畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2537-2545.doi: 10.11843/j.issn.0366-6964.2025.06.002
赵顺然(), 付桂鑫, 庞钊琪, 夏威, 李俊杰, 陶晨雨*(
)
收稿日期:
2024-12-05
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
陶晨雨
E-mail:1814655051@qq.com;taochenyuty@163.com
作者简介:
赵顺然(1999-),男,河北唐山人,博士生,主要从事动物遗传育种与繁殖研究,E-mail:1814655051@qq.com
基金资助:
ZHAO Shunran(), FU Guixin, PANG Zhaoqi, XIA Wei, LI Junjie, TAO Chenyu*(
)
Received:
2024-12-05
Online:
2025-06-23
Published:
2025-06-25
Contact:
TAO Chenyu
E-mail:1814655051@qq.com;taochenyuty@163.com
摘要:
尽管我国畜牧业已取得了显著进步,但提升畜禽繁殖力仍然是畜牧场不懈追求的目标。卵泡闭锁是未发生排卵的卵泡,这在畜禽中极为普遍,以成为制约畜禽繁殖能力的重要因素,日益受到广泛关注。颗粒细胞作为影响卵泡闭锁的关键因素,在卵泡闭锁过程中发挥了关键的作用,目前,大多研究发现颗粒细胞的增殖可影响卵泡的发育,而颗粒细胞的凋亡会导致卵泡的闭锁,但其背后的潜在机制仍有待深入探究。本文探讨了颗粒细胞在凋亡、自噬、铁死亡、焦亡以及坏死性凋亡等多个方面的作用,为揭示卵泡闭锁的复杂机制提供新的视角和思路。
中图分类号:
赵顺然, 付桂鑫, 庞钊琪, 夏威, 李俊杰, 陶晨雨. 猪颗粒细胞在卵泡闭锁中的作用机制研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2537-2545.
ZHAO Shunran, FU Guixin, PANG Zhaoqi, XIA Wei, LI Junjie, TAO Chenyu. Research Progress on the Mechanism of Porcine Granulosa Cells in Follicular Atresia[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2537-2545.
表 1
部分调控颗粒细胞引起闭锁卵泡的基因/蛋白/非编码RNA"
基因/蛋白/非编码RNA Gene/protein/noncoding RNA | 作用机制 Mechanism of action | 类型 Type | 参考文献 references |
BIMEL | 氧化应激激活JNK上调p-BimEL-T112水平促进GC细胞凋亡 | 凋亡 | Yang等[ |
VEGFA | miR-361-5p抑制VEGFA基因3′UTR促进GC细胞凋亡 | 凋亡 | Ma等[ |
miR-23a | miR-23a受到MEIS1的调节,控制FOXO1的表达促进细胞凋亡 | 凋亡 | Wang等[ |
miR-146b | miR-146b抑制CYP19A1表达 | 激素 | Li等[ |
miR-365-3p | miR-365-3p促进GC凋亡并可以调控CYP11A1表达 | 凋亡、激素 | Wang等[ |
circSLC41A1 | circSLC41A1与miR-9820-5p结合下调SRSF1表达,促进GC凋亡 | 凋亡 | Guo等[ |
circINHA-001 | circINHA-001与miR-214-5p、miR-7144-3p miR-9830-5p结合下调INHBA表达,增加抑制素表达,促进GC凋亡 | 凋亡 | Ma等[ |
lncRNA-NORSF | lncRNA-NORSF通过调控miR-339降低CYP19A1表达,并与miR-126相互作用,抑制TGFBR2表达,促进GC凋亡 | 凋亡、激素 | Wang等[ |
ULK1 | ULK1的m6A修饰降低而增加其表达,促进自噬发生 | 自噬 | Li等[ |
tRF-1:30-Gly-GCC-2 | tRF-1:30-Gly-GCC-2通过抑制MAPK1信号通路抑制颗粒细胞增殖并促进铁死亡 | 铁死亡 | Pan等[ |
ZBP1、RIPK3和RIPK1 | ZBP1、RIPK3和RIPK1组成的PANoptosome复合物导致闭锁卵泡GC的坏死性凋亡与焦亡是 | 坏死性凋亡、焦亡 | Wu等[ |
1 |
郭亚军, 柳苗苗, 付德海, 等. 藏绵羊卵巢组织学及卵泡超微形态的观察[J]. 畜牧兽医学报, 2021, 52 (2): 389- 398.
