[1] VAKULENKO Y, DEVIATKIN A, DREXLER J F, et al. Modular evolution of coronavirus genomes[J]. Viruses, 2021, 13(7): 1270. [2] HUANG C Y, DRACZKOWSKI P, WANG Y S, et al. In situ structure and dynamics of an alphacoronavirus spike protein by cryo-ET and cryo-EM[J]. Nat Commun, 2022, 13(1): 4877. [3] SHANG J, ZHENG Y, YANG Y, et al. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins[J]. PLoS Pathog, 2018, 14(4): e1007009. [4] LI Z, TOMLINSON A C, WONG A H, et al. The human coronavirus HCoV-229E S-protein structure and receptor binding[J]. Elife, 2019, 8: e1007009. [5] WALLS A C, XIONG X, PARK Y J, et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion[J]. Cell, 2019, 176(5): 1026-1039.e15. [6] CHEN Y, ZHANG Z, LI J, et al. Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis[J]. Virol J, 2018, 15(1): 170. [7] LI F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies[J]. J Virol, 2015, 89(4): 1954-1964. [8] WRAPP D, MCLELLAN J S. The 3.1-angstrom cryo-electron microscopy structure of the porcine epidemic diarrhea virus spike protein in the prefusion conformation[J]. J Virol, 2019, 93(23): e00923-19. [9] YU J, QIAO S, GUO R, et al. Cryo-EM structures of HKU2 and SADS-CoV spike glycoproteins provide insights into coronavirus evolution[J]. Nat Commun, 2020, 11(1): 3070. [10] GUAN H, WANG Y, PER AČG ULIJA V, et al. Cryo-electron microscopy structure of the swine acute diarrhea syndrome coronavirus spike glycoprotein provides insights into evolution of unique coronavirus spike proteins[J]. J Virol, 2020, 94(22): e01301-20. [11] WALLS A C, TORTORICI M A, BOSCH B J, et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer[J]. Nature, 2016, 531(7592): 114-117. [12] WALLS A C, TORTORICI M A, FRENZ B, et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy[J]. Nat Struct Mol Biol, 2016, 23(10): 899-905. [13] YANG T J, CHANG Y C, KO T P, et al. Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans[J]. Proc Natl Acad Sci U S A, 2020, 117(3): 1438-1446. [14] ZHANG K, LI S, PINTILIE G, et al. A 3.4-Å cryo-electron microscopy structure of the human coronavirus spike trimer computationally derived from vitrified NL63 virus particles[J]. QRB Discov, 2020, 1: e11. [15] LI Y, WANG T, ZHANG J, et al. Exploring the regulatory function of the N-terminal domain of SARS-CoV-2 spike protein through molecular dynamics simulation[J]. Adv Theory Simul, 2021, 4(10): 2100152. [16] SHANG J, WAN Y, LIU C, et al. Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry[J]. PLoS Pathog, 2020, 16(3): e1008392. [17] LING A J W, CHANG L S, BABJI A S, et al. Review of sialic acid’s biochemistry, sources, extraction and functions with special reference to edible bird’s nest[J]. Food Chem, 2022, 367: 130755. [18] DIEP N V, NORIMINE J, SUEYOSHI M, et al. Novel porcine epidemic diarrhea virus (PEDV) variants with large deletions in the spike (S) gene coexist with PEDV strains possessing an intact S gene in domestic pigs in Japan: A new disease situation[J]. PLoS One, 2017, 12(1): e0170126. [19] PENG G, XU L, LIN Y L, et al. Crystal structure of bovine coronavirus spike protein lectin domain[J]. J Biol Chem, 2012, 287(50): 41931-41938. [20] YOU R, LIU K, HUANG M, et al. Identification and comparison of the sialic acid-binding domain characteristics of avian coronavirus infectious bronchitis virus spike protein[J]. J Virol, 2023, 97(5): e0048923. [21] QIAO M, LIN L, XIA K, et al. Recent advances in biotechnology for heparin and heparan sulfate analysis[J]. Talanta, 2020, 219: 121270. [22] NASKALSKA A, DABROWSKA A, SZCZEPANSKI A, et al. Membrane protein of human coronavirus NL63 is responsible for interaction with the adhesion receptor[J]. J Virol, 2019, 93(19): e00355-19. [23] YANG Y L, WANG B, LI W, et al. Functional dissection of the spike glycoprotein S1 subunit and identification of cellular cofactors for regulation of swine acute diarrhea syndrome coronavirus entry[J]. J Virol, 2024, 98(4): e0013924. [24] DESMARETS L M B, THEUNS S, ROUKAERTS I D M, et al. Role of sialic acids in feline enteric coronavirus infections[J]. J Gen Virol, 2014, 95(Pt 9): 1911-1918. [25] COOK S, CASTILLO D, WILLIAMS S, et al. Serotype I and II feline coronavirus