ZHANG Y , et al.Role of EtMIC4 EGF-like in regulating the apoptosis of Eimeria tenella host cells via the EGFR pathway[J].Poult Sci,2022,101(10):102075.
doi: 10.1016/j.psj.2022.102075 |
16 |
FRIEDRICH N , SANTOS J M , LIU Y , et al.Members of a novel protein family containing microneme adhesive repeat domains act as sialic acid-binding lectins during host cell invasion by Apicomplexan parasites[J].J Biol Chem,2010,285(3):2064-2076.
doi: 10.1074/jbc.M109.060988 |
17 |
BEHNKE M S , FENTRESS S J , MASHAYEKHI M , et al.The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18[J].PLoS Pathog,2012,8(11):e1002992.
doi: 10.1371/journal.ppat.1002992 |
18 |
REESE M L , SHAH N , BOOTHROYD J C .The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases[J].J Biol Chem,2014,289(40):27849-27858.
doi: 10.1074/jbc.M114.567057 |
19 |
CHOW Y P , WAN K L , BLAKE D P , et al.Immunogenic Eimeria tenella glycosylphosphatidylinositol-anchored surface antigens (SAGs) induce inflammatory responses in avian macrophages[J].PLoS One,2011,6(9):e25233.
doi: 10.1371/journal.pone.0025233 |
20 |
REID A J , BLAKE D P , ANSARI H R , et al.Genomic analysis of the causative agents of coccidiosis in domestic chickens[J].Genome Res,2014,24(10):1676-1685.
doi: 10.1101/gr.168955.113 |
21 |
JAHN D , MATROS A , BAKULINA A Y , et al.Model structure of the immunodominant surface antigen of Eimeria tenella identified as a target for sporozoite-neutralizing monoclonal antibody[J].Parasitol Res,2009,105(3):655-668.
doi: 10.1007/s00436-009-1437-6 |
22 |
LIN Y H , WANG X , HUANG X F , et al.Calcium phosphate nanoparticles as a new generation vaccine adjuvant[J].Expert Rev Vaccines,2017,16(9):895-906.
doi: 10.1080/14760584.2017.1355733 |
23 |
FATOLLAHZADEH M , ESKANDARIAN A , DARANI H Y , et al.Evaluation of Th17 immune responses of recombinant DNA vaccine encoding GRA14 and ROP13 genes against Toxoplasma gondii in BALB/c mice[J].Infect Genet Evol,2021,96,105150.
doi: 10.1016/j.meegid.2021.105150 |
24 |
MOREIRA R S , FILHO V B , CALOMENO N A , et al.EpiBuilder: a tool for assembling, searching, and classifying B-Cell epitopes[J].Bioinform Biol Insights,2022,16,11779322221095221.
doi: 10.1177/11779322221095221 |
25 |
QIU C , WU Y Y , GUO Q Y , et al.Preparation and application of calcium phosphate nanocarriers in drug delivery[J].Mater Today Bio,2022,17,100501.
doi: 10.1016/j.mtbio.2022.100501 |
26 |
RABIEE N , BAGHERZADEH M , GHADIRI A M , et al.Calcium-based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery[J].J Nanostruct Chem,2022,12(5):919-932.
doi: 10.1007/s40097-021-00446-1 |
27 |
SOKOLOVA V V , RADTKE I , HEUMANN R , et al.Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles[J].Biomaterials,2006,27(16):3147-3153.
doi: 10.1016/j.biomaterials.2005.12.030 |
28 |
PEDRAZA C E , BASSETT D C , MCKEE M D , et al.The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection[J].Biomaterials,2008,29(23):3384-3392.
doi: 10.1016/j.biomaterials.2008.04.043 |
29 |
GAGHAN C , ADAMS D , MOHAMMED J , et al.Characterization of vaccine-induced immune responses against coccidiosis in broiler chickens[J].Vaccine,2022,40(28):3893-3902.
doi: 10.1016/j.vaccine.2022.05.043 |
30 | 黄诗雯, 宋硕, 王致萍, 等.人乳头瘤病毒治疗性疫苗的研究进展[J].病毒学报,2020,36(2):314-321. |
HUANG S W , SONG S , WANG Z P , et al.Research progress in human papillomavirus therapeutic vaccines[J].Chinese Journal of Virology,2020,36(2):314-321. | |
31 |
PASTON S J , BRENTVILLE V A , SYMONDS P , et al.Cancer vaccines, adjuvants, and delivery systems[J].Front Immunol,2021,12,627932.
doi: 10.3389/fimmu.2021.627932 |
32 |
MITRA S , LEONARD W J .Biology of IL-2 and its therapeutic modulation: mechanisms and strategies[J].J Leukoc Biol,2018,103(4):643-655.
doi: 10.1002/JLB.2RI0717-278R |
33 |
TANAKA T , NARAZAKI M , KISHIMOTO T .IL-6 in inflammation, immunity, and disease[J].Cold Spring Harb Perspect Biol,2014,6(10):a016295.