doi: 10.11843/j.issn.0366-6964.2021.02.011 |
GUO Y J , LIU M M , FU D H , et al. Observation of ovary histology and ultrastructure of follicles in Tibetan sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (2): 389- 398.
doi: 10.11843/j.issn.0366-6964.2021.02.011 |
|
2 | MARCOZZI S , ROSSI V , SALUSTRI A , et al. Programmed cell death in the human ovary[J]. Minerva Ginecol, 2018, 70 (5): 549- 560. |
3 |
梁学超, 蒋明, 罗玉茹, 等. 猪卵巢发育的组织学变化及卵泡闭锁规律研究[J]. 畜牧兽医学报, 2017, 48 (10): 1863- 1870.
doi: 10.11843/j.issn.0366-6964.2017.10.009 |
LIANG X C , JIANG M , LUO Y R , et al. Study on histology and patterns of follicular atresia during ovarian development in pig[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (10): 1863- 1870.
doi: 10.11843/j.issn.0366-6964.2017.10.009 |
|
4 |
DONG M , OUYANG Y , GAO S , et al. Protein phosphatase 4 maintains the survival of primordial follicles by regulating autophagy in oocytes[J]. Cell Death Dis, 2024, 15 (9): 658.
doi: 10.1038/s41419-024-07051-4 |
5 |
ZHANG X , TAO Q , SHANG J , et al. miR-26a promotes apoptosis of porcine granulosa cells by targeting the 3beta-hydroxysteroid-Delta24-reductase gene[J]. Asian-Australas J Anim Sci, 2020, 33 (4): 547- 555.
doi: 10.5713/ajas.19.0173 |
6 |
YANG F , CHEN Y , LIU Q , et al. Dynamics and regulations of BimEL Ser65 and Thr112 phosphorylation in porcine granulosa cells during follicular atresia[J]. Cells, 2020, 9 (2): 402.
doi: 10.3390/cells9020402 |
7 |
LIU J , NING C , ZHANG J , et al. Comparative miRNA expression profile analysis of porcine ovarian follicles: new insights into the initiation mechanism of follicular atresia[J]. Front Genet, 2023, 14, 1338411.
doi: 10.3389/fgene.2023.1338411 |
8 |
LI Z , RUAN Z , FENG Y , et al. METTL3-mediated m6A methylation regulates granulosa cells autophagy during follicular atresia in pig ovaries[J]. Theriogenology, 2023, 201, 83- 94.
doi: 10.1016/j.theriogenology.2023.02.021 |
9 |
PAN Y , GAN M , WU S , et al. tRF-Gly-GCC in atretic follicles promotes ferroptosis in granulosa cells by down-regulating MAPK1[J]. Int J Mol Sci, 2024, 25 (16): 9061.
doi: 10.3390/ijms25169061 |
10 |
GAO X , ZHANG J , PAN Z , et al. The distribution and expression of vascular endothelial growth factor A (VEGFA) during follicular development and atresia in the pig[J]. Reprod Fertil Dev, 2020, 32 (3): 259- 266.
doi: 10.1071/RD18508 |
11 |
GRZESIAK M , SOCHA M , HRABIA A . Altered vitamin D metabolic system in follicular cysts of sows[J]. Reprod Domest Anim, 2021, 56 (1): 193- 196.
doi: 10.1111/rda.13867 |
12 |
CAO R , WU W J , ZHOU X L , et al. Expression and preliminary functional profiling of the let-7 family during porcine ovary follicle atresia[J]. Mol Cells, 2015, 38 (4): 304- 311.
