畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2778-2789.doi: 10.11843/j.issn.0366-6964.2025.06.022
韩僖彤1,2,3(), 张楠1,2,3, 张宁1,2,3, 张家新1,2,3,*(
)
收稿日期:
2024-11-27
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
张家新
E-mail:2225389871@qq.com;zjxcau@163.com
作者简介:
韩僖彤(2000-),女,内蒙古自治区通辽人,硕士,主要从事家畜繁殖生物学与繁殖技术研究,E-mail: 2225389871@qq.com
基金资助:
HAN Xitong1,2,3(), ZHANG Nan1,2,3, ZHANG Ning1,2,3, ZHANG Jiaxin1,2,3,*(
)
Received:
2024-11-27
Online:
2025-06-23
Published:
2025-06-25
Contact:
ZHANG Jiaxin
E-mail:2225389871@qq.com;zjxcau@163.com
摘要:
为了明确FGF2、LIF和IGF1(FLI)改善牛卵母细胞体外成熟的作用机制。本研究使用屠宰场收集的卵巢,将从卵巢中抽取的卵丘卵母细胞复合体(COCs)随机分为对照组和FLI组,进行体外成熟,每组30枚COCs,每个试验重复3次。体外成熟24 h后检测第一极体排出率、卵丘扩展情况、线粒体膜电位、皮质颗粒分布、培养基中葡萄糖消耗量和丙酮酸含量、卵母细胞氧化还原态、TZPs数量、活性氧含量、相关基因的表达;并统计后续胚胎发育的卵裂率、囊胚率和囊胚细胞数。结果表明,FLI组卵丘扩展指数显著高于对照组(分别为3.16±0.04和2.43±0.02,P < 0.001)。与对照组相比,FLI组卵母细胞的卵丘扩展相关基因表达升高(P < 0.05),皮质颗粒向卵周迁移增多(P < 0.05),但是卵母细胞第一极体排出率、线粒体膜电位没有显著变化(P>0.05)。与对照组相比,FLI组的培养基中葡萄糖的消耗、丙酮酸的含量显著增加(P < 0.05),卵母细胞内NADPH显著增加(P < 0.001),并且糖代谢相关基因的表达显著上升(P < 0.05)。添加FLI可以显著降低卵母细胞内氧化还原水平、FAD++和ROS水平(P < 0.05)。IVM 8 h时,FLI组TZPs数量显著高于对照组(分别为106±6.91和78±8.76,P < 0.001)。体外受精后,FLI组卵裂率和囊胚率显著高于对照组(分别为(86.49±0.80)%、(37.44±0.42)%和(74.08±0.91)%、(27.34±1.08)%,P < 0.05)。结果显示,FLI通过增加糖代谢提高了卵母细胞体外成熟质量和胚胎发育。
中图分类号:
韩僖彤, 张楠, 张宁, 张家新. FLI通过增加糖代谢途径促进牛卵母细胞体外成熟[J]. 畜牧兽医学报, 2025, 56(6): 2778-2789.
HAN Xitong, ZHANG Nan, ZHANG Ning, ZHANG Jiaxin. FLI Promotes in Vitro Maturation of Bovine Oocytes by Increasing the Glucose Metabolism Pathway[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2778-2789.
表 1
引物序列"
基因 Gene | 引物序列(5′→3′) Primers sequence |
PKM | F: CACGCAGAGACCATCAAGAA;R: TCGGATCTCAGGTCCTTTAGT |
ACOD1 | F: ACTGGAAATGGCTCTCCTCGG;R: CAAGTGGCAGCGTGGATTCTC |
MPC1 | F: TGAGCTCCGACTAAATGAGGA;R: TGGGATTGACTGCTGGGGGATA |
GAPDH | F: GGGTCATCATCTCTGCACCT;R: GGTCATAAGTCCCTCCACGA |
LDHA | F: TCTGGATTCAGCTCGCTTCCGTTA;R: TTCTTCAGGGAGACACCAGCAACA |
HK1 | F: GTGTGCTGTTGATAATCTCC;R: AATAACTGTTGGACGAATGC |
GFPT1 | F: AAACACAGTCGGCAGTTCCA;R: TGGCTACACCAATCTCAGGC |
HAS2 | F: CCTCATCATCCAAAGCCTGT;R: CGGGGTAGGTTAGCCTTTTC |
TNFAIP6 | F: CATCTTGCCACCTACAAGCA;R: CACACCACCACACTCCTTTG |
β-actin | F: AACTCCATCATGAAGTGTGACG;R: GATCCACATCTGCTGGAAGG |
1 | YUAN Y , KRISHER R L . In vitro maturation (IVM) of porcine oocytes[J]. Methods Mol Biol, 2012, 825, 183- 198. |
2 |
HARDY K , WRIGHT C S , FRANKS S , et al. In vitro maturation of oocytes[J]. Br Med Bull, 2000, 56 (3): 588- 602.
