畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2868-2878.doi: 10.11843/j.issn.0366-6964.2025.06.030
赵云海1(), 张阳阳1, 马海云1, 王青1, 何肖肖1, 刘凯1, 张钰婷1, 刘玉东1, 杨永宁2, 武小椿1, 邢小勇1, 权国梅1, 张志雄1, 包世俊1,*(
)
收稿日期:
2024-07-29
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
包世俊
E-mail:2717458795@qq.com;bsjdy@126.com
作者简介:
赵云海(1997-),男,山西吕梁人,硕士生,主要从事动物传染病学及兽医病原分子生物学研究,E-mail:2717458795@qq.com
基金资助:
ZHAO Yunhai1(), ZHANG Yangyang1, MA Haiyun1, WANG Qing1, HE Xiaoxiao1, LIU Kai1, ZHANG Yuting1, LIU Yudong1, YANG Yongning2, WU Xiaochun1, XING Xiaoyong1, QUAN Guomei1, ZHANG Zhixiong1, BAO Shijun1,*(
)
Received:
2024-07-29
Online:
2025-06-23
Published:
2025-06-25
Contact:
BAO Shijun
E-mail:2717458795@qq.com;bsjdy@126.com
摘要:
旨在研究牛支原体(Mycoplasma bovis, Mb)分子伴侣Dnak (chaperone protein Dnak)蛋白的免疫原性和黏附特性。根据GenBank中Mb HB0801株Dnak基因设计引物,利用Overlap PCR扩增获得Mb Dnak基因,构建重组质粒pET-Dnak, 经双酶切和测序鉴定正确后,将重组质粒转入大肠杆菌BL21(DE3)并通过异丙基硫代半乳糖苷(isopropyl-β-D-thiogalactopyranoside, IPTG)诱导表达。将纯化的重组蛋白免疫新西兰白兔获得抗rDnak血清,利用Western blot、ELISA和间接免疫荧光检测Dnak蛋白的免疫原性以及Dnak蛋白在Mb中的分布。通过补体介导的杀菌试验分析检测rDnak抗血清介导的激活补体杀支原体活性。利用黏附及黏附抑制试验分析Dnak蛋白对宿主细胞的黏附功能。结果表明,重组蛋白rDnak主要以上清可溶形式在大肠杆菌中成功表达,其相对分子质量约为70 ku,具有良好的免疫原性;其多抗血清可有效激活补体杀伤支原体;Dnak蛋白在Mb的细胞膜和细胞质中均存在,是Mb的一种黏附相关蛋白,参与对EBL细胞的黏附。综上,Dnak蛋白是Mb中具有良好免疫原性的黏附相关蛋白,为探究Mb的致病机制奠定基础。
中图分类号:
赵云海, 张阳阳, 马海云, 王青, 何肖肖, 刘凯, 张钰婷, 刘玉东, 杨永宁, 武小椿, 邢小勇, 权国梅, 张志雄, 包世俊. 牛支原体分子伴侣Dnak的原核表达及黏附特性分析[J]. 畜牧兽医学报, 2025, 56(6): 2868-2878.
ZHAO Yunhai, ZHANG Yangyang, MA Haiyun, WANG Qing, HE Xiaoxiao, LIU Kai, ZHANG Yuting, LIU Yudong, YANG Yongning, WU Xiaochun, XING Xiaoyong, QUAN Guomei, ZHANG Zhixiong, BAO Shijun. Prokaryotic Expression and Adhesion Characteristics of Molecular Chaperone Dnak of Mycoplasma bovis[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2868-2878.