doi: 10.14348/molcells.2015.2122 |
13 | 程颖, 魏全伟, 王喆, 等. 母猪健康和闭锁卵巢有腔卵泡的转录组测序比较分析[J]. 南京农业大学学报, 2023, 46 (3): 555- 563. |
CHENG Y , WEI Q W , WANG Z , et al. Transcriptome sequencing analysis of porcine granulosa cells in healthy and atretic follicles[J]. Journal of Nanjing Agricultural University, 2023, 46 (3): 555- 563. | |
14 |
ZHANG J , QIN X , WANG C , et al. Comparative transcriptome profile analysis of granulosa cells from porcine ovarian follicles during early atresia[J]. Anim Biotechnol, 2024, 35 (1): 2282090.
doi: 10.1080/10495398.2023.2282090 |
15 |
MO J , SUN L , CHENG J , et al. Non-targeted metabolomics reveals metabolic characteristics of porcine atretic follicles[J]. Front Vet Sci, 2021, 8, 679947.
doi: 10.3389/fvets.2021.679947 |
16 |
ELMORE S . Apoptosis: a review of programmed cell death[J]. Toxicol Pathol, 2007, 35 (4): 495- 516.
doi: 10.1080/01926230701320337 |
17 |
FUCHS Y , STELLER H . Live to die another way: modes of programmed cell death and the signals emanating from dying cells[J]. Nat Rev Mol Cell Biol, 2015, 16 (6): 329- 344.
doi: 10.1038/nrm3999 |
18 | HAGAN M L , MANDER S , JOSEPH C , et al. Upregulation of the EGFR/MEK1/MAPK1/2 signaling axis as a mechanism of resistance to antiestrogen-induced BimEL dependent apoptosis in ER+ breast cancer cells[J]. Int J Oncol, 2023, 62 (2): 20. |
19 |
WANG Y , ZENG S . Melatonin promotes ubiquitination of phosphorylated pro-apoptotic protein Bcl-2-interacting mediator of cell death-extra long (Bim(EL)) in porcine granulosa cells[J]. Int J Mol Sci, 2018, 19 (11): 3431.
doi: 10.3390/ijms19113431 |
20 |
REITER R J , MAYO J C , TAN D , et al. Melatonin as an antioxidant: under promises but over delivers[J]. J Pineal Res, 2016, 61 (3): 253- 278.
doi: 10.1111/jpi.12360 |
21 |
ZHUO Y , CAO M , GONG Y , et al. Gut microbial metabolism of dietary fibre protects against high energy feeding induced ovarian follicular atresia in a pig model[J]. Bri J Nutr, 2021, 125 (1): 38- 49.
doi: 10.1017/S0007114520002378 |
22 | MELINCOVICI C S , BOSCA A B , SUSMAN S , et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59 (2): 455- 467. |
23 |
DAI W , YANG H , XU B , et al. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) alleviate excessive autophagy of ovarian granular cells through VEGFA/PI3K/AKT/mTOR pathway in premature ovarian failure rat model[J]. J Ovarian Res, 2023, 16 (1): 198.
doi: 10.1186/s13048-023-01278-z |
24 |
ZHAO Y , WANG J , QIN W , et al. Dehydroepiandrosterone promotes ovarian angiogenesis and improves ovarian function in a rat model of premature ovarian insufficiency by up-regulating HIF-1alpha/VEGF signalling[J]. Reprod Biomed Online, 2024, 49 (3): 103914.
doi: 10.1016/j.rbmo.2024.103914 |
25 |
SHIMIZU T , JIANG J , SASADA H , et al. Changes of messenger RNA expression of angiogenic factors and related receptors during follicular development in gilts[J]. Biol Reprod, 2002, 67 (6): 1846- 1852.
doi: 10.1095/biolreprod.102.006734 |
26 |
MA M , ZHANG J , GAO X , et al. miR-361-5p mediates SMAD4 to promote porcine granulosa cell apoptosis through VEGFA[J]. Biomolecules, 2020, 10 (9): 1281.
doi: 10.3390/biom10091281 |
27 | MATTICK J S , MAKUNIN I V . Non-coding RNA[J]. Hum Mol Genet, 2006, 15 Spec No 1, R17- R29. |
28 |
DAI L , TSAI-MORRIS C , SATO H , et al. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development[J]. J Biol Chem, 2011, 286 (52): 44306- 44318.
