1 |
LEE M R F , MCAULIFFE G A , TWEED J K S , et al. Nutritional value of suckler beef from temperate pasture systems[J]. Animal, 2021, 15 (7): 100257.
doi: 10.1016/j.animal.2021.100257
|
2 |
阳晓婷, 刘浩, 刘楠, 等. 牛肉品质无损检测技术研究进展[J]. 食品工业科技, 2024, 45 (11): 37- 46.
|
|
YANG X T , LIU H , LIU N , et al. Research progress on non-destructive detection technology for beef quality[J]. Science and Technology of Food Industry, 2024, 45 (11): 37- 46.
|
3 |
SOUSA M C D , GJORGIEVA M , DOLICKA D , et al. Deciphering miRNAs' action through miRNA editing[J]. Int J Mol Sci, 2019, 20 (24): 6249.
doi: 10.3390/ijms20246249
|
4 |
WANG W L , YU C H , HUANG Y , et al. Developing a ceRNA based lncRNA-miRNA-mRNA regulatory network to uncover roles in skeletal muscle development[J]. Front Bioinform, 2024, 4, 1494717.
|
5 |
BARTEL D P . MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136 (2): 215- 233.
doi: 10.1016/j.cell.2009.01.002
|
6 |
BHASKARAN M , MOHAN M . MicroRNAs: history, biogenesis, and their evolving role in animal development and disease[J]. Vet Pathol, 2014, 51 (4): 759- 774.
doi: 10.1177/0300985813502820
|
7 |
RYKOVA E , ERSHOV N , DAMAROV I , et al. SNPs in 3'UTR miRNA target sequences associated with individual drug susceptibility[J]. Int J Mol Sci, 2022, 23 (22): 13725.
doi: 10.3390/ijms232213725
|
8 |
KIM S . LncRNA-miRNA-mRNA regulatory networks in skin aging and therapeutic potentials[J]. Front Physiol, 2023, 14, 1303151.
doi: 10.3389/fphys.2023.1303151
|
9 |
冯婧, 盛辉, 张效生, 等. miR-665靶向BCL2L11调控武安山羊成肌细胞增殖[J]. 畜牧兽医学报, 2025, 56 (2): 582- 590.
doi: 10.11843/j.issn.0366-6964.2025.02.010
|
|
FENG J , SHENG H , ZHANG X S , et al. miR-665 targets BCL2L11 to regulate the proliferation of myoblasts in wu'an goat[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (2): 582- 590.
doi: 10.11843/j.issn.0366-6964.2025.02.010
|
10 |
HORAK M , NOVAK J , BIENERTOVA-VASKU J . Muscle-specific microRNAs in skeletal muscle development[J]. Dev Biol, 2016, 410 (1): 1- 13.
doi: 10.1016/j.ydbio.2015.12.013
|
11 |
ZHU Y , MA J F , PAN H M , et al. MiR-29a family as a key regulator of skeletal muscle dysplasia in a porcine model of intrauterine growth retardation[J]. Biomolecules, 2022, 12 (9): 1193.
doi: 10.3390/biom12091193
|
12 |
NACHTIGALL P G , DIAS M C , CARVALHO R F , et al. MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in nile tilapia[J]. PLoS One, 2015, 10 (3): e0119804.
doi: 10.1371/journal.pone.0119804
|
13 |
LIANG C C , RAZA S H A , YANG Z M , et al. bta-miR-181d and bta-miR-196a mediated proliferation, differentiation, and apoptosis in bovine myogenic cells[J]. J Anim Sci, 2024, 102, skae142.
doi: 10.1093/jas/skae142
|
14 |
韩明轩, 刘瑞莉, 于堃, 等. bta-miR-145通过负调控MYO5A参与布莱凯特黑牛骨骼肌发育的机制研究[J]. 中国畜牧杂志, 2023, 59 (2): 139- 146.
|
|
HAN M X , LIU R L , YU K , et al. Mechanisms of bta-miR-145 involved in skeletal muscle development of blakey black cattle by negatively regulating MYO5A[J]. Chinese Journal of Animal Science, 2023, 59 (2): 139- 146.
|
15 |
RU W X , LIU K P , YANG J M , et al. miR-183/96/182 cluster regulates the development of bovine myoblasts through targeting FOXO1[J]. Animals (Basel), 2022, 12 (20): 2799.
|
16 |
GUO D S , WEI Y L , LI X P , et al. Comprehensive analysis of miRNA and mRNA expression profiles during muscle development of the longissimus dorsi muscle in gannan yaks and jeryaks[J]. Genes (Basel), 2023, 14 (12): 2220.
doi: 10.3390/genes14122220
|
17 |
CHAL J , POURQUIE O . Making muscle: skeletal myogenesis in vivo and in vitro[J]. Development, 2017, 144 (12): 2104- 2122.
doi: 10.1242/dev.151035
|
18 |
YANG Y L , FAN X H , YAN J Y , et al. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development[J]. Nucleic Acids Res, 2021, 49 (3): 1313- 1329.
doi: 10.1093/nar/gkaa1203
|
19 |
YU M B , FENG Y Q , YAN J M , et al. Transcriptomic regulatory analysis of skeletal muscle development in landrace pigs[J]. Gene, 2024, 915, 148407.
doi: 10.1016/j.gene.2024.148407
|
20 |
ALBRECHT E , LEMBCKE C , WEGNER J , et al. Prenatal muscle fiber development and bundle structure in beef and dairy cattle[J]. J Anim Sci, 2013, 91 (8): 3666- 3673.
doi: 10.2527/jas.2013-6258
|
21 |
GREENE M A , POWELL R , BRUCE T , et al. miRNA transcriptome and myofiber characteristics of lamb skeletal muscle during hypertrophic growth[J]. Front Genet, 2022, 13, 988756.
