

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (9): 4232-4240.doi: 10.11843/j.issn.0366-6964.2025.09.009
隋金钰1,2,3(
), 吴运谱4, 李超1,2,3, 王素春1,2,3, 潘俊慧1,2,3, 祁倩1,2,3, 魏世萌1,2,3, 王楷宬1,2,3,*(
)
收稿日期:2024-11-01
出版日期:2025-09-23
发布日期:2025-09-30
通讯作者:
王楷宬
E-mail:suijinyu@cahec.cn;wangkaicheng@cahec.cn
作者简介:隋金钰(1990-),女,山东青岛人,硕士,兽医师,主要从事动物生物安全风险监测与预警, E-mail: suijinyu@cahec.cn, Tel: 0532-85611952
基金资助:
SUI Jinyu1,2,3(
), WU Yunpu4, LI Chao1,2,3, WANG Suchun1,2,3, PAN Junhui1,2,3, QI Qian1,2,3, WEI Shimeng1,2,3, WANG Kaicheng1,2,3,*(
)
Received:2024-11-01
Online:2025-09-23
Published:2025-09-30
Contact:
WANG Kaicheng
E-mail:suijinyu@cahec.cn;wangkaicheng@cahec.cn
摘要:
H5亚型高致病性禽流感病毒在野鸟中广泛传播,造成全球多地暴发禽流感疫情,给养禽业带来严重损失。同时,H5亚型流感病毒不断突破种间屏障,感染哺乳动物和人。2024年,美国奶牛中暴发H5N1亚型流感疫情,病毒在牛群内和牛群间传播,并外溢到人、猫及家禽,其公共卫生安全威胁不断增加。文章梳理了H5亚型流感病毒的遗传进化和流行情况,分析了其在哺乳动物和人中的感染现状,以期为其公共卫生安全风险防控提供参考。
中图分类号:
隋金钰, 吴运谱, 李超, 王素春, 潘俊慧, 祁倩, 魏世萌, 王楷宬. H5亚型流感病毒对人类和哺乳动物健康的威胁分析[J]. 畜牧兽医学报, 2025, 56(9): 4232-4240.
SUI Jinyu, WU Yunpu, LI Chao, WANG Suchun, PAN Junhui, QI Qian, WEI Shimeng, WANG Kaicheng. Analysis of the Threat Posed to Human and Mammalian Health by H5 Subtype Influenza Virus[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4232-4240.
| 1 |
HARFOOT R , WEBBY R J . H5 influenza, a global update[J]. J Microbiol, 2017, 55 (3): 196- 203.
doi: 10.1007/s12275-017-7062-7 |
| 2 |
LI Y , LI M , LI Y , et al. Outbreaks of highly pathogenic avian influenza (H5N6) virus subclade 2.3.4.4h in swans, Xinjiang, Western China, 2020[J]. Emerg Infect Dis, 2020, 26 (12): 2956- 2960.
doi: 10.3201/eid2612.201201 |
| 3 |
CUI Y , LI Y , LI M , et al. Evolution and extensive reassortment of H5 influenza viruses isolated from wild birds in China over the past decade[J]. Emerg Microbes Infect, 2020, 9 (1): 1793- 1803.
doi: 10.1080/22221751.2020.1797542 |
| 4 |
CUI P , SHI J , WANG C , et al. Global dissemination of H5N1 influenza viruses bearing the clade 2.3.4.4b HA gene and biologic analysis of the ones detected in China[J]. Emerg Microbes Infect, 2022, 11 (1): 1693- 1704.
doi: 10.1080/22221751.2022.2088407 |
| 5 | World Health Organization. High pathogenicity avian influenza (HPAI)-situation report 66[EB/OL]. [2025-01-21]. https://www.woah.org/en/document/high-pathogenicity-avian-influenza-hpai-situation-report-66/. |
| 6 | Centers for Disease Control and Prevention of the United States of America. H5 bird flu: current situation[EB/OL]. [2025-01-21]. https://www.cdc.gov/bird-flu/situation-summary/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fbird-flu%2Fphp%2Favian-flu-summary%2Findex.html. |
| 7 |
KRAMMER F , SCHULTZ-CHERRY S . We need to keep an eye on avian influenza[J]. Nat Rev Immunol, 2023, 23 (5): 267- 268.
