畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (9): 4029-4040.doi: 10.11843/j.issn.0366-6964.2024.09.027
赵康宁1,2(), 杨忠龙1,2, 陈怡1,2, 朱春成1,2, 郭云飞1,2, 印云聪1,2, 秦涛1,2, 陈素娟1,2,*(
), 彭大新1,2,*(
)
收稿日期:
2023-09-28
出版日期:
2024-09-23
发布日期:
2024-09-27
通讯作者:
陈素娟,彭大新
E-mail:zhaokangningzkn@163.com;chensj@yzu.edu.cn;pengdx@yzu.edu.cn
作者简介:
赵康宁(1997-), 男, 江苏徐州人, 硕士生, 主要从事动物传染病研究, E-mail: zhaokangningzkn@163.com
基金资助:
Kangning ZHAO1,2(), Zhonglong YANG1,2, Yi CHEN1,2, Chuncheng ZHU1,2, Yunfei GUO1,2, Yuncong YIN1,2, Tao QIN1,2, Sujuan CHEN1,2,*(
), Daxin PENG1,2,*(
)
Received:
2023-09-28
Online:
2024-09-23
Published:
2024-09-27
Contact:
Sujuan CHEN, Daxin PENG
E-mail:zhaokangningzkn@163.com;chensj@yzu.edu.cn;pengdx@yzu.edu.cn
摘要:
为了解新出现的H3N3亚型禽流感病毒(AIV)的遗传变异特征, 对2022—2023年分离鉴定的H3亚型AIV进行了全基因组测序分析, 并对代表株进行了抗原差异分析。结果共分离鉴定出15株家禽源和1株野鸟源H3N3亚型AIV。全基因遗传演化分析结果显示, 16株分离株均属于欧亚分支, 其HA基因均源自H3N8亚型AIV, 与人源H3N8亚型AIV的核苷酸相似性为97.3%~99.2%;NA基因均源自H10N3亚型AIV, 与人源H10N3亚型毒株的核苷酸相似性为98.1%~98.4%;内部基因片段均来自H9N2亚型AIV。分离株HA基因裂解位点均符合低致病性AIV的分子特征。分离毒株存在多个能增强病毒对哺乳动物适应性及致病性的突变位点, 如PB2蛋白的A588V和E627V突变、PB1蛋白的I368V和S375N突变等。抗原差异性分析结果表明, 分离株与华东地区早期流行株的HI抗体滴度相差1 log2~3 log2。因此, 本研究分离的16株H3N3亚型AIV均为三源重组病毒, 由H9N2亚型AIV提供全部内部基因, 毒株存在多个哺乳动物适应性及致病性增强的突变, 并已传播给野禽。本研究揭示了新型H3N3亚型AIV的遗传特征、变异和多宿主分布情况, 为禽流感的防控提供理论支持。
中图分类号:
赵康宁, 杨忠龙, 陈怡, 朱春成, 郭云飞, 印云聪, 秦涛, 陈素娟, 彭大新. 16株新型H3N3亚型禽流感病毒的遗传变异分析[J]. 畜牧兽医学报, 2024, 55(9): 4029-4040.
Kangning ZHAO, Zhonglong YANG, Yi CHEN, Chuncheng ZHU, Yunfei GUO, Yuncong YIN, Tao QIN, Sujuan CHEN, Daxin PENG. Genetic Variation Analysis of Sixteen Novel H3N3 Subtype Avian Influenza Viruses[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4029-4040.