doi: 10.3389/fgene.2022.988756
|
22 |
CHEN K , RAJEWSKY N . The evolution of gene regulation by transcription factors and microRNAs[J]. Nat Rev Genet, 2007, 8 (2): 93- 103.
|
23 |
李洁, 秦性良, 邵宁生. MicroRNA及其靶基因的时空特异性与动态变化[J]. 生物化学与生物物理进展, 2013, 40 (7): 617- 626.
|
|
LI J , QIN X L , SHAO N S , et al. Spatiotemporal specificity and dynamic changes of microRNA and its target genes[J]. Progress in Biochemistry and Biophysics, 2013, 40 (7): 617- 626.
|
24 |
YUN Y Y , WU R H , HE X G , et al. Integrated transcriptome analysis of miRNAs and mRNAs in the skeletal muscle of wuranke sheep[J]. Genes (Basel), 2023, 14 (11): 2034.
doi: 10.3390/genes14112034
|
25 |
SMOLARZ B , DURCZYNSKI A , ROMANOWICE H , et al. miRNAs in cancer (Review of Literature)[J]. Int J Mol Sci, 2022, 23 (5): 2805.
doi: 10.3390/ijms23052805
|
26 |
HOHMANN T , DEHGHANI F . The cytoskeleton a complex interacting meshwork[J]. Cells, 2019, 8 (4): 362.
doi: 10.3390/cells8040362
|
27 |
LI M X , PENG L , WANG Z M , et al. Roles of the cytoskeleton in human diseases[J]. Mol Biol Rep, 2023, 50 (3): 2847- 2856.
doi: 10.1007/s11033-022-08025-5
|
28 |
OTANI T , FURUSE M . Tight junction structure and function revisited[J]. Trends Cell Biol, 2020, 30 (10): 805- 817.
doi: 10.1016/j.tcb.2020.08.004
|
29 |
VELLOSO C P . Regulation of muscle mass by growth hormone and IGF-I[J]. Br J Pharmacol, 2008, 154 (3): 557- 568.
doi: 10.1038/bjp.2008.153
|
30 |
MATHES S , FAHRNER A , LUCA E , et al. Growth hormone/IGF-I-dependent signaling restores decreased expression of the myokine SPARC in aged skeletal muscle[J]. J Mol Med (Berl), 2022, 100 (11): 1647- 1658.
doi: 10.1007/s00109-022-02260-w
|
31 |
MAK R H , GUNTA S , OLIVEIRA E A , et al. Growth hormone improves adipose tissue browning and muscle wasting in mice with chronic kidney disease associated cachexia[J]. Int J Mol Sci, 2022, 23 (23): 15310.
doi: 10.3390/ijms232315310
|
32 |
BUCKINGHAM M , BAJARD L , CHANG T , et al. The formation of skeletal muscle: from somite to limb[J]. J Anat, 2003, 202 (1): 59- 68.
doi: 10.1046/j.1469-7580.2003.00139.x
|
33 |
FAN C M , LI L D , ROZO M E , et al. Making skeletal muscle from progenitor and stem cells: development versus regeneration[J]. Wiley Interdiscip Rev Dev Biol, 2012, 1 (3): 315- 327.
|
34 |
RODRIGUEZ-FDEZ S , BUSTELO X R . Rho GTPases in skeletal muscle development and homeostasis[J]. Cells, 2021, 10 (11): 2984.
|
35 |
YAN H L , LI L , LI S J , et al. miR-346 promotes migration and invasion of nasopharyngeal carcinoma cells via targeting BRMS1[J]. J Biochem Mol Toxicol, 2016, 30 (12): 602- 607.
|
36 |
GUO J , YANG Z , YANG X , et al. miR-346 functions as a pro-survival factor under ER stress by activating mitophagy[J]. Cancer Lett, 2018, 413, 69- 81.
|
37 |
兀继尧. 牛miR-499对成肌细胞增殖分化的影响及其作用机制研究[D]. 江苏: 江苏师范大学, 2018.
|
|
WU J Y. Effects of bovine miR-499 on myoblast proliferation and differentiation and its mechanism. [D]. Jiangsu: Jiangsu Normal University, 2018. (in Chinese)
|
38 |
LIU Y F , ZHANG M , SHAN Y J , et al. Transcriptome sequencing analysis of the role of miR-499-5p and SOX6 in chicken skeletal myofiber specification[J]. Front Genet, 2022, 13, 1008649.
|
39 |
LIU J , LIANG X J , ZHOU D X , et al. Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/FNIP1/AMPK circuit[J]. EMBO Mol Med, 2016, 8 (10): 1212- 1228.
|
40 |
ZHANG Y X , ZHANG J H , SUN Z Y , et al. MAPK8 and CAPN1 as potential biomarkers of intervertebral disc degeneration overlapping immune infiltration, autophagy, and ceRNA[J]. Front Immunol, 2023, 14, 1188774.
|
41 |
OLAREWAJU O , HU Y H , TSAY H C , et al. MicroRNA miR-20a-5p targets CYCS to inhibit apoptosis in hepatocellular carcinoma[J]. Cell Death Dis, 2024, 15 (6): 456.
|
42 |
KLOCKNER I , SCHUTT C , GERHARDT T , et al. Control of CRK-RAC1 activity by the miR-1/206/133 miRNA family is essential for neuromuscular junction function[J]. Nat Commun, 2022, 13 (1): 3180.
|
43 |
RODRIGUEZ C P , COSSINS J , BEESON D , et al. The neuromuscular junction in health and disease: molecular mechanisms governing synaptic formation and homeostasis[J]. Front Mol Neurosci, 2020, 13, 610964.
|