doi: 10.1258/0007142001903391 |
3 |
BALDINI G M , LOT D , MALVASI A , et al. Abnormalities of oocyte maturation: mechanisms and implications[J]. Int J Mol Sci, 2024, 25 (22): 12197.
doi: 10.3390/ijms252212197 |
4 |
GILCHRIST R B , HO T M , DE VOS M , et al. A fresh start for IVM: capacitating the oocyte for development using pre-IVM[J]. Hum Reprod Update, 2024, 30 (1): 3- 25.
doi: 10.1093/humupd/dmad023 |
5 | 陈涛, 曹鸿国, 张卫琴, 等. 卵母细胞成熟发生机制的研究进展[J]. 生命科学, 2009, 21 (2): 307- 311. |
CHEN T , CAO H G , ZHANG W Q , et al. Research progresses on the genesis mechanism of mammalian oocyte maturation[J]. Chinese Bulletin of Life Sciences, 2009, 21 (2): 307- 311. | |
6 |
RICHANI D , GILCHRIST R B . The epidermal growth factor network: role in oocyte growth, maturation and developmental competence[J]. Hum Reprod Update, 2018, 24 (1): 1- 14.
doi: 10.1093/humupd/dmx029 |
7 |
ZHANG P , YANG B , XU X , et al. Combination of CNP, MT and FLI during IVM significantly improved the quality and development abilities of bovine oocytes and IVF-derived embryos[J]. Antioxidants (Basel), 2023, 12 (4): 897.
doi: 10.3390/antiox12040897 |
8 |
ZHENG H , CHOI H , OH D , et al. Supplementation with fibroblast growth factor 7 during in vitro maturation of porcine cumulus-oocyte complexes improves oocyte maturation and early embryonic development[J]. Front Vet Sci, 2023, 10, 1250551.
doi: 10.3389/fvets.2023.1250551 |
9 |
BARROS R G , LIMA P F , SOARES A C S , et al. Fibroblast growth factor 2 regulates cumulus differentiation under the control of the oocyte[J]. J Assist Reprod Genet, 2019, 36 (5): 905- 913.
doi: 10.1007/s10815-019-01436-7 |
10 |
CHAVES R N , DE M M H , BURATINI J JR , et al. The fibroblast growth factor family: involvement in the regulation of folliculogenesis[J]. Reprod Fertil Dev, 2012, 24 (7): 905- 915.
doi: 10.1071/RD11318 |
11 |
DU C , DAVIS J S , CHEN C , et al. FGF2/FGFR signaling promotes cumulus-oocyte complex maturation in vitro[J]. Reproduction, 2021, 161 (2): 205- 214.
doi: 10.1530/REP-20-0264 |
12 |
NEMCOVÁ L , NAGYOVÁ E , PETLACH M , et al. Molecular mechanisms of insulin-like growth factor 1 promoted synthesis and retention of hyaluronic acid in porcine oocyte-cumulus complexes[J]. Biol Reprod, 2007, 76 (6): 1016- 1024.
doi: 10.1095/biolreprod.106.057927 |
13 |
PIAU T B , DE Q R A , PAULINI F . Insulin-like growth factor (IGF) performance in ovarian function and applications in reproductive biotechnologies[J]. Growth Horm IGF Res, 2023, 72-73, 101561.