表 1
研究相关禽流感病毒的背景资料"
毒株名称 | 缩写 | 宿主 | 日期 | 来源 |
Virus names | Abbreviation | Host | Date | Source |
A/China/ZMD-22-2/2022(H3N8)* | ZMD-22-2 | Human | 2022/04 | Human |
A/China/CSKFQ-22-5/2022(H3N8)* | CSKFQ-22-5 | Human | 2022/05 | Human |
A/China/0428/2021(H10N3)* | 0428 | Human | 2021/04 | Human |
A/duck/Fujian/SD063/2017(H3N3)* | SD063 | Duck | 2017/03 | Unknown |
A/chicken/Jiangsu/W23910/2017(H3N2)* | W23910 | Chicken | 2017/02 | LBM |
A/chicken/YangZhou/YZ12145/2022(H3N3) | YZ12145 | Chicken | 2022/12 | LBM |
A/chicken/YangZhou/YZ01082/2023(H3N3) | YZ01082 | Chicken | 2023/01 | Specimen |
A/chicken/NanTong/NT02101/2023(H3N3) | NT02101 | Chicken | 2023/02 | Specimen |
A/chicken/YangZhou/YZ02283/2023(H3N3) | YZ02283 | Chicken | 2023/02 | LBM |
A/chicken/YangZhou/YZ02284/2023(H3N3) | YZ02284 | Chicken | 2023/02 | LBM |
A/chicken/YangZhou/YZ02285/2023(H3N3) | YZ02285 | Chicken | 2023/02 | LBM |
A/chicken/YangZhou/YZ02288/2023(H3N3) | YZ02288 | Chicken | 2023/02 | LBM |
A/chicken/NanTong/NT030601/2023(H3N3) | NT030601 | Chicken | 2023/03 | Specimen |
A/duck/YangZhou/YZD031512/2023(H3N3) | YZ031512 | Duck | 2023/03 | LBM |
A/chicken/YangZhou/YZ031524/2023(H3N3) | YZ031524 | Chicken | 2023/03 | LBM |
A/chicken/YangZhou/YZ031542/2023(H3N3) | YZ031542 | Chicken | 2023/03 | LBM |
A/chicken/YangZhou/YZ031554/2023(H3N3) | YZ031554 | Chicken | 2023/03 | LBM |
A/chicken/YangZhou/YZ032702/2023(H3N3) | YZ032702 | Chicken | 2023/03 | Specimen |
A/chicken/YangZhou/YZ042881/2023(H3N3) | YZ042881 | Chicken | 2023/04 | LBM |
A/chicken/YangZhou/YZ042893/2023(H3N3) | YZ042893 | Chicken | 2023/04 | LBM |
A/wildfowl/HuaDong/SY01/2023(H3N3) | SY01 | Wildfowl | 2023/01 | Wildfowl |
表 2
H3N3亚型AIV分离株交叉血凝抑制试验"
血清 Sera | 病毒Virus | |||
A/chicken/Jiangsu/W23910/2017 (H3N2) | A/chicken/NanTong/NT02101/2023 (H3N3) | A/chicken/YangZhou/YZ01082/2023 (H3N3) | A/chicken/YangZhou/YZ032702/2023 (H3N3) | |
A/chicken/Jiangsu/W23910/2017(H3N2)a | 9.33±0.58b | 8.67±0.58 | 7.00±0.00 | 7.33±0.58 |
A/chicken/NanTong/NT02101/2023(H3N3)a | 6.33±0.58 | 9.00±0.00 | 7.75±0.50 | 8.00±0.00 |
1 |
周勇, 李知新, 鲁宏伟, 等. 我国H5和H7N9亚型高致病性禽流感的监测及疫情暴发分析[J]. 畜牧兽医学报, 2022, 53 (9): 3093- 3106.
doi: 10.11843/j.issn.0366-6964.2022.09.024 |
ZHOU Y , LI Z X , LU H W , et al. Surveillance and outbreak analysis of H5 and H7N9 subtypes of highly pathogenic avian influenza in China[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (9): 3093- 3106.
doi: 10.11843/j.issn.0366-6964.2022.09.024 |
|
2 | SPACKMAN E . A brief introduction to avian influenza virus[J]. Methods Mol Biol, 2020, 2123, 83- 92. |
3 | SPACKMAN E , KILLIAN M L . Avian influenza virus isolation, propagation, and titration in embryonated chicken eggs[J]. Methods Mol Biol, 2020, 2123, 149- 164. |
4 |
OLSEN B , MUNSTER V J , WALLENSTEN A , et al. Global patterns of influenza a virus in wild birds[J]. Science, 2006, 312 (5772): 384- 388.