表 1
Overlap PCR扩增Dnak基因的引物序列"
引物 Primer | 序列(5′→3′) Sequence | 产物大小/bp Product size |
Dnak-F | CGC$\underline{{\rm{GGATCC}}}$ATGGCAAAAGAAGTTATTATTG | 650 |
Dnak-R1 | TTTTGATTAAATCAATTAACCATTTTACAATTTCATTG | |
Dnak-F1 | CAATGAAATTGTAAAATGGTTAATTGATTTAATCAAAA | 1 182 |
Dnak-R | CCG$\underline{{\rm{CTCGAG}}}$TTATTCGAATGTTTCTTCATC |
1 |
JIMBO S , SULEMAN M , MAINA T , et al. Effect of Mycoplasma bovis on bovine neutrophils[J]. Vet Immunol Immunopathol, 2017, 188, 27- 33.
doi: 10.1016/j.vetimm.2017.04.011 |
2 |
VÄHÄNIKKILÄ N , POHJANVIRTA T , HAAPALA V , et al. Characterization of the course of Mycoplasma bovis infection in naturally infected dairy herds[J]. Vet Microbiol, 2019, 231, 107- 115.
doi: 10.1016/j.vetmic.2019.03.007 |
3 | DASSANAYAKE R P , FALKENBERG S M , REGISTER K B , et al. Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis[J]. PLoS One, 2018, 13 (5): e197677. |
4 | 辛九庆, 李媛, 郭丹, 等. 国内首次从患肺炎的犊牛肺脏中分离到牛支原体[J]. 中国预防兽医学报, 2008 (9): 661- 664. |
XIN J Q , LI Y , GUO D , et al. Mycoplasma bovis isolated from the lungs of calves with pneumonia for the first time in China[J]. Chinese Journal of Preventive Veterinary Medicine, 2008 (9): 661- 664. | |
5 | GAUTIER-BOUCHARDON A V . Antimicrobial resistance in Mycoplasma spp[J]. Microbiol Spectr, 2018, 6 (4): 10. |
6 |
CHEN S , HAO H , ZHAO P , et al. Differential immunoreactivity to bovine convalescent serum between Mycoplasma bovis biofilms and planktonic cells revealed by comparative immunoproteomic analysis[J]. Front Microbiol, 2018, 9, 379.
doi: 10.3389/fmicb.2018.00379 |
7 |
PEREZ-CASAL J , PRYSLIAK T , MAINA T , et al. Status of the development of a vaccine against Mycoplasma bovis[J]. Vaccine, 2017, 35 (22): 2902- 2907.
doi: 10.1016/j.vaccine.2017.03.095 |
8 |
MILANI A , BASIRNEJAD M , BOLHASSANI A . Heat-shock proteins in diagnosis and treatment: an overview of different biochemical and immunological functions[J]. Immunotherapy, 2019, 11 (3): 215- 239.
doi: 10.2217/imt-2018-0105 |
9 |
GHAZAEI C . Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens[J]. J Med Microbiol, 2017, 66 (3): 259.
doi: 10.1099/jmm.0.000429 |
10 | 焦凌霞. DnaK基因调控酸土脂环酸芽孢杆菌嗜酸耐热生理特性研究[D]. 杨凌: 西北农林科技大学, 2012. |
JIAO L X. Study on the physiological characteristics of acidophilic heat resistance of Bacillus acidocyclohaloides regulated by DnaK gene[D]. Yangling: Northwest A & F University, 2012. (in Chinese) | |
11 | 黄霞. 鸭疫里默氏菌Dnak基因功能初析[D]. 成都: 四川农业大学, 2016. |
HUANG XIA. Preliminary analysis on the function of Dnak gene of Rimerella ducks[D]. Chengdu: Sichuan Agricultural University, 2016. (in Chinese) | |
12 | 樊欣. 赤红球菌SD3的基因组分析及其DnaK蛋白的表达和功能研究[D]. 南昌: 江西师范大学, 2019. |
FAN XIN. Genomic analysis of Rhodococcus sd3 and its expression and function of DnaK protein[D]. Nanchang: Jiangxi Normal University, 2019. (in Chinese) | |
13 |
LEE J H , JEON J , BAI F , et al. The Pseudomonas aeruginosa HSP70-like protein DnaK induces IL-1β expression via TLR4-dependent activation of the NF-κB and JNK signaling pathways[J]. Comp Immunol Microbiol Infect Dis, 2019, 67, 101373.