doi: 10.1074/jbc.M111.282756 |
29 |
WANG S , WANG Y , CHEN Y , et al. MEIS1 is a common transcription repressor of the miR-23a and NORHA axis in granulosa cells[J]. Int J Mol Sci, 2023, 24 (4): 3589.
doi: 10.3390/ijms24043589 |
30 |
LIU S , CHEN J , LIU M , et al. miR-107 suppresses porcine granulosa cell proliferation and estradiol synthesis while promoting apoptosis via targeting PTGS2[J]. Theriogenology, 2025, 238, 117367.
doi: 10.1016/j.theriogenology.2025.117367 |
31 |
NEUNZIG J , BERNHARDT R . Effect of sulfonated steroids on steroidogenic cytochrome P450-dependent steroid hydroxylases[J]. J Steroid Biochem Mol Biol, 2018, 179, 3- 7.
doi: 10.1016/j.jsbmb.2017.07.004 |
32 |
WANG M , RAMIREZ J , HAN J , et al. The steroidogenic enzyme Cyp11a1 is essential for development of peanut-induced intestinal anaphylaxis[J]. J Allergy Clin Immunol, 2013, 132 (5): 1174- 1183.
doi: 10.1016/j.jaci.2013.05.027 |
33 |
TIAN J , QIN P , XU T , et al. Chaigui granule exerts anti-depressant effects by regulating the synthesis of Estradiol and the downstream of CYP19A1-E2-ERKs signaling pathway in CUMS-induced depressed rats[J]. Front Pharmacol, 2022, 13, 1005438.
doi: 10.3389/fphar.2022.1005438 |
34 |
LI Q , DU X , LIU L , et al. Upregulation of miR-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1[J]. Domest Anim Endocrinol, 2021, 74, 106509.
doi: 10.1016/j.domaniend.2020.106509 |
35 |
WANG M , WANG Y , YAO W , et al. lnc2300 is a cis-acting long noncoding RNA of CYP11A1 in ovarian granulosa cells[J]. J Cell Physiol, 2022, 237 (11): 4238- 4250.
doi: 10.1002/jcp.30872 |
36 |
LI X , YANG L , CHEN L . The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 2018, 71 (3): 428- 442.
doi: 10.1016/j.molcel.2018.06.034 |
37 |
FU Y , JIANG H , LIU J , et al. Genome-wide analysis of circular RNAs in bovine cumulus cells treated with BMP15 and GDF9[J]. Sci Rep, 2018, 8 (1): 7944.
doi: 10.1038/s41598-018-26157-2 |
38 |
MENG L , TEERDS K , TAO J , et al. Characteristics of circular RNA expression profiles of porcine granulosa cells in healthy and atretic antral follicles[J]. Int J Mol Sci, 2020, 21 (15): 5217.
doi: 10.3390/ijms21155217 |
39 |
GUO T Y , HUANG L , YAO W , et al. The potential biological functions of circular RNAs during the initiation of atresia in pig follicles[J]. Domest Anim Endocrinol, 2020, 72, 106401.
doi: 10.1016/j.domaniend.2019.106401 |
40 |
WANG H , ZHANG Y , ZHANG J , et al. circSLC41A1 resists porcine granulosa cell apoptosis and follicular atresia by promoting SRSF1 through miR-9820-5p sponging[J]. Int J Mol Sci, 2022, 23 (3): 1509.
doi: 10.3390/ijms23031509 |
41 |
MA M , WANG H , ZHANG Y , et al. circRNA-mediated inhibin-activin balance regulation in ovarian granulosa cell apoptosis and follicular atresia[J]. Int J Mol Sci, 2021, 22 (17): 9113.
doi: 10.3390/ijms22179113 |
42 | 王彩霞, 秦鑫鑫, 李文洁, 等. 猪卵巢颗粒细胞中circINHBA的鉴定及与细胞凋亡的相关性分析[J]. 畜牧与兽医, 2024, 56 (10): 14- 20. |
WANG C X , QIN X X , LI W J , et al. Identification of circINHBA and its effect on follicular granulosa cell apoptosis in pigs[J]. Animal Husbandry and Veterinary Medicine, 2024, 56 (10): 14- 20. | |
43 |
KOPP F , MENDELL J T . Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172 (3): 393- 407.