doi: 10.1126/science.1122438 |
5 | YANG J Y , ZHANG Y , YANG L , et al. Evolution of avian influenza virus (H3) with spillover into humans, China[J]. Emerg Infect Dis, 2023, 29 (6): 1191- 1201. |
6 |
YANG J Y , YANG L , ZHU W F , et al. Epidemiological and genetic characteristics of the H3 subtype avian influenza viruses in China[J]. China CDC Wkly, 2021, 3 (44): 929- 936.
doi: 10.46234/ccdcw2021.225 |
7 | 钱忠明. 华东地区家鸭中不同HA亚型禽流感病毒的分布以及从家养水禽和鸡中分离的H5亚型禽流感病毒HA基因的分子流行病学[D]. 扬州: 扬州大学, 2004. |
QIAN Z M. Distribution of avian influenza viruses of different HA subtypes among domestic ducks in eastern China and molecular epidemiology of HA genes of H5 subtype avian influenza viruses isolated from domestic waterfowls and chickens[D]. Yangzhou: Yangzhou University, 2004. (in Chinese) | |
8 |
QIU B F , LIU W J , PENG D X , et al. A reverse transcription-PCR for subtyping of the neuraminidase of avian influenza viruses[J]. J Virol Methods, 2009, 155 (2): 193- 198.
doi: 10.1016/j.jviromet.2008.10.001 |
9 |
蒋梅. 禽流感病毒血凝素基因研究进展[J]. 中国人兽共患病学报, 2013, 29 (8): 817- 820.
doi: 10.3969/cjz.j.issn.1002-2694.2013.08.017 |
JIANG M . Research advances on hemagglutinin (HA) gene of avian influenza virus (AIV)[J]. Chinese Journal of Zoonoses, 2013, 29 (8): 817- 820.
doi: 10.3969/cjz.j.issn.1002-2694.2013.08.017 |
|
10 |
BOSCH F X , GARTEN W , KLENK H D , et al. Proteolytic cleavage of influenza virus hemagglutinins: primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of Avian influenza viruses[J]. Virology, 1981, 113 (2): 725- 735.
doi: 10.1016/0042-6822(81)90201-4 |
11 |
WILEY D C , WILSON I A , SKEHEL J J . Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation[J]. Nature, 1981, 289 (5796): 373- 378.
doi: 10.1038/289373a0 |
12 |
COLMAN P M , HOYNE P A , LAWRENCE M C . Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase with influenza virus neuraminidase[J]. J Virol, 1993, 67 (6): 2972- 2980.
doi: 10.1128/jvi.67.6.2972-2980.1993 |
13 |
COLMAN P M , VARGHESE J N , LAVER W G . Structure of the catalytic and antigenic sites in influenza virus neuraminidase[J]. Nature, 1983, 303 (5912): 41- 44.
doi: 10.1038/303041a0 |
14 |
CHEN H L , BRIGHT R A , SUBBARAO K , et al. Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice[J]. Virus Res, 2007, 128 (1-2): 159- 163.
doi: 10.1016/j.virusres.2007.04.017 |
15 |
PATERSON D , TE VELTHUIS A J W , VREEDE F T , et al. Host restriction of influenza virus polymerase activity by PB2 627E is diminished on short viral templates in a nucleoprotein-independent manner[J]. J Virol, 2014, 88 (1): 339- 344.
doi: 10.1128/JVI.02022-13 |
16 |
HSIA H P , YANG Y H , SZETO W C , et al. Amino acid substitutions affecting aspartic acid 605 and valine 606 decrease the interaction strength between the influenza virus RNA polymerase PB2 '627' domain and the viral nucleoprotein[J]. PLoS One, 2018, 13 (1): e0191226.