doi: 10.1016/j.cimid.2019.101373 |
14 | 冯雅茹, 周梦婷, 张瑜瑜, 等. 牛支原体LRR5蛋白原核表达及其在牛支原体入侵宿主细胞过程中的作用分析[J]. 微生物学报, 2024, 64 (5): 1469- 1482. |
FENG Y R , ZHOU M T , ZHANG Y Y , et al. Prokaryotic expression of Mycoplasma bovis LRR5 protein and its role in the invasion of host cells by Mycoplasma bovis[J]. Chinese Journal of Microbiology, 2024, 64 (5): 1469- 1482. | |
15 |
KAPLAN B S , DASSANAYAKE R P , BRIGGS R E , et al. An injectable subunit vaccine containing elongation factor Tu and heat shock protein 70 partially protects American bison from Mycoplasma bovis infection[J]. Front Vet Sci, 2024, 11, 1408861.
doi: 10.3389/fvets.2024.1408861 |
16 | CIRONE F , PADALINO B , TULLIO D , et al. Prevalence of pathogens related to bovine respiratory disease before and after transportation in beef steers: preliminary results[J]. Animals (Basel), 2019, 9 (12): 1093. |
17 | 刘佳, 张生英, 邢小勇, 等. 滑液支原体DnaK的原核表达及免疫原性分析和亚细胞定位[J]. 中国兽医科学, 2020, 50 (8): 1029- 1036. |
LIU J , ZHANG S Y , XING X Y , et al. Prokaryotic expression, immunogenicity analysis and subcellular localization of Mycoplasma synoviae DnaK[J]. China Veterinary Science, 2020, 50 (8): 1029- 1036. | |
18 |
HAN S , WANG Y , CHANG W , et al. Evaluation of the protective efficacy of six major immunogenic proteins of Mycoplasma Synoviae[J]. Front Vet Sci, 2024, 10, 1334638.
doi: 10.3389/fvets.2023.1334638 |
19 |
LI Y , WANG J , LIU B , et al. DnaK functions as a moonlighting protein on the surface of Mycoplasma hyorhinis cells[J]. Front Microbiol, 2022, 13, 842058.
doi: 10.3389/fmicb.2022.842058 |
20 | ADAMU J Y , WAWEGAMA N K , KANCI C A , et al. Mycoplasma bovis membrane protein MilA is a multifunctional lipase with novel lipid and glycosaminoglycan binding activity[J]. Infect Immun, 2020, 88 (6): e00945- 19. |
21 |
MITIKU F , HARTLEY C A , SANSOM F M , et al. The major membrane nuclease MnuA degrades neutrophil extracellular traps induced by Mycoplasma bovis[J]. Vet Microbiol, 2018, 218, 13- 19.
doi: 10.1016/j.vetmic.2018.03.002 |
22 |
SCHAUMBURG J , DIEKMANN O , HAGENDORFF P , et al. The cell wall subproteome of Listeria monocytogenes[J]. Proteomics, 2004, 4 (10): 2991- 3006.
doi: 10.1002/pmic.200400928 |
23 |
KNAUST A , WEBER M V , HAMMERSCHMIDT S , et al. Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis[J]. J Bacteriol, 2007, 189 (8): 3246- 3255.
doi: 10.1128/JB.01966-06 |
24 | HAGEMANN L , GRVNDEL A , JACOBS E , et al. The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix[J]. Pathog Dis, 2017, 75 (3): ftx017. |
25 | 季文恒. 牛支原体致病机理的研究进展[J]. 中国预防兽医学报, 2018, 40 (4): 361- 367. |
JI W H . Research progress on the pathogenic mechanism of Mycoplasma bovis[J]. Chinese Journal of Preventive Veterinary Medicine, 2018, 40 (04): 361- 367. | |
26 |
XIU F , LI X , LIU L , et al. Mycoplasma invasion into host cells: An integrated model of infection strategy[J]. Mol Microbiol, 2024, 121 (4): 814- 830.