doi: 10.1016/j.cell.2018.01.011 |
44 |
MENG L , ZHAO K , WANG C C , et al. Characterization of long non-coding RNA profiles in porcine granulosa cells of healthy and atretic antral follicles: Implications for a potential role in apoptosis[J]. Int J Mol Sci, 2021, 22 (5): 2677.
doi: 10.3390/ijms22052677 |
45 |
WANG M , WANG Y , YANG L , et al. Nuclear lncRNA NORSF reduces E2 release in granulosa cells by sponging the endogenous small activating RNA miR-339[J]. BMC Biol, 2023, 21 (1): 221.
doi: 10.1186/s12915-023-01731-x |
46 |
WANG M , SHENG W , ZHANG J , et al. A mutation losing an RBP-binding site in the lncRNA NORSF transcript influences granulosa cell apoptosis and sow fertility[J]. Adv Sci (Weinh), 2024, 11 (40): e2404747.
doi: 10.1002/advs.202404747 |
47 |
DU X , LIU L , LI Q , et al. NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death[J]. Commun Biol, 2020, 3 (1): 131.
doi: 10.1038/s42003-020-0864-x |
48 |
DU X , LI Q , YANG L , et al. Transcriptomic data analyses reveal that sow fertility-related lincRNA NORFA is essential for the normal states and functions of granulosa cells[J]. Front Cell Dev Biol, 2021, 9, 610553.
doi: 10.3389/fcell.2021.610553 |
49 |
GUO Z , ZENG Q , LI Q , et al. LncRNA NORFA promotes the synthesis of estradiol and inhibits the apoptosis of sow ovarian granulosa cells through SF-1/CYP11A1 axis[J]. Biol Direct, 2024, 19 (1): 107.
doi: 10.1186/s13062-024-00563-1 |
50 |
LOOS B , ENGELBRECHT A , LOCKSHIN R A , et al. The variability of autophagy and cell death susceptibility: Unanswered questions[J]. Autophagy, 2013, 9 (9): 1270- 1285.
doi: 10.4161/auto.25560 |
51 | MENG L , JAN S Z , HAMER G , et al. Preantral follicular atresia occurs mainly through autophagy, while antral follicles degenerate mostly through apoptosis[J]. Biol Reprod, 2018, 99 (4): 853- 863. |
52 | ZHENG Y , MA L , LIU N , et al. Autophagy and apoptosis of porcine ovarian granulosa cells during follicular development[J]. Animals (Basel), 2019, 9 (12): 1111. |
53 |
GIOIA L , FESTUCCIA C , COLAPIETRO A , et al. Abundances of autophagy-related protein LC3B in granulosa cells, cumulus cells, and oocytes during atresia of pig antral follicles[J]. Anim Reprod Sci, 2019, 211, 106225.
doi: 10.1016/j.anireprosci.2019.106225 |
54 |
CAO M , CHEN X , WANG Y , et al. The reduction of the m6A methyltransferase METTL3 in granulosa cells is related to the follicular cysts in pigs[J]. J Cell Physiol, 2024, 239 (6): e31289.
doi: 10.1002/jcp.31289 |
55 |
LIU G , WANG Y , ZHENG Y , et al. PHB2 binds to ERbeta to induce the autophagy of porcine ovarian granulosa cells through mTOR phosphorylation[J]. Theriogenology, 2023, 198, 114- 122.
doi: 10.1016/j.theriogenology.2022.12.031 |
56 |
ZHANG X , LI M , HUANG M , et al. Effect of RFRP-3, the mammalian ortholog of GnIH, on apoptosis and autophagy in porcine ovarian granulosa cells via the p38MAPK pathway[J]. Theriogenology, 2022, 180, 137- 145.
doi: 10.1016/j.theriogenology.2021.12.024 |
57 |
WANG S , YAO Q , ZHAO F , et al. 1α, 25(OH)2 D3 promotes the autophagy of porcine ovarian granulosa cells as a protective mechanism against ROS through the BNIP3/PINK1 pathway[J]. Int J Mol Sci, 2023, 24 (5): 4364.