doi: 10.1016/j.ghir.2023.101561 |
14 | TOORI M A , MOSAVI E , NIKSERESHT M , et al. Influence of insulin-like growth factor-I on maturation and fertilization rate of immature oocyte and embryo development in NMRI mouse with TCM199 and α-MEM medium[J]. J Clin Diagn Res, 2014, 8 (12): AC05- AC8. |
15 |
KORDOWITZKI P , KRAJNIK K , SKOWRONSKA A , et al. Pleiotropic effects of IGF1 on the oocyte[J]. Cells, 2022, 11 (10): 1610.
doi: 10.3390/cells11101610 |
16 |
SATO A , SARENTONGLAGA B , OGATA K , et al. Effects of insulin-like growth factor-1 on the in vitro maturation of canine oocytes[J]. J Reprod Dev, 2018, 64 (1): 83- 88.
doi: 10.1262/jrd.2017-145 |
17 |
DE MATOS DG , MILLER K , SCOTT R , et al. Leukemia inhibitory factor induces cumulus expansion in immature human and mouse oocytes and improves mouse two-cell rate and delivery rates when it is present during mouse in vitro oocyte maturation[J]. Fertil Steril, 2008, 90 (6): 2367- 2375.
doi: 10.1016/j.fertnstert.2007.10.061 |
18 | MCKINLEY E , SPECKHART S L , KEANE J A , et al. Influences of supplementing selective members of the interleukin-6 cytokine family on bovine oocyte competency[J]. Animals (Basel), 2023, 14 (1): 44. |
19 |
MO X , WU G , YUAN D , et al. Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development[J]. Mol Reprod Dev, 2014, 81 (7): 608- 618.
doi: 10.1002/mrd.22327 |
20 | YUAN Y , SPATE L D , REDEL B K , et al. Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation[J]. Proc Natl Acad Sci U S A, 2017, 114 (29): E5796- E5804. |
21 |
NAHAR A , BECKER J , PASQUARIELLO R , et al. FGF2, LIF, and IGF-1 supplementation improves mouse oocyte in vitro maturation via increased glucose metabolism?[J]. Biol Reprod, 2024, 110 (4): 672- 683.
doi: 10.1093/biolre/ioae014 |
22 |
TIAN H , QI Q , YAN F , et al. Enhancing the developmental competence of prepubertal lamb oocytes by supplementing the in vitro maturation medium with sericin and the fibroblast growth factor 2-leukemia inhibitory factor-Insulin-like growth factor 1 combination[J]. Theriogenology, 2021, 159, 13- 19.
doi: 10.1016/j.theriogenology.2020.10.019 |
23 |
CURRIN L , GLANZNER W G , GUTIERREZ K , et al. Optimizing swine in vitro embryo production with growth factor and antioxidant supplementation during oocyte maturation[J]. Theriogenology, 2022, 194, 133- 143.
doi: 10.1016/j.theriogenology.2022.10.005 |
24 |
STOECKLEIN K S , ORTEGA M S , SPATE L D , et al. Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1[J]. PLoS One, 2021, 16 (2): e0243727.
doi: 10.1371/journal.pone.0243727 |
25 |
CAJAS Y N , CAÑÓN-BELTRÁN K , LADRÓN DE G M , et al. Antioxidant nobiletin enhances oocyte maturation and subsequent embryo development and quality[J]. Int J Mol Sci, 2020, 21 (15): 5340.
doi: 10.3390/ijms21155340 |
26 |
HOSOE M , SHIOYA Y . Distribution of cortical granules in bovine oocytes classified by cumulus complex[J]. Zygote, 1997, 5 (4): 371- 376.
doi: 10.1017/S0967199400003956 |
27 |
HOODBHOY T , DANDEKAR P , CALARCO P , et al. p62/p56 are cortical granule proteins that contribute to formation of the cortical granule envelope and play a role in mammalian preimplantation development[J]. Mol Reprod Dev, 2001, 59 (1): 78- 89.
doi: 10.1002/mrd.1009 |
28 |
ZHANG H , LI C , LIU Q , et al. C-type natriuretic peptide improves maternally aged oocytes quality by inhibiting excessive PINK1/Parkin-mediated mitophagy[J]. Elife, 2023, 12, RP88523.