doi: 10.1111/mmi.15232 |
27 |
CHEN Y W , WU Y Y , QIN L M , et al. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors[J]. Virulence, 2021, 12 (1): 788- 817.
doi: 10.1080/21505594.2021.1889813 |
28 |
CHEN X , HUANG J , ZHU H , et al. P27 (MbOV_RS03440) is a novel fibronectin binding adhesin of Mycoplasma bovis[J]. Int J Med Microbiol, 2018, 308 (7): 848- 857.
doi: 10.1016/j.ijmm.2018.07.006 |
29 |
SACHSE K , HELBIG J H , LYSNYANSKY I , et al. Epitope mapping of immunogenic and adhesive structures in repetitive domains of Mycoplasma bovis variable surface lipoproteins[J]. Infect Immun, 2000, 68 (2): 680- 687.
doi: 10.1128/IAI.68.2.680-687.2000 |
30 |
包世俊, 朱彩宏, 邢小勇, 等. 牛支原体NOX2的原核表达及黏附特性[J]. 畜牧兽医学报, 2020, 51 (11): 2895- 2902.
doi: 10.11843/j.issn.0366-6964.2020.11.028 |
BAO S J , ZHU C H , XING X Y , et al. Prokaryotic expression of NOX2 of Mycoplasma bovis and its adherence characterization[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (11): 2895- 2902.
doi: 10.11843/j.issn.0366-6964.2020.11.028 |
|
31 |
LAN S , LI Z , HAO H , et al. A genome-wide transposon mutagenesis screening identifies LppB as a key factor associated with Mycoplasma bovis colonization and invasion into host cells[J]. FASEB J, 2023, 37 (10): e23176.
doi: 10.1096/fj.202300678R |
32 |
LIU S , LI Z , LAN S , et al. LppA is a novel plasminogen receptor of Mycoplasma bovis that contributes to adhesion by binding the host extracellular matrix and Annexin A2[J]. Vet Res, 2023, 54 (1): 107.
doi: 10.1186/s13567-023-01242-1 |
33 |
ZOU X , LI Y , WANG Y , et al. Molecular cloning and characterization of a surface-localized adhesion protein in Mycoplasma bovis Hubei-1 strain[J]. PLoS One, 2013, 8 (7): e69644.
doi: 10.1371/journal.pone.0069644 |
34 |
HOELZLE L E , HOELZLE K , HARDER A , et al. First identification and functional characterization of an immunogenic protein in unculturable haemotrophic Mycoplasmas (Mycoplasma suis HspA1)[J]. FEMS Immunol Med Microbiol, 2007, 49 (2): 215- 223.
doi: 10.1111/j.1574-695X.2006.00184.x |
35 | CHEN H , HE X , JIANG H W , et al. Elucidating the network interactions between 21 secreted Mycobacterium tuberculosis proteins and host proteins: the role of DnaK in enhancing Mtb survival via LDHB[J]. Acta Biochim Biophys Sin (Shanghai), 2024, 56 (5): 819- 823. |
36 |
CHAN C , GROISMAN E A . Chaperone Hsp70 helps Salmonella survive infection-relevant stress by reducing protein synthesis[J]. PLoS Biol, 2024, 22 (4): e3002560.