doi: 10.3390/ijms24054364 |
58 |
XING W , WANG B , LI M , et al. The dual role of ATG7: Regulation of autophagy and apoptosis in porcine ovarian follicular granulosa cells[J]. Anim Reprod Sci, 2024, 270, 107601.
doi: 10.1016/j.anireprosci.2024.107601 |
59 |
GAO W , WANG X , ZHOU Y , et al. Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy[J]. Signal Transduct Target Ther, 2022, 7 (1): 196.
doi: 10.1038/s41392-022-01046-3 |
60 |
WU X , LI Y , ZHANG S , et al. Ferroptosis as a novel therapeutic target for cardiovascular disease[J]. Theranostics, 2021, 11 (7): 3052- 3059.
doi: 10.7150/thno.54113 |
61 |
WANG D , WAN X . Progress in the study of molecular mechanisms of cell pyroptosis in tumor therapy[J]. Int Immunopharmacol, 2023, 118, 110143.
doi: 10.1016/j.intimp.2023.110143 |
62 |
WU H , HAN Y , LIU J , et al. The assembly and activation of the PANoptosome promote porcine granulosa cell programmed cell death during follicular atresia[J]. J Anim Sci Biotechnol, 2024, 15 (1): 147.
doi: 10.1186/s40104-024-01107-3 |
63 |
MENG L , WU Z , ZHAO K , et al. Transcriptome analysis of porcine granulosa cells in healthy and atretic follicles: Role of steroidogenesis and oxidative stress[J]. Antioxidants (Basel), 2020, 10 (1): 22.
doi: 10.3390/antiox10010022 |
64 |
LIU S , JIA Y , MENG S , et al. Mechanisms of and potential medications for oxidative stress in ovarian granulosa cells: A review[J]. Int J Mol Sci, 2023, 24 (11): 9205.
doi: 10.3390/ijms24119205 |
65 |
KONG C , SU J , WANG Q , et al. Signaling pathways of Periplaneta americana peptide resist H2O2-induced apoptosis in pig-ovary granulosa cells through FoxO1[J]. Theriogenology, 2022, 183, 108- 119.
doi: 10.1016/j.theriogenology.2022.02.004 |
66 | ZHANG J , REN Q , CHEN J , et al. Autophagy contributes to oxidative stress-induced apoptosis in porcine granulosa cells[J]. Reprod Sci, 2021, 28 (8): 2147- 2160. |
67 | SHEN L , LIU J , LUO A , et al. The stromal microenvironment and ovarian aging: mechanisms and therapeutic opportunities[J]. J Ovarian Res, 2023, 16 (1): 237. |
68 | LI C , ZHOU J , LIU Z , et al. FSH prevents porcine granulosa cells from hypoxia-induced apoptosis via activating mitophagy through the HIF-1alpha-PINK1-Parkin pathway[J]. FASEB J, 2020, 34 (3): 3631- 3645. |