doi: 10.1371/journal.pone.0191226 |
17 | 程善菊, 李金平, 侯广宇, 等. 14株H3亚型禽流感病毒全基因组序列分析[J]. 中国兽医杂志, 2018, 54 (10): 30- 35. |
CHENG S J , LI J P , HOU G Y , et al. Whole genome sequence analysis of 14 strains of H3 subtype avian influenza virus[J]. Chinese Journal of Veterinary Medicine, 2018, 54 (10): 30- 35. | |
18 | 刘开拓, 高如一, 王晓泉, 等. 新型重组H10N3亚型禽流感病毒对公共卫生安全的威胁[J]. 病毒学报, 2022, 38 (4): 958- 964. |
LIU K T , GAO R Y , WANG X Q , et al. Threat posed by a novel reassortant avian influenza virus (H10N3) to public health[J]. Chinese Journal of Virology, 2022, 38 (4): 958- 964. | |
19 | 裴瑞青, 张如胜, 叶文, 等. 湖南省首例人感染H3N8亚型禽流感病例的病毒分离及分子进化分析[J]. 中国人兽共患病学报, 2023, 39 (4): 364- 375. |
PEI R Q , ZHANG R H , YE W , et al. Viral isolation and molecular evolution analysis of the first human case of H3N8 subtype avian influenza infection in Hunan Province[J]. Chinese Journal of Zoonoses, 2023, 39 (4): 364- 375. | |
20 | CHENG D L , DONG Y L , WEN S F , et al. A child with acute respiratory distress syndrome caused by avian influenza H3N8 virus[J]. J Infect, 2022, 85 (2): 174- 211. |
21 | 张醒海. 候鸟禽流感病毒遗传变异规律分析及在哺乳动物间传播机制研究[D]. 吉林: 吉林大学, 2021. |
ZHANG X H. Genetic analysis and transmission mechanisms among mammals of migratory bird-origin avian influenza virus[D]. Jilin: Jilin University, 2021. (in Chinese) | |
22 |
何世成, 彭志, 王卫国, 等. 2011—2015年环洞庭湖区H3亚型禽流感病毒的分离鉴定与遗传演化[J]. 畜牧兽医学报, 2019, 50 (2): 382- 389.
doi: 10.11843/j.issn.0366-6964.2019.02.016 |
HE S C , PENG Z , WANG W G , et al. Isolation, identification and genetic evolution of H3 subtype avian influenza virus in dongting lake region from 2011 to 2015[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (2): 382- 389.
doi: 10.11843/j.issn.0366-6964.2019.02.016 |
|
23 | GAO R Y , ZHENG H F , LIU K T , et al. Genesis, evolution and host species distribution of influenza A (H10N3) virus in China[J]. J Infect, 2021, 83 (5): 607- 635. |
24 |
GU M , CHEN H Z , LI Q H , et al. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China[J]. Vet Microbiol, 2014, 174 (3-4): 309- 315.
doi: 10.1016/j.vetmic.2014.09.029 |
25 |
申松玮, 王泽源, 范威峰, 等. 2017—2018年华东地区H9亚型禽流感病毒分离毒株的抗原差异分析[J]. 畜牧兽医学报, 2019, 50 (6): 1230- 1238.
doi: 10.11843/j.issn.0366-6964.2019.06.013 |
SHEN S W , WANG Z Y , FAN W F , et al. Antigen difference analysis of H9 subtype avian influenza viruses isolated in east China during 2017-2018[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (6): 1230- 1238.
doi: 10.11843/j.issn.0366-6964.2019.06.013 |
|
26 |
ZHAO G , GU X B , LU X L , et al. Novel reassortant highly pathogenic H5N2 avian influenza viruses in poultry in China[J]. PLoS One, 2012, 7 (9): e46183.
doi: 10.1371/journal.pone.0046183 |
27 |
ZHANG Q Y , SHI J Z , DENG G H , et al. H7N9 influenza viruses are transmissible in ferrets by respiratory droplet[J]. Science, 2013, 341 (6144): 410- 414.
doi: 10.1126/science.1240532 |
28 | 许冠龙, 张谞霄, 孙洪磊, 等. H10N7亚型禽流感病毒鼠适应毒的致病机制研究[C]//第四届全国禽病分子生物技术青年工作者会议. 天津: 中国畜牧兽医学会禽病学分会, 2015. |
XU G L, ZHANG X X, SUN H L, et al. Substitutions in PB2 and NA contributes to the pathogenicity and neurovirulence of H10N7 influenza virus[C]//Proceedings of the 4th National Conference of Young Scientists in Avian Disease Molecular Biotechnology. Tianjin, 2015. (in Chinese) | |
29 |
LI J W , ISHAQ M , PRUDENCE M , et al. Single mutation at the amino acid position 627 of PB2 that leads to increased virulence of an H5N1 avian influenza virus during adaptation in mice can be compensated by multiple mutations at other sites of PB2[J]. Virus Res, 2009, 144 (1-2): 123- 129.
