1 |
GU M , XU L J , WANG X Q , et al. Current situation of H9N2 subtype avian influenza in China[J]. Vet Res, 2017, 48 (1): 49.
doi: 10.1186/s13567-017-0453-2
|
2 |
ELADL A H , ARAFAT N , EL-SHAFEI R A , et al. Comparative immune response and pathogenicity of the H9N2 avian influenza virus after administration of Immulant®, based on Echinacea and Nigella sativa, in stressed chickens[J]. Comp Immunol Microbiol Infect Dis, 2019, 65, 165- 175.
doi: 10.1016/j.cimid.2019.05.017
|
3 |
WANG J L , CAO Z W , GUO X J , et al. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities[J]. Avian Pathol, 2016, 45 (6): 630- 639.
doi: 10.1080/03079457.2016.1193665
|
4 |
ALEXANDER D J . Newcastle disease and other avian paramyxoviruses[J]. Rev Sci Tech, 2000, 19 (2): 443- 455.
doi: 10.20506/rst.19.2.1231
|
5 |
ABDEL-MONEIM A S , AFIFI M A , EL-KADY M F . Isolation and mutation trend analysis of influenza A virus subtype H9N2 in Egypt[J]. Virol J, 2012, 9, 173.
doi: 10.1186/1743-422X-9-173
|
6 |
SIKHT F Z , DUCATEZ M , TOUZANI C D , et al. Avian influenza a H9N2 viruses in Morocco, 2018-2019[J]. Viruses, 2022, 14 (3): 529.
doi: 10.3390/v14030529
|
7 |
SUN Y P , PU J , JIANG Z L , et al. Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008[J]. Vet Microbiol, 2010, 146 (3-4): 215- 225.
doi: 10.1016/j.vetmic.2010.05.010
|
8 |
LIU S , JI K , CHEN J M , et al. Panorama phylogenetic diversity and distribution of type A influenza virus[J]. PLoS One, 2009, 4 (3): e5022.
doi: 10.1371/journal.pone.0005022
|
9 |
RAJÃO D S , PÉREZ D R . Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture[J]. Front Microbiol, 2018, 9, 123.
doi: 10.3389/fmicb.2018.00123
|
10 |
ABDELWHAB E M , ABDEL-MONEIM A S . Epidemiology, ecology and gene pool of influenza A virus in egypt: will Egypt be the epicentre of the next influenza pandemic?[J]. Virulence, 2015, 6 (1): 6- 18.
doi: 10.4161/21505594.2014.992662
|
11 |
KIM Y H , BANG Y J , PARK H J , et al. Inactivated influenza vaccine formulated with single-stranded RNA-based adjuvant confers mucosal immunity and cross-protection against influenza virus infection[J]. Vaccine, 2020, 38 (39): 6141- 6152.
doi: 10.1016/j.vaccine.2020.07.022
|
12 |
ELADL A H , FARAG V M , EL-SHAFEI R A , et al. Immunological, biochemical and pathological effects of vitamin C and Arabic gum co-administration on H9N2 avian influenza virus vaccinated and challenged laying Japanese quails[J]. BMC Vet Res, 2022, 18 (1): 408.
doi: 10.1186/s12917-022-03495-y
|
13 |
MEHRABADI M H F , GHALYANCHILANGEROUDI A , GHAFOURI S A , et al. Comparison of autogenous and commercial H9N2 avian influenza vaccines in a challenge with recent dominant virus[J]. Iran J Vet Res, 2020, 21 (2): 109- 114.
|
14 |
LIU M A . A comparison of plasmid DNA and mRNA as vaccine technologies[J]. Vaccines (Basel), 2019, 7 (2): 37.
doi: 10.3390/vaccines7020037
|
15 |
REICHMUTH A M , OBERLI M A , JAKLENEC A , et al. mRNA vaccine delivery using lipid nanoparticles[J]. Ther Deliv, 2016, 7 (5): 319- 334.
doi: 10.4155/tde-2016-0006
|
16 |
ANDERSON E J. mRNA vaccines and COVID-19-the start of a new era of vaccinology[D]. 2021.
|
17 |
SCHLAKE T , THESS A , FOTIN-MLECZEK M , et al. Developing mRNA-vaccine technologies[J]. RNA Biol, 2012, 9 (11): 1319- 1330.
doi: 10.4161/rna.22269
|
18 |
PARDI N , HOGAN M J , PORTER F W , et al. mRNA vaccines—a new era in vaccinology[J]. Nat Rev Drug Discov, 2018, 17 (4): 261- 279.
doi: 10.1038/nrd.2017.243
|
19 |
THESS A , GRUND S , MUI B L , et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals[J]. Mol Ther, 2015, 23 (9): 1456- 1464.
doi: 10.1038/mt.2015.103
|
20 |
MAUGERI M , NAWAZ M , PAPADIMITRIOU A , et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells[J]. Nat Commun, 2019, 10 (1): 4333.
doi: 10.1038/s41467-019-12275-6
|
21 |
WANG T , WEI F H , LIU J H . Emerging role of mucosal vaccine in preventing infection with avian influenza A viruses[J]. Viruses, 2020, 12 (8): 862.
doi: 10.3390/v12080862
|
22 |
FAN M L , LIANG B , ZHAO Y Z , et al. Mutations of 127, 183 and 212 residues on the HA globular head affect the antigenicity, replication and pathogenicity of H9N2 avian influenza virus[J]. Transbound Emerg Dis, 2022, 69 (4): e659- e670.
|
23 |
楚电峰, 于晓璐, 孙化露, 等. mRNA技术在动物疫病疫苗中的研究进展[J]. 中国动物检疫, 2024, 41 (1): 52- 59.
|
|
CHU D F , YU X L , SUN H L , et al. Research progress on mRNA technology in development of animal vaccines[J]. China Animal Health Inspection, 2024, 41 (1): 52- 59.
|
24 |
PETSCH B , SCHNEE M , VOGEL A B , et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection[J]. Nat Biotechnol, 2012, 30 (12): 1210- 1216.
doi: 10.1038/nbt.2436
|
25 |
庄忻雨. 流感病毒mRNA疫苗的构建、制备与实验免疫研究[D]. 北京: 军事科学院, 2020.
|
|
ZHUANG X Y. Construction, preparation and immunogenicity studies of influenza virus mRNA vaccines[D]. Beijing: Academy of Military Science, 2020.
|
26 |
XU S K , ZHANG B W , YAO J L , et al. A new H9 influenza virus mRNA vaccine elicits robust protective immunity against infection[J]. Vaccine, 2023, 41 (18): 2905- 2913.
doi: 10.1016/j.vaccine.2023.03.049
|
27 |
ZHU J F , PAUL W E . Heterogeneity and plasticity of T helper cells[J]. Cell Res, 2010, 20 (1): 4- 12.
doi: 10.1038/cr.2009.138
|
28 |
OKOYE I S , WILSON M S . CD4+ T helper 2 cells-microbial triggers, differentiation requirements and effector functions[J]. Immunology, 2011, 134 (4): 368- 377.
doi: 10.1111/j.1365-2567.2011.03497.x
|
29 |
DAI M M , XU C G , CHEN W S , et al. Progress on chicken T cell immunity to viruses[J]. Cell Mol Life Sci, 2019, 76, 2779- 2788.
doi: 10.1007/s00018-019-03117-1
|