doi: 10.1038/s41577-023-00868-8 |
| 8 |
ELLIS T M , BOUSFIELD R B , BISSETT L A , et al. Investigation of outbreaks of highly pathogenic H5N1 avian influenza in waterfowl and wild birds in Hong Kong in late 2002[J]. Avian Pathol, 2004, 33 (5): 492- 505.
doi: 10.1080/03079450400003601 |
| 9 | YANG J , ZHANG C , YUAN Y , et al. Novel avian influenza virus (H5N1) clade 2.3.4.4b reassortants in migratory birds, China[J]. Emerg Infect Dis, 2023, 29 (6): 1244- 1249. |
| 10 | LEE Y J , KANG H M , LEE E K , et al. Novel reassortant influenza A(H5N8) viruses, South Korea, 2014[J]. Emerg Infect Dis, 2014, 20 (6): 1087- 1089. |
| 11 | WU H , PENG X , XU L , et al. Novel reassortant influenza A(H5N8) viruses in domestic ducks, eastern China[J]. Emerg Infect Dis, 2014, 20 (8): 1315- 1318. |
| 12 |
LI M , LIU H , BI Y , et al. Highly pathogenic avian influenza A(H5N8) virus in wild migratory birds, Qinghai Lake, China[J]. Emerg Infect Dis, 2017, 23 (4): 637- 641.
doi: 10.3201/eid2304.161866 |
| 13 |
LEE D H , BERTRAN K , KWON J H , et al. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4[J]. J Vet Sci, 2017, 18 (S1): 269- 280.
doi: 10.4142/jvs.2017.18.S1.269 |
| 14 | ADLHOCH C , FUSARO A , KUIKEN T , et al. Avian influenza overview November 2019- February 2020[J]. EFSA J, 2020, 18 (3): e06096. |
| 15 |
GU W , SHI J , CUI P , et al. Novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of H5N8 virus have been detected in poultry and caused multiple human infections in China[J]. Emerg Microbes Infect, 2022, 11 (1): 1174- 1185.
doi: 10.1080/22221751.2022.2063076 |
| 16 |
KING J , HARDER T , GLOBIG A , et al. Highly pathogenic avian influenza virus incursions of subtype H5N8, H5N5, H5N1, H5N4, and H5N3 in Germany during 2020-21[J]. Virus Evol, 2022, 8 (1): veac035.
doi: 10.1093/ve/veac035 |
| 17 |
LEWIS N S , BANYARD A C , WHITTARD E , et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020[J]. Emerg Microbes Infect, 2021, 10 (1): 148- 151.
doi: 10.1080/22221751.2021.1872355 |
| 18 | GRAZIOSI G , LUPINI C , CATELLI E , et al. Highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4b virus infection in birds and mammals[J]. Animals (Basel), 2024, 14 (9): 1372. |
| 19 | TIAN J , BAI X , LI M , et al. Highly pathogenic avian influenza virus (H5N1) clade 2.3.4.4b introduced by wild birds, China, 2021[J]. Emerg Infect Dis, 2023, 29 (7): 1367- 1375. |
| 20 | European Food Safety Authority . Avian influenza overview December 2021-March 2022[J]. EFSA J, 2022, 20 (4): e07289. |
| 21 | United States Department of Agriculture. Detections of highly pathogenic avian influenza in wild birds[EB/OL]. [2025-01-21]. https://www.aphis.usda.gov/livestock-poultry-disease/avian/avian-influenza/hpai-detections/wild-birds. |
| 22 | United States Department of Agriculture. 2022-2023 highly pathogenic avian influenza outbreak[EB/OL]. [2025-01-21]. https://www.aphis.usda.gov/sites/default/files/hpai-2022-2023-summary-depop-analysis.pdf. |
| 23 | Food and Agriculture Organization of the United Nations. Global avian influenza viruses with zoonotic potential situation update[EB/OL]. [2025-01-21]. https://www.fao.org/animal-health/situation-updates/global-aiv-with-zoonotic-potential/bird-species-affected-by-h5nx-hpai/en. |
| 24 | World Organization for Animal Health. Cases of avian influenza in mammals[EB/OL]. [2025-01-21]. https://www.woah.org/en/disease/avian-influenza/#ui-id-2. |
| 25 | BURROUGH E R , MAGSTADT D R , PETERSEN B , et al. Highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus infection in domestic dairy cattle and cats, United States, 2024[J]. Emerg Infect Dis, 2024, 30 (7): 1335- 1343. |
| 26 |
EISFELD A J , BISWAS A , GUAN L , et al. Pathogenicity and transmissibility of bovine H5N1 influenza virus[J]. Nature, 2024, 633 (8029): 426- 432.