doi: 10.1016/j.virusres.2009.04.008 |
30 | 崔鹏飞. 2009—2013年中国H3N8亚型禽流感病毒生物学特性研究[D]. 兰州: 甘肃农业大学, 2016. |
CUI P F. Biological characterization of H3N8 avian influenza viruses isolated from 2009 to 2013 in China[D]. Lanzhou: Gansu Agricultural University, 2016. (in Chinese) | |
31 | CONENELLO G M , ZAMARIN D , PERRONE L A , et al. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence[J]. PLoS Pathog, 2007, 3 (10): 1414- 1421. |
32 |
HU M , CHU H , ZHANG K , et al. Amino acid substitutions V63I or A37S/I61T/V63I/V100A in the PA N-terminal domain increase the virulence of H7N7 influenza A virus[J]. Sci Rep, 2016, 6 (1): 37800.
doi: 10.1038/srep37800 |
33 | LIANG L B , JIANG L , LI J P , et al. Low polymerase activity attributed to PA drives the acquisition of the PB2 E627K mutation of H7N9 avian influenza virus in mammals[J]. mBio, 2019, 10 (3): e01162- 19. |
34 |
SONG W J , WANG P , MOK B W Y , et al. The K526R substitution in viral protein PB2 enhances the effects of E627K on influenza virus replication[J]. Nat Commun, 2014, 5 (1): 5509.
doi: 10.1038/ncomms6509 |
35 |
LUK G S M , LEUNG C Y H , SIA S F , et al. Transmission of H7N9 influenza viruses with a polymorphism at PB2 residue 627 in chickens and ferrets[J]. J Virol, 2015, 89 (19): 9939- 9951.
doi: 10.1128/JVI.01444-15 |
36 |
LI O T W , CHAN M C W , LEUNG C S W , et al. Full factorial analysis of mammalian and avian influenza polymerase subunits suggests a role of an efficient polymerase for virus adaptation[J]. PLoS One, 2009, 4 (5): e5658.
doi: 10.1371/journal.pone.0005658 |
37 |
PENA L , VINCENT A L , LOVING C L , et al. Restored PB1-F2 in the 2009 pandemic H1N1 influenza virus has minimal effects in swine[J]. J Virol, 2012, 86 (10): 5523- 5532.
doi: 10.1128/JVI.00134-12 |
38 |
DURAIRAJ K , TRINH T T T , YUN S Y , et al. Molecular characterization and pathogenesis of h6n6 low pathogenic avian influenza viruses isolated from mallard ducks (Anas platyrhynchos) in South Korea[J]. Viruses, 2022, 14 (5): 1001.
doi: 10.3390/v14051001 |
39 |
CHEN H Y , YUAN H , GAO R B , et al. Clinical and epidemiological characteristics of a fatal case of avian influenza A H10N8 virus infection: a descriptive study[J]. Lancet, 2014, 383 (9918): 714- 721.
doi: 10.1016/S0140-6736(14)60111-2 |
40 |
HULSE-POST D J , FRANKS J , BOYD K , et al. Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks[J]. J Virol, 2007, 81 (16): 8515- 8524.
doi: 10.1128/JVI.00435-07 |
41 |
YAMAYOSHI S , YAMADA S , FUKUYAMA S , et al. Virulence-affecting amino acid changes in the PA protein of H7N9 influenza A viruses[J]. J Virol, 2014, 88 (6): 3127- 3134.
doi: 10.1128/JVI.03155-13 |
42 |
DE WIT E , MUNSTER V J , VAN RIEL D , et al. Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host[J]. J Virol, 2010, 84 (3): 1597- 1606.
doi: 10.1128/JVI.01783-09 |
43 |
DUCATEZ M F , ILYUSHINA N A , FABRIZIO T P , et al. Both influenza hemagglutinin and polymerase acidic genes are important for delayed pandemic 2009 H1N1 virus clearance in the ferret model[J]. Virology, 2012, 432 (2): 389- 393.