doi: 10.1101/cshperspect.a016295 |
34 |
KAUR S , BANSAL Y , KUMAR R , et al.A panoramic review of IL-6:structure, pathophysiological roles and inhibitors[J].Bioorg Med Chem,2020,28(5):115327.
doi: 10.1016/j.bmc.2020.115327 |
35 |
SARAIVA M , VIEIRA P , O'GARRA A .Biology and therapeutic potential of interleukin-10[J].J Exp Med,2020,217(1):e20190418.
doi: 10.1084/jem.20190418 |
36 |
HUTCHINS A P , DIEZ D , MIRANDA-SAAVEDRA D .The IL-10/STAT3-mediated anti-inflammatory response: recent developments and future challenges[J].Brief Funct Genomics,2013,12(6):489-498.
doi: 10.1093/bfgp/elt028 |
37 |
BRAUN D A , FRIBOURG M , SEALFON S C .Cytokine response is determined by duration of receptor and signal transducers and activators of transcription 3 (STAT3) activation[J].J Biol Chem,2013,288(5):2986-2993.
doi: 10.1074/jbc.M112.386573 |
38 |
VERSTOCKT B , SALAS A , SANDS B E , et al.IL-12 and IL-23 pathway inhibition in inflammatory bowel disease[J].Nat Rev Gastroenterol Hepatol,2023,20(7):433-446.
doi: 10.1038/s41575-023-00768-1 |
39 |
TAIT WOJNO E D , HUNTER C A , STUMHOFER J S .The immunobiology of the interleukin-12 family: room for discovery[J].Immunity,2019,50(4):851-870.
doi: 10.1016/j.immuni.2019.03.011 |
40 |
KELCHTERMANS H , BILLIAU A , MATTHYS P .How interferon-γ keeps autoimmune diseases in check[J].Trends Immunol,2008,29(10):479-486.
doi: 10.1016/j.it.2008.07.002 |
41 |
GARRIS C S , ARLAUCKAS S P , KOHLER R H , et al.Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12[J].Immunity,2018,49(6):1148-1161. e7.
doi: 10.1016/j.immuni.2018.09.024 |
42 |
PAN J P , ZHANG M H , WANG J L , et al.Interferon-gamma is an autocrine mediator for dendritic cell maturation[J].Immunol Lett,2004,94(1-2):141-151.
doi: 10.1016/j.imlet.2004.05.003 |
43 |
CROFT M , BENEDICT C A , WARE C F .Clinical targeting of the TNF and TNFR superfamilies[J].Nat Rev Drug Discov,2013,12(2):147-168.
doi: 10.1038/nrd3930 |
44 |
SHIMIZU K , ASAKURA M , FUJⅡ S I .Prolonged antitumor NK cell reactivity elicited by CXCL10-expressing dendritic cells licensed by CD40L+ CD4+ memory T cells[J].J Immunol,,2011,186(10):5927-5937.
doi: 10.4049/jimmunol.1003351 |
45 |
ABELEV B , ADAM J , ADAMOVÁ D , et al.Exclusive J/ψ photoproduction off protons in ultraperipheral p-Pb collisions at $\sqrt{{ }^S \mathrm{NN}} $ =5. 02 TeV[J].Phys Rev Lett,2014,113(23):232504.
doi: 10.1103/PhysRevLett.113.232504 |
46 |
XING L , FAN Y T , ZHOU T J , et al.Chemical modification of chitosan for efficient vaccine delivery[J].Molecules,,2018,23(2):229.
doi: 10.3390/molecules23020229 |
47 |
SEFERIAN P G , MARTINEZ M L .Immune stimulating activity of two new chitosan containing adjuvant formulations[J].Vaccine,2000,19(6):661-668.
doi: 10.1016/S0264-410X(00)00248-6 |
48 |
CARROLL E C , JIN L , MORI A , et al.The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons[J].Immunity,2016,44(3):597-608.
doi: 10.1016/j.immuni.2016.02.004 |
49 |
SMITH T R F , PATEL A , RAMOS S , et al.Immunogenicity of a DNA vaccine candidate for COVID-19[J].Nat Commun,2020,11(1):2601.
doi: 10.1038/s41467-020-16505-0 |
50 |
SONG K D , LILLEHOJ H S , CHOI K D , et al.A DNA vaccine encoding a conserved Eimeria protein induces protective immunity against live Eimeria acervulina challenge[J].Vaccine,2000,19(2-3):243-252.
doi: 10.1016/S0264-410X(00)00169-9 |
51 |
DING X , LILLEHOJ H S , DALLOUL R A , et al.In ovo vaccination with the Eimeria tenella EtMIC2 gene induces protective immunity against coccidiosis[J].Vaccine,2005,23(28):3733-3740.