doi: 10.1038/s41586-024-07766-6 |
| 27 | NELLI R K , HARM T A , SIEPKER C , et al. Sialic acid receptor specificity in mammary gland of dairy cattle infected with highly pathogenic avian influenza A(H5N1) virus[J]. Emerg Infect Dis, 2024, 30 (7): 1361- 1373. |
| 28 | 陈化兰, 朱启运, 徐帅. 流感病毒跨种传播与感染致病机制研究进展[J]. 兰州大学学报(医学版), 2023, 49 (5): 1- 7. |
| CHEN H L , ZHU Q Y , XU S . Advances on the cross-species transmission and pathogenesis of influenza virus[J]. Journal of Lanzhou University (Medical Sciences), 2023, 49 (5): 1- 7. | |
| 29 | 郭雨欣, 周栋梁, 蒲娟, 等. PB2基因在流感病毒跨物种传播和哺乳动物适应性中的作用及机制研究进展[J]. 中国家禽, 2024, 46 (11): 121- 131. |
| GUO Y X , ZHOU D L , PU J , et al. Advances on role and mechanism of PB2 gene in cross-species transmission and mammalian adaptation of influenza viruses[J]. China Poultry, 2024, 46 (11): 121- 131. | |
| 30 |
SHIN D L , SIEBERT U , LAKEMEYER J , et al. Highly pathogenic avian influenza A(H5N8) virus in gray seals, Baltic Sea[J]. Emerg Infect Dis, 2019, 25 (12): 2295- 2298.
doi: 10.3201/eid2512.181472 |
| 31 |
LEGUIA M , GARCIA-GLAESSNER A , MUÑOZ-SAAVEDRA B , et al. Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru[J]. Nat Commun, 2023, 14 (1): 5489.
doi: 10.1038/s41467-023-41182-0 |
| 32 | ULLOA M , FERNÁNDEZ A , ARIYAMA N , et al. Mass mortality event in South American sea lions (Otaria flavescens) correlated to highly pathogenic avian influenza (HPAI) H5N1 outbreak in Chile[J]. Vet Q, 2023, 43 (1): 1- 10. |
| 33 |
MURAWSKI A , FABRIZIO T , OSSIBOFF R , et al. Highly pathogenic avian influenza A(H5N1) virus in a common bottlenose dolphin (Tursiops truncatus) in Florida[J]. Commun Biol, 2024, 7 (1): 476.
doi: 10.1038/s42003-024-06173-x |
| 34 |
YANG Z Y , WEI C J , KONG W P , et al. Immunization by avian H5 influenza hemagglutinin mutants with altered receptor binding specificity[J]. Science, 2007, 317 (5839): 825- 828.
doi: 10.1126/science.1135165 |
| 35 |
TOMAS G , MARANDINO A , PANZERA Y , et al. Highly pathogenic avian influenza H5N1 virus infections in pinnipeds and seabirds in Uruguay: Implications for bird-mammal transmission in South America[J]. Virus Evol, 2024, 10 (1): veae031.
doi: 10.1093/ve/veae031 |
| 36 | Centers for Disease Control and Prevention of the United States of America. Human infection with highly pathogenic avian influenza A(H5N1) virus in Chile[EB/OL]. [2025-01-21]. https://www.cdc.gov/bird-flu/spotlights/chile-first-case-h5n1-addendum.html?CDC_AAref_Val=https://www.cdc.gov/flu/avianflu/spotlights/2022-2023/chile-first-case-h5n1-addendum.htm. |
| 37 |
LI B , SU G , XIAO C , et al. The PB2 co-adaptation of H10N8 avian influenza virus increases the pathogenicity to chickens and mice[J]. Transbound Emerg Dis, 2022, 69 (4): 1794- 1803.
doi: 10.1111/tbed.14157 |
| 38 |
PEACOCK T P , SHEPPARD C M , LISTER M G , et al. Mammalian ANP32A and ANP32B proteins drive differential polymerase adaptations in avian influenza virus[J]. J Virol, 2023, 97 (5): e0021323.