doi: 10.1371/journal.pbio.3002560 |
[1] | 国德洋, 胡慧, 郑雪莉, 姜艳芬. 猪防御素-1的原核表达及抑菌效应分析[J]. 畜牧兽医学报, 2025, 56(6): 2836-2846. |
[2] | 吴琼, 李凌丹, 袁辉, 宾晨, 邓可, 李伟, 叶十一, 李国攀, 沈青春, 熊涛. 猪α干扰素8s突变体原核表达及其体内外活性鉴定[J]. 畜牧兽医学报, 2025, 56(5): 2413-2423. |
[3] | 张越, 茹毅, 郝荣增, 杨锐, 赵陇和, 李亚军, 杨洋, 张荣, 蒋成辉, 郑海学. 非洲猪瘟病毒H108R蛋白的制备及其免疫原性评价[J]. 畜牧兽医学报, 2025, 56(3): 1344-1354. |
[4] | 邵永恒, 倪民婷, 高梦玲, 汤娇, 张耕馨, 林圣宇, 刘光亮, 陈佳宁, 王雯慧. 猪捷申病毒5型VP1蛋白的原核表达及间接ELISA检测方法的建立[J]. 畜牧兽医学报, 2025, 56(2): 883-889. |
[5] | 曾苗苗, 杨小曼, 张鑫, 刘大凯, 时洪艳, 张记宇, 张燎原, 陈建飞, 冯廷帅, 李修文, 石达, 冯力. 猪急性腹泻综合征冠状病毒N蛋白间接ELISA抗体检测方法的建立及初步应用[J]. 畜牧兽医学报, 2025, 56(1): 319-326. |
[6] | 曾焱, 欧祥龙, 闫晓阳, 刘灿, 廖永洪. 猪胸膜肺炎放线杆菌OmpD、LppB蛋白的原核表达及免疫原性分析[J]. 畜牧兽医学报, 2025, 56(1): 343-352. |
[7] | 高力国, 申翰钦, 陈诒全, 陈胜, 蔺文成, 陈峰. 猪轮状病毒重组VP6*蛋白的原核表达及间接ELISA检测方法的建立[J]. 畜牧兽医学报, 2024, 55(9): 4021-4028. |
[8] | 任慧杰, 马勋, 王静, 刘彩霞, 曾东东, 寇丽君, 史唯地, 吕双飞, 钱瑞宣, 高盛杰. 产单核细胞李氏杆菌Lm4b_02325/26双基因缺失株构建及部分生物学特性试验[J]. 畜牧兽医学报, 2024, 55(6): 2578-2587. |
[9] | 陈延鑫, 华瑞其, 邵国庆, 朱小伟, 侯巍, 李盛琼, 阳爱国, 杨光友. 细粒棘球绦虫膜联蛋白B5、B15和B25的原核表达和分泌特性分析[J]. 畜牧兽医学报, 2024, 55(6): 2607-2618. |
[10] | 宋晓晴, 邓瑞德, 李欣, 李姣, 李润成, 杜丽飞, 董伟, 葛猛. PCV4 Cap抗体ELISA检测方法的建立及血清流行病学调查[J]. 畜牧兽医学报, 2024, 55(5): 2072-2079. |
[11] | 吕亚迪, 杨洁, 谢文婷, 徐婷, 陈瑞爱. 共表达膜结合型与可溶性H9N2亚型禽流感病毒HA蛋白的重组基因Ⅶ型新城疫病毒的构建及免疫效果评价[J]. 畜牧兽医学报, 2024, 55(5): 2123-2134. |
[12] | 徐朕宇, 邓肖玉, 王月丽, 孙灿, 吴澳迪, 曹剑, 易继海, 王勇, 王震, 陈创夫. 牛种布鲁氏菌A19ΔBtpA缺失株生物学特性及其免疫原性研究[J]. 畜牧兽医学报, 2024, 55(5): 2135-2145. |
[13] | 罗婷, 韩著, 徐业芬, 蔡林, 索朗斯珠, 徐晋花, 牛家强. 西藏牦牛源牛支原体T10株全基因组测序及其序列分析[J]. 畜牧兽医学报, 2024, 55(5): 2154-2167. |
[14] | 罗小芬, 谢晓东, 赵超, 胡茜, 王永璇, 冉芳菲, 胡鹏飞, 文明, 朱二鹏, 程振涛. 牛支原体贵州株黏附相关蛋白的初步鉴定[J]. 畜牧兽医学报, 2024, 55(4): 1672-1683. |
[15] | 高龙, 常心怡, 李程, 赵晓亚, 李汶洁, 范浩谦, 马静云. 表达外源基因SPAM1重组CAV-2溶瘤病毒的构建与拯救[J]. 畜牧兽医学报, 2024, 55(3): 1228-1237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||