69 | ZHANG X , CHEN Y , LI H , et al. Sulforaphane acts through NFE2L2 to prevent hypoxia-induced apoptosis in porcine granulosa cells via activating antioxidant defenses and mitophagy[J]. J Agric Food Chem, 2022, 70 (26): 8097- 8110. |
70 | LIU Z , LI C , WU G , et al. Involvement of JNK/FOXO1 pathway in apoptosis induced by severe hypoxia in porcine granulosa cells[J]. Theriogenology, 2020, 154, 120- 127. |
71 | TAO J , ZHANG X , ZHOU J , et al. Melatonin alleviates hypoxia-induced apoptosis of granulosa cells by reducing ROS and activating MTNR1B-PKA-Caspase8/9 pathway[J]. Antioxidants (Basel), 2021, 10 (2): 184. |
[1] | 王运珂, 王娜, 岳珂, 何坤淼, 张兴, 刘垚, 张改平. 体外对猪流行性腹泻病毒复制具有抑制效应的物质[J]. 畜牧兽医学报, 2025, 56(6): 2577-2589. |
[2] | 吴超, 明文含, 卢姝婉, 杨彩梅, 刘金松, 马翔, 张瑞强. 猪流行性腹泻病毒的天然免疫逃避机制及其防控研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2590-2599. |
[3] | 周敏, 汤德元, 曾智勇, 王彬, 黄涛, 胡雯雯, 毛茵茗, 周飘, 何松. 猪流行性腹泻病毒蛋白与宿主蛋白相互作用的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2600-2612. |
[4] | 吴桐, 王楠, 邢雨欣, 张犇, 胡潘阳, 张海涛, 朱玉峰, 吴相哲, 杨峰, 李秀领, 王克君, 韩雪蕾, 李新建, 余彤, 柏峻, 李改英, 乔瑞敏. 豫南黑猪背膘厚度与全基因组拷贝数变异的关联研究[J]. 畜牧兽医学报, 2025, 56(6): 2639-2648. |
[5] | 柳思奇, 杨榛, 杨雅楠, 蔡原, 赵生国. 干扰AdiopR2对藏猪皮下腹股沟脂肪细胞产热的影响[J]. 畜牧兽医学报, 2025, 56(6): 2649-2660. |
[6] | 武建亮, 苏洋, 毛瑞涵, 周磊, 闫田田, 李智, 刘剑锋. 猪全基因组低密度SNP芯片的设计与效果评价[J]. 畜牧兽医学报, 2025, 56(6): 2733-2740. |
[7] | 朱爱文, 王健, 朱戈辉, 刘海霞, 平措班旦, 王军, 德庆卓嘎, 闫伟, 韩大勇. 玉米赤霉烯酮致彭波半细毛羊睾丸支持细胞增殖凋亡、氧化应激及NAC保护机制[J]. 畜牧兽医学报, 2025, 56(6): 2752-2764. |
[8] | 陈志华, 王琪, 张进, 杨连弟, 杨天庆, 王敬, 龙定彪, 黄金秀, 黄文明. 饲粮净能和赖氨酸水平对荣昌母猪妊娠后期繁殖性能、血清激素、泌乳性能及粪便菌群多样性的影响[J]. 畜牧兽医学报, 2025, 56(6): 2801-2815. |
[9] | 卢会鹏, 曹世诺, 吴植, 陈长春, 陈文玉, 成玉婷, 周晓慧, 孙怀昌, 朱善元. 表达非洲猪瘟病毒基因B602L-B646L的重组病毒免疫原性的初步分析[J]. 畜牧兽医学报, 2025, 56(6): 2816-2825. |
[10] | 李程程, 赵永祥, 曹秋霞, 宋旭, 李宇鹏, 范宝超, 郭容利, 徐业芬, 李彬. 紧密连接蛋白CLDN4促进猪流行性腹泻病毒感染[J]. 畜牧兽医学报, 2025, 56(6): 2826-2835. |
[11] | 国德洋, 胡慧, 郑雪莉, 姜艳芬. 猪防御素-1的原核表达及抑菌效应分析[J]. 畜牧兽医学报, 2025, 56(6): 2836-2846. |
[12] | 王妍, 黄焮榆, 吴桂莹, 吴婉萍, 吕其壮. 2017—2023年我国猪圆环病毒3型的遗传变异分析[J]. 畜牧兽医学报, 2025, 56(6): 2857-2867. |
[13] | 陈长春, 吴植, 任冠宇, 陈文玉, 曹世诺, 朱睿, 张力, 成玉婷, 朱善元, 卢会鹏. 表达非洲猪瘟pp62与Hsp70蛋白重组腺病毒对小鼠的免疫原性分析[J]. 畜牧兽医学报, 2025, 56(6): 3027-3031. |
[14] | 陈云龙, 樊港, 樊心怡, 郭永超, 张鑫淼, 王妍, 张仕强. 一株具有多位点核苷酸替换的新型猪圆环病毒2d亚型毒株的分离与鉴定[J]. 畜牧兽医学报, 2025, 56(6): 3032-3040. |
[15] | 罗嘉, 蒲强, 柴捷, 陈力, 王金勇. 母猪子宫内热应激的生物学效应及遗传机制分析[J]. 畜牧兽医学报, 2025, 56(5): 2004-2014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||