畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2600-2612.doi: 10.11843/j.issn.0366-6964.2025.06.007
周敏(), 汤德元*(
), 曾智勇, 王彬, 黄涛, 胡雯雯, 毛茵茗, 周飘, 何松
收稿日期:
2024-06-04
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
汤德元
E-mail:2962414648@qq.com;tdyuan@163.com
作者简介:
周敏(2001-),男,四川渠县人,硕士生,主要从事动物传染病病原分子生物学研究,E-mail:2962414648@qq.com
基金资助:
ZHOU Min(), TANG Deyuan*(
), ZENG Zhiyong, WANG Bin, HUANG Tao, HU Wenwen, MAO Yinming, ZHOU Piao, HE Song
Received:
2024-06-04
Online:
2025-06-23
Published:
2025-06-25
Contact:
TANG Deyuan
E-mail:2962414648@qq.com;tdyuan@163.com
摘要:
猪流行性腹泻(porcine epidemic diarrhea,PED)是由猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)引起的高度接触性传染病,主要症状为呕吐、水样腹泻、脱水和体重下降,哺乳仔猪感染后死亡率可高达100%,给全球养猪业带来了巨大的经济损失。目前尚无有效的治疗药物,且其疫苗也存在一定的局限性。在病毒感染过程中,病毒蛋白与宿主蛋白通过相互作用,一方面促进病毒逃避宿主先天免疫以完成其复制,另一方面调节宿主免疫反应以抑制病毒感染。因此,鉴定病毒蛋白与宿主蛋白相互作用对于了解宿主对病毒感染的防御和病毒性传染病的发病机制至关重要,从而发现新的抗病毒靶点。本文详细阐述了PEDV感染过程中的病毒蛋白与宿主蛋白的相互作用,总结了PEDV的致病机制,以期为设计有效的疫苗或药物来预防和控制PEDV的传播提供新思路。
中图分类号:
周敏, 汤德元, 曾智勇, 王彬, 黄涛, 胡雯雯, 毛茵茗, 周飘, 何松. 猪流行性腹泻病毒蛋白与宿主蛋白相互作用的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2600-2612.
ZHOU Min, TANG Deyuan, ZENG Zhiyong, WANG Bin, HUANG Tao, HU Wenwen, MAO Yinming, ZHOU Piao, HE Song. Research Progress on the Interaction between Porcine Epidemic Diarrhea Virus Proteins and Host Proteins[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2600-2612.
表 1
PEDV结构蛋白和辅助蛋白与宿主蛋白的相互作用"
分类 Classification | PEDV蛋白 PEDV proteins | 宿主蛋白 Host proteins | 生物学作用 The biological roles | 参考文献 References |
结构蛋白 Structural proteins | S | pAPN、SA、HS、DC-SIGN、 L-SIGN | 介导病毒的附着和内化 | [ |
DNAJA3 | 抑制PEDV的增殖 | [ | ||
HSPA5 | 通过内体/溶酶体途径参与PEDV的运输,促进其附着和内化 | [ | ||
E | IRF3 | 抑制RIG-Ⅰ介导的IFN-β和ISGs的产生 | [ | |
KPNA2 | 降解E蛋白,抑制PEDV的复制 | [ | ||
M | eIF3L、CDC42、Rab11A | eIF3L负调控PEDV复制 | [ | |
IRF7 | 抑制TBK1/IKKε诱导的IRF7磷酸化和 二聚化,下调IFN-Ⅰ的表达 | [ | ||
HSP70 | 利于PEDV蛋白表达和后代病毒粒子的产生 | [ | ||
S100A11、PPID | 两种蛋白抑制PEDV复制 | [ | ||
N | TBK1 | 阻断IRF3的磷酸化和核易位,从而抑制IRF3介导的IFN-Ⅰ的产生 | [ | |
NPM1 | 提高宿主细胞存活率以促进PEDV增殖 | [ | ||
P53 | 抑制cyclin A的表达水平,导致细胞周期阻滞在S期 | [ | ||
PABPC1 | 在转录和翻译水平上抑制PEDV的复制 | [ | ||
TRIM21 | 以蛋白酶体依赖方式靶向N蛋白的降解 | [ | ||
IRAV、RALY、PRPF19 | 募集E3泛素连接酶MARCH8促进N蛋白的泛素化和降解 | [ | ||
hnRNPK、PTBP1、FUBP3、TARDBP | 通过MARCH8-NDP52-自噬体途径降解N蛋白,并诱导IFN-Ⅰ的产生 | [ | ||
辅助蛋白 accessory protein | ORF3 | PDI | 触发内质网应激反应,并诱导自噬 | [ |
VPS36 | 降解ORF3进而抑制PEDV的复制 | [ |
表 2
PEDV非结构蛋白与宿主蛋白的相互作用"
PEDV非结构蛋白 PEDV nonstructural proteins | 宿主蛋白 Host proteins | 生物学作用 The biological roles | 参考文献 References |