replication and gene expression patterns of feline cells-building a better understanding of serotype I FIPV biology[J]. Viruses, 2022, 14(7): 1356. [26] CERRACCHIO C, SERRA F, AMOROSO M G, et al. Canine coronavirus activates Aryl hydrocarbon receptor during in vitro infection[J]. Viruses, 2022, 14(11): 2437. [27] GUO H, HU B J, YANG X L, et al. Evolutionary arms race between virus and host drives genetic diversity in bat severe acute respiratory syndrome-related coronavirus spike genes[J]. J Virol, 2020, 94(20): e00902-20. [28] LAN J, GE J, YU J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581(7807): 215-220. [29] ALAOFI A L. Exploring structural dynamics of the MERS-CoV receptor DPP4 and mutant DPP4 receptors[J]. J Biomol Struct Dyn, 2022, 40(2): 752-763. [30] SAUNDERS N, FERNANDEZ I, PLANCHAIS C, et al. TMPRSS2 is a functional receptor for human coronavirus HKU1[J]. Nature, 2023, 624(7990): 207-214. [31] TANG G, LIU Z, CHEN D. Human coronaviruses: Origin, host and receptor[J]. J Clin Virol, 2022, 155: 105246. [32] JI W, PENG Q, FANG X, et al. Structures of a deltacoronavirus spike protein bound to porcine and human receptors[J]. Nat Commun, 2022, 13(1): 1467. [33] SHI J, SHI Y, XIU R, et al. Identification of a novel neutralizing epitope on the N-terminal domain of the human coronavirus 229E spike protein[J]. J Virol, 2022, 96(4): e0195521. [34] SHANG J, ZHENG Y, YANG Y, et al. Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state[J]. J Virol, 2018, 92(4): e01556-17. [35] PAN Y, TIAN X, QIN P, et al. Discovery of a novel swine enteric alphacoronavirus (SeACoV) in southern China[J]. Vet Microbiol, 2017, 211: 15-21. [36] LI F. Structure, function, and evolution of coronavirus spike proteins[J]. Annu Rev Virol, 2016, 3(1): 237-261. [37] LI C, SU M, YIN B, et al. Integrin αvβ3 enhances replication of porcine epidemic diarrhea virus on Vero E6 and porcine intestinal epithelial cells[J]. Vet Microbiol, 2019, 237: 108400. [38] WARDEH M, BAYLIS M, BLAGROVE M S C. Predicting mammalian hosts in which novel coronaviruses can be generated[J]. Nat Commun, 2021, 12(1): 780. [39] WANG S, XU C, SHI J, et al. Regulatory effect and mechanism of APN gene on porcine epidemic diarrhea virus resistance[J]. Gene, 2021, 775: 145448. [40] PIZZANELLI S, FORTE C, PINZINO C, et al. Copper(II) complexes with peptides based on the second cell binding site of fibronectin: metal coordination and ligand exchange kinetics[J]. Phys Chem Chem Phys, 2016, 18(5): 3982-3994. [41] CASTILLO G, MORA-DíAZ J C, NELLI R K, et al. Human air-liquid-interface organotypic airway cultures express significantly more ACE2 receptor protein and are more susceptible to HCoV-NL63 infection than monolayer cultures of primary respiratory epithelial cells[J]. Microbiol Spectr, 2022, 10(4): e0163922. [42] PECK K M, SCOBEY T, SWANSTROM J, et al. Permissivity of dipeptidyl peptidase 4 orthologs to Middle East respiratory syndrome coronavirus is governed by glycosylation and other complex determinants[J]. J Virol, 2017, 91(19): e00534-17. [43] PALLESEN J, WANG N, CORBETT K S, et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen[J]. Proc Natl Acad Sci U S A, 2017, 114(35): E7348-E7357. [44] KIRCHDOERFER R N, WANG N, PALLESEN J, et al. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis[J]. Sci Rep, 2018, 8(1): 15701. [45] GUI M, SONG W, ZHOU H, et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding[J]. Cell Res, 2017, 27(1): 119-129. [46] WALLS A C, TORTORICI M A, SNIJDER J, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion[J]. Proc Natl Acad Sci U S A, 2017, 114(42): 11157-11162. [47] SONG X, SHI Y, DING W, et al. Cryo-EM analysis of the HCoV-229E spike glycoprotein reveals dynamic prefusion conformational changes[J]. Nat Commun, 2021, 12(1): 141. [48] ALIPER E T, EFREMOV R G. Inconspicuous yet indispensable: The coronavirus spike transmembrane domain[J]. Int J Mol Sci, 2023, 24(22): 16421. [49] KIELIAN M. Mechanisms of virus membrane fusion proteins[J]. Annu Rev Virol, 2014, 1(1): 171-189. [50] SHI W, CAI Y, ZHU H, et al. Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane[J]. Nature, 2023, 619(7969): 403-409. [51] BASSO L G M, ZERAIK A E, FELIZATTI A P, et al. Membranotropic and biological activities of the membrane fusion peptides from SARS-CoV spike glycoprotein: The importance of the complete internal fusion peptide domain[J]. Biochim Biophys Acta Biomembr, 2021, 1863(11): 183697. [52] WALLS A C, PARK Y J, TORTORICI M A, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-92.e6. [53] MAEDA D, TIAN D, YU H, et al. Killed whole-genome reduced-bacteria surface-expressed coronavirus fusion peptide vaccines protect against disease in a porcine model[J]. Proc Natl Acad Sci U S A, 2021, 118(18): e2025622118. [54] DACON C, TUCKER C, PENG L, et al. Broadly neutralizing antibodies target the coronavirus fusion peptide[J]. Science, 2022, 377(6607): 728-735. [55] LOW J S, JERAK J, TORTORICI M A, et al. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies[J]. Science, 2022, 377(6607): 735-742. [56] SUN X, YI C, ZHU Y, et al. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2[J]. Nat Microbiol, 2022, 7(7): 1063-1074. [57] MILLET J K, WHITTAKER G R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis[J]. Virus Res, 2015, 202: 120-34. [58] YAN L, MENG B, XIANG J, et al. Crystal structure of the post-fusion core of the human coronavirus 229E spike protein at 1.86 Å resolution[J]. Acta Crystallogr D Struct Biol, 2018, 74(Pt 9): 841-851. [59] WANG F, YANG G, YAN L. Crystal Structures of Fusion Cores from CCoV-HuPn-2018 and SADS-CoV[J]. Viruses, 2024, 16(2): 272. [60] WESTERFIELD J M, BARRERA F N. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them[J]. J Biol Chem, 2020, 295(7): 1792-1814. [61] KUMAR P, BHARDWAJ T, GARG N, et al. Microsecond simulations and CD spectroscopy reveals the intrinsically disordered nature of SARS-CoV-2 spike-C-terminal cytoplasmic tail (residues 1242-1273) in isolation[J]. Virology, 2022, 566: 42-55. [62] SADASIVAN J, SINGH M, SARMA J D. Cytoplasmic tail of coronavirus spike protein has intracellular targeting signals[J]. J Biosci, 2017, 42(2): 231-244. [63] WU Z, ZHANG Z, WANG X, et al. Palmitoylation of SARS-CoV-2 S protein is essential for viral infectivity[J]. Signal Transduct Target Ther, 2021, 6(1): 231. [64] LUO Y, TAN C W, XIE S Z, et al. Identification of ZDHHC17 as a potential drug target for swine acute diarrhea syndrome coronavirus infection[J]. mBio, 2021, 12(5): e0234221. [65] GELHAUS S, THAA B, ESCHKE K, et al. Palmitoylation of the Alphacoronavirus TGEV spike protein S is essential for incorporation into virus-like particles but dispensable for S-M interaction[J]. Virology, 2014, 464-465: 397-405. [66] KUMAR P, BHARDWAJ A, MUKHERJEE B, et al. Coronaviruses spike glycoprotein endodomains: The sequence and structure-based comprehensive study[J]. Protein Sci, 2023, 32(11): e4804. [67] CHENG Y R, LI X, ZHAO X, et al. Cell entry of animal coronaviruses[J]. Viruses, 2021, 13(10):1977. [68] JOHNSON B A, XIE X, BAILEY A L, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis[J]. Nature, 2021, 591(7849): 293-299. [69] WANG Z, ZHONG K, WANG G, et al. Loss of furin site enhances SARS-CoV-2 spike protein pseudovirus infection[J]. Gene, 2023, 856: 147144. [70] ZEHR J D, KOSAKOVSKY POND S L, MILLET J K, et al. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic feline coronavirus phenotypes[J]. Virus Evol, 2023, 9(1): 523607. [71] KIM J, YOON J, PARK J E. Furin cleavage is required for swine acute diarrhea syndrome coronavirus spike protein-mediated cell-cell fusion[J]. Emerg Microbes Infect, 2022, 11(1): 2176-2183. [72] BONNIN A, DANNEELS A, DUBUISSON J, et al. HCoV-229E spike protein fusion activation by trypsin-like serine proteases is mediated by proteolytic processing in the S2' region[J]. J Gen Virol, 2018, 99(7): 908-912. [73] LIN F, ZHANG H, LI L, et al. PEDV: Insights and advances into types, function, structure, and receptor recognition[J]. Viruses, 2022, 14(8): 1744. [74] WICHT O, LI W, WILLEMS L, et al. Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture[J]. J Virol, 2014, 88(14): 7952-7961. [75] SUN M, MA J, YU Z, et al. Identification of two mutation sites in spike and envelope proteins mediating optimal cellular infection of porcine epidemic diarrhea virus from different pathways[J]. Vet Res, 2017, 48(1): 44. |