doi: 10.1016/j.virol.2012.06.018 |
44 |
SONG J S , FENG H P , XU J , et al. The PA protein directly contributes to the virulence of H5N1 avian influenza viruses in domestic ducks[J]. J Virol, 2011, 85 (5): 2180- 2188.
doi: 10.1128/JVI.01975-10 |
45 |
ZHENG M , LUO J , CHEN Z . Development of universal influenza vaccines based on influenza virus M and NP genes[J]. Infection, 2014, 42 (2): 251- 262.
doi: 10.1007/s15010-013-0546-4 |
46 |
WASILENKO J L , LEE C W , SARMENTO L , et al. NP, PB1, and PB2 viral genes contribute to altered replication of H5N1 avian influenza viruses in chickens[J]. J Virol, 2008, 82 (9): 4544- 4553.
doi: 10.1128/JVI.02642-07 |
47 |
TADA T , SUZUKI K , SAKURAI Y , et al. NP body domain and PB2 contribute to increased virulence of H5N1 highly pathogenic avian influenza viruses in chickens[J]. J Virol, 2011, 85 (4): 1834- 1846.
doi: 10.1128/JVI.01648-10 |
48 |
ILYUSHINA N A , KHALENKOV A M , SEILER J P , et al. Adaptation of pandemic H1N1 influenza viruses in mice[J]. J Virol, 2010, 84 (17): 8607- 8616.
doi: 10.1128/JVI.00159-10 |
49 |
SHI J Z , DENG G H , KONG H H , et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans[J]. Cell Res, 2017, 27 (12): 1409- 1421.
doi: 10.1038/cr.2017.129 |
50 | KAPLAN B S , KIMBLE J B , CHANG J , et al. Aerosol transmission from infected swine to ferrets of an H3N2 virus collected from an agricultural fair and associated with human variant infections[J]. J Virol, 2020, 94 (16): e01009- 20. |
51 |
FAN S F , DENG G H , SONG J S , et al. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice[J]. Virology, 2009, 384 (1): 28- 32.
doi: 10.1016/j.virol.2008.11.044 |
52 |
SEO S H , HOFFMANN E , WEBSTER R G . RETRACTED: the NS1 gene of H5N1 influenza viruses circumvents the host anti-viral cytokine responses[J]. Virus Res, 2004, 103 (1-2): 107- 113.
doi: 10.1016/j.virusres.2004.02.022 |
53 |
CHEN S J , MIAO X Y , HUANGFU D D , et al. H5N1 avian influenza virus without 80-84 amino acid deletion at the NS1 protein hijacks the innate immune system of dendritic cells for an enhanced mammalian pathogenicity[J]. Transbound Emerg Dis, 2021, 68 (4): 2401- 2413.
doi: 10.1111/tbed.13904 |
54 |
MIN J Y , LI S D , SEN G C , et al. A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis[J]. Virology, 2007, 363 (1): 236- 243.
doi: 10.1016/j.virol.2007.01.038 |
55 |
DRAKOPOULOS A , TZITZOGLAKI C , MCGUIRE K , et al. Unraveling the binding, proton blockage, and inhibition of influenza M2 WT and S31N by rimantadine variants[J]. ACS Med Chem Lett, 2018, 9 (3): 198- 203.
doi: 10.1021/acsmedchemlett.7b00458 |
56 |
RAMSAY L C , BUCHAN S A , STIRLING R G , et al. Retraction note: the impact of repeated vaccination on influenza vaccine effectiveness: a systematic review and meta-analysis[J]. BMC Medicine, 2018, 16 (1): 133.
doi: 10.1186/s12916-018-1137-0 |
57 |
SHIH A C C , HSIAO T C , HO M S , et al. Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution[J]. Proc Natl Acad Sci U S A, 2007, 104 (15): 6283- 6288.