doi: 10.1128/jvi.00213-23 |
| 39 |
CHEN G W , KUO S M , YANG S L , et al. Genomic signatures for avian H7N9 viruses adapting to humans[J]. PLoS One, 2016, 11 (2): e0148432.
doi: 10.1371/journal.pone.0148432 |
| 40 | AGUERO M , MONNE I , SANCHEZ A , et al. Highly pathogenic avian influenza A (H5N1) virus infection in farmed minks, Spain, October 2022[J]. Euro Surveill, 2023, 28 (3): 2300001. |
| 41 |
ZHANG Y , ZHANG Q , GAO Y , et al. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus[J]. J Virol, 2012, 86 (18): 9666- 9674.
doi: 10.1128/JVI.00958-12 |
| 42 | DE VRIES E , DE HAAN C A . Letter to the editor: Highly pathogenic influenza A (H5N1) viruses in farmed mink outbreak contain a disrupted second sialic acid binding site in neuraminidase, similar to human influenza A viruses[J]. Euro Surveill, 2023, 28 (7): 2300085. |
| 43 |
XU X , SUBBARAO , COX N J , et al. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong[J]. Virology, 1999, 261 (1): 15- 19.
doi: 10.1006/viro.1999.9820 |
| 44 | World Health Organization. Cumulative number of confirmed human cases for avian influenza A (H5N1) reported to WHO, 2003-2024, 12 December 2024[EB/OL]. [2025-01-21]. https://www.who.int/publications/m/item/cumulative-number-of-confirmed-human-cases-for-avian-influenza-a(h5n1)-reported-to-who-2003-2024-20-december-2024. |
| 45 | World Health Organization. Updated joint FAO/WHO/WOAH assessment of recent influenza A (H5N1) virus events in animals and people[EB/OL]. [2025-01-21]. https://www.who.int/publications/m/item/updated-joint-fao-who-woah-assessment-of-recent-influenza-a(h5n1)-virus-events-in-animals-and-people. |
| 46 |
TARENDEAU F , CREPIN T , GUILLIGAY D , et al. Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit[J]. PLoS Pathog, 2008, 4 (8): e1000136.
doi: 10.1371/journal.ppat.1000136 |
| 47 |
HOSSAIN M G , AKTER S , DHOLE P , et al. Analysis of the genetic diversity associated with the drug resistance and pathogenicity of influenza A virus isolated in Bangladesh from 2002 to 2019[J]. Front Microbiol, 2021, 12, 735305.
doi: 10.3389/fmicb.2021.735305 |
| 48 |
PULIT-PENALOZA J A , BROCK N , BELSER J A , et al. Highly pathogenic avian influenza A(H5N1) virus of clade 2.3.4.4b isolated from a human case in Chile causes fatal disease and transmits between co-housed ferrets[J]. Emerg Microbes Infect, 2024, 13 (1): 2332667.
doi: 10.1080/22221751.2024.2332667 |
| 49 |
NEUMANN G , NODA T , KAWAOKA Y . Emergence and pandemic potential of swine-origin H1N1 influenza virus[J]. Nature, 2009, 459 (7249): 931- 939.
doi: 10.1038/nature08157 |
| 50 | 中华人民共和国农业农村部. 疫情发布[EB/OL]. [2025-01-21]. http://www.xmsyj.moa.gov.cn/yqfb/. |
| Ministry of Agriculture and Rural Affairs of the People's Republic of China. The Animal epidemic information[EB/OL]. [2025-01-21]. http://www.xmsyj.moa.gov.cn/yqfb/. (in Chinese) | |
| 51 | 蒲娟, 刘金华. 动物流感病毒对人类健康的威胁[J]. 病毒学报, 2023, 39 (3): 877- 889. |
| PU J , LIU J H . Threats of animal influenza virus to human health[J]. Chinese Journal of Virology, 2023, 39 (3): 877- 889. | |
| 52 |
ZENG X Y , HE X W , MENG F , et al. Protective efficacy of an H5/H7 trivalent inactivated vaccine (H5-Re13, H5-Re14, and H7-Re4 strains) in chickens, ducks, and geese against newly detected H5N1, H5N6, H5N8, and H7N9 viruses[J]. J Integr Agric, 2022, 21 (7): 2086- 2094.