doi: 10.1016/j.vaccine.2005.01.144 |
[1] | 王乐乐, 王礼跃, 蔡为民, 康喜龙, 冯茜茜, 张知之, 范雪莲, 朱玉, 刘丹丹, 许金俊, 潘志明, 陶建平. 鸡球虫重组蛋白rEnApiAP2对鸡免疫保护效果的观察[J]. 畜牧兽医学报, 2024, 55(4): 1716-1727. |
[2] | 王贺, 郭志廷, 李建喜, 张景艳, 王磊, 张康, 孙继文, 尚小粉, 马永华. 常山散对雏鸡感染柔嫩艾美耳球虫不同发育阶段的防治效果[J]. 畜牧兽医学报, 2024, 55(3): 1278-1289. |
[3] | 肖克, 陈婷, 赵其平, 朱顺海, 董辉, 刘曼玉, 于钰, 黄兵, 韩红玉. 柔嫩艾美耳球虫含HD结构域蛋白特性和功能初步研究[J]. 畜牧兽医学报, 2022, 53(8): 2608-2620. |
[4] | 高登科, 赵泓淙, 董浩, 靳亚平, 陈华涛. 山羊RORα基因的克隆、表达载体构建及功能分析[J]. 畜牧兽医学报, 2022, 53(6): 1779-1794. |
[5] | 袁婧, 张欣欣, 周迪, 杨帅, 周家彦, 梁爱心, 杨利国. 以减毒沙门菌为载体的SS和CST双表达DNA疫苗经不同途径免疫犊牛的效果评价[J]. 畜牧兽医学报, 2022, 53(6): 1914-1924. |
[6] | 焦宇洲, 杨欢欢, 卢垚, 史聪聪, 徐晓娟, 蔡旭旺. 屎肠球菌对感染柔嫩艾美耳球虫肉鸡生长性能和肠道屏障的影响[J]. 畜牧兽医学报, 2022, 53(4): 1210-1219. |
[7] | 罗应, 彭美琪, 肖正泮, 罗承慧, 王大勇, 裴业春. 热带无爪螨主要变应原Blo t 5和Blo t 21融合表达质粒诱导小鼠产生IgG和调节性T细胞[J]. 畜牧兽医学报, 2022, 53(4): 1220-1230. |
[8] | 尹德晶, 吴燕, 岳筠, 杨鹏, 陈静, 王慧, 张双翔, 王开功, 程振涛. 丝状支原体山羊亚种LppA蛋白N末端基因真核表达载体构建及小鼠免疫效果分析[J]. 畜牧兽医学报, 2022, 53(3): 847-856. |
[9] | 李亚军, 茹毅, 郝荣增, 蒋成辉, 王伟, 张越, 张贵才, 刘华南, 卢炳州, 杨洋, 陶世宇, 杨锐, 宋向东, 陈娇, 余四九, 郑海学. CHO细胞表达牛病毒性腹泻病毒E2蛋白及免疫原性分析[J]. 畜牧兽医学报, 2022, 53(12): 4315-4324. |
[10] | 郑腾飞, 辛香, 韩高链, 李孟心, 李俊玲, 秦健, 杜荣. 绵羊Musclin基因真核表达载体的构建及其对肌细胞糖代谢和胰岛素作用的影响[J]. 畜牧兽医学报, 2021, 52(3): 641-652. |
[11] | 韩高链, 郭丽荣, 李孟心, 郑腾飞, 李俊玲, 秦健, 杜荣. 绵羊c-Myc与EGFP融合蛋白的真核表达及其对细胞增殖的调控作用[J]. 畜牧兽医学报, 2020, 51(5): 965-975. |
[12] | 梁珊珊, 朱顺海, 赵其平, 黄兵, 董辉, 于钰, 王青杰, 余水兰, 王海霞, 韩红玉. 柔嫩艾美耳球虫延伸因子1α特性与功能初步分析[J]. 畜牧兽医学报, 2020, 51(12): 3111-3121. |
[13] | 杨伟, 韦冠东, 汤德元, 曾智勇, 黄涛, 王彬, 胡玲玲, 龙冬梅, 黄秋涵, 廖晓糠, 田红宇. 日本乙型脑炎病毒强、弱毒株非结构蛋白NS1、NS2A和NS1-NS2A诱导小鼠CD4+T细胞应答的研究[J]. 畜牧兽医学报, 2018, 49(8): 1693-1700. |
[14] | 冯延, 郭嘉, 许瑞勤, 马思续, 魏凤灵, 张留君, 杨国宇, 夏平安, 张改平. 针对不同形式猪繁殖与呼吸综合征病毒GP5重组蛋白的抗体中和活性比较[J]. 畜牧兽医学报, 2018, 49(6): 1222-1230. |
[15] | 李俊敏, 雍艳红, 巩栋梁, 冯园, 韦璇, 何玉林, 巨向红. 猪GM-CSF稳定表达细胞系的建立[J]. 畜牧兽医学报, 2017, 48(5): 963-970. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||