doi: 10.1073/pnas.0701396104 |
[1] | 李继桐, 朱彤, 吕俊峰, 高月花, 胡峰, 于可响, 宋敏训, 王建琳, 李玉峰. 三株新型鸭源微RNA病毒分离毒株的全基因组序列分析[J]. 畜牧兽医学报, 2024, 55(7): 3075-3084. |
[2] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[3] | 毛秋艳, 周淑宁, 刘朔, 彭程, 尹馨, 张雅馨, 周婉婷, 李金平, 侯广宇, 蒋文明, 宋厚辉, 刘华雷. H3亚型禽流感病毒荧光定量RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(3): 1137-1146. |
[4] | 杨芷翊, 王新凯, 史玉婷, 付思源, 张钰炘, 曹琛福, 贾伟新. 基于RT-RAA的禽流感H5亚型核酸CRISPR-Cas13a检测方法的建立[J]. 畜牧兽医学报, 2023, 54(9): 3803-3811. |
[5] | 周勇, 李知新, 鲁宏伟, 孙燕, 李甜, 杜凡姝, 蒲娟. 我国H5和H7N9亚型高致病性禽流感的监测及疫情暴发分析[J]. 畜牧兽医学报, 2022, 53(9): 3093-3106. |
[6] | 吕炫, 贾北平, 祝萌, 于胜祖, 张淼, 王蓓, 朱英奇, 张云凯, 王晴, 王桂军. 一株鹅星状病毒变异毒株的基因组特征与致病性分析[J]. 畜牧兽医学报, 2022, 53(8): 2812-2818. |
[7] | 陈子轩, 张楠, 胡群, 全柯吉, 秦涛, 陈素娟, 彭大新, 刘秀梵. 我国H9N2亚型禽流感病毒血凝素蛋白145和153位抗原位点变异分析[J]. 畜牧兽医学报, 2022, 53(4): 1165-1172. |
[8] | 王璐瑶, 郝雪飘, 雷白时, 赵款, 张武超, 袁万哲. 新型鹅细小病毒感染鸭的肝、胸腺、回肠转录组差异表达分析[J]. 畜牧兽医学报, 2022, 53(2): 654-657. |
[9] | 崔明仙, 王星博, 黄彦铭, 卞希一, 冯梦珂, 颜焰, 董伟仁, 周继勇. 3株H3N2亚型禽流感病毒的基因组特征与演化分析[J]. 畜牧兽医学报, 2022, 53(11): 4116-4122. |
[10] | 孙华鹏, 崔新鑫, 潘亮奇, 许丰祥, 李硕, 吴梅花, 朱旭辉, 于亚南, 李明亮, 刘杨, 瞿孝云, 廖明, 孙海亮. 中国H9N2亚型禽流感病毒的流行现状[J]. 畜牧兽医学报, 2021, 52(5): 1218-1229. |
[11] | 李静云, 连朋敬, 白玉, 奚柳青, 张子卉, 牛小飞, 杨俊琦, 乔健. H9N2亚型禽流感病毒感染对小鼠肠道菌群的影响[J]. 畜牧兽医学报, 2021, 52(5): 1359-1368. |
[12] | 李丽, 唐国毅, 冯贺龙, 薛玉涵, 任助, 王国康, 贾妙妙, 商雨, 罗青平, 邵华斌, 温国元. 基于马赛克HA序列的H9亚型禽流感灭活疫苗的免疫效力分析[J]. 畜牧兽医学报, 2021, 52(12): 3569-3577. |
[13] | 赵冰倩, 罗畅, 刘健新, 李慧子, 张彭涛, 于相龙, 刘博洋, 宁章勇. 连翘水提液体外对禽流感病毒增殖及炎症因子表达的抑制效应[J]. 畜牧兽医学报, 2020, 51(6): 1466-1474. |
[14] | 戴学宇, 张乾义, 徐璐, 赵启祖, 王琴, 夏应菊. CRISPR/Cas9基因编辑技术在重要猪病毒病防控中的研究与应用[J]. 畜牧兽医学报, 2020, 51(5): 943-951. |
[15] | 申松玮, 王泽源, 范威峰, 祝常椿, 陆游, 石宝兰, 刘雷, 沈海峰, 焦库华, 秦涛, 陈素娟, 彭大新, 刘秀梵. 2017-2018年华东地区H9亚型禽流感病毒分离毒株的抗原差异分析[J]. 畜牧兽医学报, 2019, 50(6): 1230-1238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||