doi: 10.7554/eLife.88523.3 |
29 |
RICHANI D , DUNNING K R , THOMPSON J G , et al. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence[J]. Hum Reprod Update, 2021, 27 (1): 27- 47.
doi: 10.1093/humupd/dmaa043 |
30 |
XIONG Y Y , ZHU H Y , SHI R J , et al. Regulation of glucose metabolism: effects on oocyte, preimplantation embryo, assisted reproductive technology and embryonic stem cell[J]. Heliyon, 2024, 10 (19): e38551.
doi: 10.1016/j.heliyon.2024.e38551 |
31 |
ZHANG Q , REN J , WANG F , et al. Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through Sirtuin 3[J]. Free Radic Biol Med, 2022, 187, 1- 16.
doi: 10.1016/j.freeradbiomed.2022.05.010 |
32 |
孟亚轩, 刘彦, 王晶, 等. 氧化应激对母畜卵巢功能影响的研究进展[J]. 畜牧兽医学报, 2024, 55 (7): 2825- 2835.
doi: 10.11843/j.issn.0366-6964.2024.07.005 |
MENG Y X , LIU Y , WANG J , et al. Research progress in the effect of oxidative stress on ovarian function in female livestock[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (7): 2825- 2835.
doi: 10.11843/j.issn.0366-6964.2024.07.005 |
|
33 |
ZHANG C H , LIU X Y , WANG J . Essential role of granulosa cell glucose and lipid metabolism on oocytes and the potential metabolic imbalance in polycystic ovary syndrome[J]. Int J Mol Sci, 2023, 24 (22): 16247.
doi: 10.3390/ijms242216247 |
34 |
ZHANG H , LI C , WEN D , et al. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply[J]. Redox Biol, 2022, 49, 102215.
doi: 10.1016/j.redox.2021.102215 |
35 |
DOHERTY C A , AMARGANT F , SHVARTSMAN S Y , et al. Bidirectional communication in oogenesis: a dynamic conversation in mice and Drosophila[J]. Trends Cell Biol, 2022, 32 (4): 311- 323.
doi: 10.1016/j.tcb.2021.11.005 |
36 |
CLARKE H J . Transzonal projections: essential structures mediating intercellular communication in the mammalian ovarian follicle[J]. Mol Reprod Dev, 2022, 89 (11): 509- 525.
doi: 10.1002/mrd.23645 |
37 |
CHEN M , HE C , ZHU K , et al. Resveratrol ameliorates polycystic ovary syndrome via transzonal projections within oocyte-granulosa cell communication[J]. Theranostics, 2022, 12 (2): 782- 795.
doi: 10.7150/thno.67167 |
38 |
TORKASHVAND H , SHABANI R , ARTIMANI T , et al. Oocyte competence develops: nuclear maturation synchronously with cytoplasm maturation[J]. Zygote, 2024, 32 (6): 421- 428.
doi: 10.1017/S0967199424000169 |
39 |
JAFFE L A , EGBERT J R . Regulation of mammalian oocyte meiosis by intercellular communication within the ovarian follicle[J]. Annu Rev Physiol, 2017, 79, 237- 260.
doi: 10.1146/annurev-physiol-022516-034102 |
40 |
NAGYOVA E , MLYNARCIKOVA A B , NEMCOVA L , et al. Unique hyaluronan structure of expanded oocyte-cumulus extracellular matrix in ovarian follicles[J]. Endocr Regul, 2024, 58 (1): 174- 180.
doi: 10.2478/enr-2024-0020 |
41 |
ABBASSI L , EL-HAYEK S , CARVALHO K F , et al. Epidermal growth factor receptor signaling uncouples germ cells from the somatic follicular compartment at ovulation[J]. Nat Commun, 2021, 12 (1): 1438.