doi: 10.1016/S2095-3119(22)63904-2 |
| [1] | 史玉婷, 韩心雨, 钟沐卉, 林耀忠, 柳腾飞, 李焰, 尹会方, 贾伟新. G57基因型H9N2亚型禽流感病毒反向遗传系统的建立与验证[J]. 畜牧兽医学报, 2025, 56(4): 1825-1833. |
| [2] | 黄程, 杨志远, 林健, 程慧敏, 王米, 毛惠琳, 王国良, 刘贵明, 赵际成, 刘月焕. H9亚型禽流感病毒mRNA疫苗的构建与效力评价[J]. 畜牧兽医学报, 2025, 56(4): 1843-1853. |
| [3] | 高志强, 赖平安, 宋悦谦, 种焱, 郭悠然, 白子龙, 郭惠民, 汪琳, 蒲静, 史喜菊, 任彤, 赵相鹏. 禽流感病毒与新城疫病毒多靶标核酸质谱检测方法研究及应用[J]. 畜牧兽医学报, 2025, 56(3): 1386-1395. |
| [4] | 吴佳辉, 沈世彦, 邓锦波, 吴海阳, 任芷欣, 吴杨博, 黄娟, 黄浩滨, 潘伟雄, 赵锃珏, 何容肖, 孙崇军, 张玲华. 诱导型表达H5N1亚型禽流感病毒HA蛋白的乳酸乳球菌的构建及其对鸭的免疫原性分析[J]. 畜牧兽医学报, 2025, 56(2): 774-787. |
| [5] | 赵康宁, 杨忠龙, 陈怡, 朱春成, 郭云飞, 印云聪, 秦涛, 陈素娟, 彭大新. 16株新型H3N3亚型禽流感病毒的遗传变异分析[J]. 畜牧兽医学报, 2024, 55(9): 4029-4040. |
| [6] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
| [7] | 毛秋艳, 周淑宁, 刘朔, 彭程, 尹馨, 张雅馨, 周婉婷, 李金平, 侯广宇, 蒋文明, 宋厚辉, 刘华雷. H3亚型禽流感病毒荧光定量RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(3): 1137-1146. |
| [8] | 杨芷翊, 王新凯, 史玉婷, 付思源, 张钰炘, 曹琛福, 贾伟新. 基于RT-RAA的禽流感H5亚型核酸CRISPR-Cas13a检测方法的建立[J]. 畜牧兽医学报, 2023, 54(9): 3803-3811. |
| [9] | 周勇, 李知新, 鲁宏伟, 孙燕, 李甜, 杜凡姝, 蒲娟. 我国H5和H7N9亚型高致病性禽流感的监测及疫情暴发分析[J]. 畜牧兽医学报, 2022, 53(9): 3093-3106. |
| [10] | 崔明仙, 王星博, 黄彦铭, 卞希一, 冯梦珂, 颜焰, 董伟仁, 周继勇. 3株H3N2亚型禽流感病毒的基因组特征与演化分析[J]. 畜牧兽医学报, 2022, 53(11): 4116-4122. |
| [11] | 孙华鹏, 崔新鑫, 潘亮奇, 许丰祥, 李硕, 吴梅花, 朱旭辉, 于亚南, 李明亮, 刘杨, 瞿孝云, 廖明, 孙海亮. 中国H9N2亚型禽流感病毒的流行现状[J]. 畜牧兽医学报, 2021, 52(5): 1218-1229. |
| [12] | 李静云, 连朋敬, 白玉, 奚柳青, 张子卉, 牛小飞, 杨俊琦, 乔健. H9N2亚型禽流感病毒感染对小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2021, 52(5): 1359-1368. |
| [13] | 李丽, 唐国毅, 冯贺龙, 薛玉涵, 任助, 王国康, 贾妙妙, 商雨, 罗青平, 邵华斌, 温国元. 基于马赛克HA序列的H9亚型禽流感灭活疫苗的免疫效力分析[J]. 畜牧兽医学报, 2021, 52(12): 3569-3577. |
| [14] | 王素春, 仲焕香, 姜楠, 姜利建, 潘子豪, 孙福亮, 刘华雷, 黄保续, 王楷宬. H5、H7和H9亚型禽流感病毒四重荧光RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2020, 51(6): 1429-1437. |
| [15] | 赵冰倩, 罗畅, 刘健新, 李慧子, 张彭涛, 于相龙, 刘博洋, 宁章勇. 连翘水提液体外对禽流感病毒增殖及炎症因子表达的抑制效应[J]. 畜牧兽医学报, 2020, 51(6): 1466-1474. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||