doi: 10.1038/s41467-021-21644-z |
[1] | 石闪闪, 万琼飞, 许赢心, 王秋硕, 张林林, 郭益文, 胡德宝, 郭宏, 丁向彬, 李新. 牛骨骼肌不同发育阶段miRNA测序及生物信息学分析[J]. 畜牧兽医学报, 2025, 56(6): 2701-2710. |
[2] | 高林娜, 蒋影影, 王悦, 史倩倩, 安振江, 王慧利, 沈阳阳, 陈坤琳, 张乐颖. 基于CRISPR/Cas9技术的牛乳腺上皮细胞全基因组敲除文库的构建[J]. 畜牧兽医学报, 2025, 56(6): 2711-2723. |
[3] | 付予, 杨卓, 郑浩, 孙国瀚, 沈文娟, 韩小红, 陶金忠. 奶牛配种早期外周血浆中相关因子与妊娠状态的相关性分析[J]. 畜牧兽医学报, 2025, 56(6): 2790-2800. |
[4] | 赵云海, 张阳阳, 马海云, 王青, 何肖肖, 刘凯, 张钰婷, 刘玉东, 杨永宁, 武小椿, 邢小勇, 权国梅, 张志雄, 包世俊. 牛支原体分子伴侣Dnak的原核表达及黏附特性分析[J]. 畜牧兽医学报, 2025, 56(6): 2868-2878. |
[5] | 牛悦悦, 崔燕, 余四九, 何俊峰, 杨珊珊, 祁正满, 豆婉婉, 陈春燕, 邓演江. 不同年龄牦牛肺脏中JAK2、STAT3、P-JAK2/STAT3及PCNA蛋白的表达分析[J]. 畜牧兽医学报, 2025, 56(6): 2957-2967. |
[6] | 王勤倩, 高振东, 陆颖, 马若珊, 邓卫东, 和晓明. 全基因组重测序在中国地方黄牛上的研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2026-2037. |
[7] | 姚婷婷, 李昊, 阎卉萱, 曹一凡, 次仁罗布, 索朗曲吉, 尼玛仓决, 赵丽, 旦增洛桑, 斯朗旺姆, 巴桑珠扎, 陈宁博. 西藏自治区10个黄牛群体的mtDNA遗传多样性与母系起源研究[J]. 畜牧兽医学报, 2025, 56(5): 2194-2202. |
[8] | 张俊星, 盛辉, 韩丽云, 张海亮, 张毅, 蔡蓓, 马云, 王雅春. 泌乳牛健康问题对奶牛重要经济性状的影响分析[J]. 畜牧兽医学报, 2025, 56(5): 2203-2218. |
[9] | 贾超莹, 张华伟, 罗修鑫, 刘青芸, 王湘如. A6型牛溶血性曼氏杆菌生物学特性研究及免疫原性评价[J]. 畜牧兽医学报, 2025, 56(5): 2312-2324. |
[10] | 乔亚蕊, 苗宇航, 黄倩, 周学章. 奶牛乳腺炎源粪肠球菌生物学特性研究[J]. 畜牧兽医学报, 2025, 56(5): 2325-2339. |
[11] | 赵莹, 王靖雷, 王萌, 王立斌, 张倩, 李志杰, 马鑫, 余四九, 潘阳阳. 乳源外泌体包载连翘酯苷A和山奈酚的制备、表征及体外抗炎效果评价[J]. 畜牧兽医学报, 2025, 56(5): 2481-2495. |
[12] | 熊铿, 范浩杰, 王杰, 赵善江, 朱庆利, 胡智辉, 罗昊澍, 朱化彬. 牛超数排卵重组促卵泡素研究进展及其应用[J]. 畜牧兽医学报, 2025, 56(5): 2047-2055. |
[13] | 赵文轩, 高雪, 余大为, 高晨, 李俊雅. 蒙山牛诱导多能干细胞的建立[J]. 畜牧兽医学报, 2025, 56(4): 1731-1743. |
[14] | 王昕昕, 刘小英, 王宜, 王芳, 赵晗, 杜志强, 杨彩侠. 急性热应激通过降低牛磺酸水平影响猪睾丸支持细胞的功能[J]. 畜牧兽医学报, 2025, 56(4): 1779-1790. |
[15] | 和晓兰, 赵艳坤, 孟璐, 刘慧敏, 高姣姣, 郑楠. 生牛乳中金黄色葡萄球菌异质性耐药及机制研究[J]. 畜牧兽医学报, 2025, 56(4): 1934-1946. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||