Nsp2 | FBXW7 | 降解FBXW7从而拮抗宿主的抗病毒反应 | [ |
Nsp3 | RIG-Ⅰ、STING | 促进其去泛素化,以拮抗其介导的IFN-β的产生 | [ |
Nsp5 | NEMO | 在NEMO Q23处将其切割,以抑制RIG-Ⅰ/MDA5通路的激活,IFN-β的产生 | [ |
pGSDMD | 在pGSDMD Q193-G194处将其裂解,从而抑制焦亡 | [ | |
Nsp6 | GRAMD4 | 降解GRAMD4,拮抗GRAMD4加剧的细胞凋亡 | [ |
Nsp7 | MDA5 | 使MDA5失活,阻断MDA5介导的IFN-β产生 | [ |
STAT1、STAT2 | 抑制JAK-STAT介导的IFN信号转导和ISGs的产生 | [ | |
Nsp9 | HNRNPA3 | 增强SREBF1的转录活性, 从而增加细胞脂质积累,促进PEDV复制 | [ |
HIST2H2BE | 抑制内质网应激介导的细胞凋亡从而有利于病毒增殖 | [ | |
Nsp12 | RNF7 | RNF7负调控PEDV复制 | [ |
Nsp13 | HNRNPU | 降低IRF3的磷酸化和下游ISGs的表达,以抑制宿主抗病毒反应 | [ |
DNMT3b | 引起FcRn启动子的异常甲基化从而抑制FcRn的转录和翻译 | [ | |
Nsp14 | IKKα、IKKβ、p65 | 抑制NF-κB通路激活以及促炎细胞因子的早期产生 | [ |
Nsp15 | MAVS | 依赖于蛋白酶体系统降解MAVS,从而拮抗宿主抗病毒反应 | [ |
1 |
SUN R Q , CAI R J , CHEN Y Q , et al. Outbreak of porcine epidemic diarrhea in suckling piglets, China[J]. Emerg Infect Dis, 2012, 18 (1): 161- 163.
doi: 10.3201/eid1801.111259 |
2 |
WU Y , LI W , ZHOU Q F , et al. Characterization and pathogenicity of Vero cell-attenuated porcine epidemic diarrhea virus CT strain[J]. Virol J, 2019, 16 (1): 121.
doi: 10.1186/s12985-019-1232-7 |
3 | THOMAS J T , CHEN Q , GAUGER P C , et al. Effect of porcine epidemic diarrhea virus infectious doses on infection outcomes in naive conventional neonatal and weaned pigs[J]. PLoS One, 2015, 10 (10): e139266. |
4 |
LEE C . Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus[J]. Virol J, 2015, 12, 193.
doi: 10.1186/s12985-015-0421-2 |
5 |
CHEN J F , WANG C B , SHI H Y , et al. Molecular epidemiology of porcine epidemic diarrhea virus in China[J]. Arch Virol, 2010, 155 (9): 1471- 1476.
doi: 10.1007/s00705-010-0720-2 |
6 |
LIN C M , SAIF L J , MARTHALER D , et al. Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains[J]. Virus Res, 2016, 226, 20- 39.
doi: 10.1016/j.virusres.2016.05.023 |
7 |
MILLET J K , WHITTAKER G R . Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis[J]. Virus Res, 2015, 202, 120- 134.
doi: 10.1016/j.virusres.2014.11.021 |
8 |
KIRCHDOERFER R N , BHANDARI M , MARTINI O , et al. Structure and immune recognition of the porcine epidemic diarrhea virus spike protein[J]. Structure, 2021, 29 (4): 385- 392.e5.
doi: 10.1016/j.str.2020.12.003 |
9 |
LIN F , ZHANG H Y , LI L Q , et al. PEDV: Insights and advances into types, function, structure, and receptor recognition[J]. Viruses, 2022, 14 (8): 1744.
doi: 10.3390/v14081744 |
10 |
ZHENG J Y , GAO Q , XU J D , et al. DNAJA3 interacts with PEDV S1 protein and inhibits virus replication by affecting virus adsorption to host cells[J]. Viruses, 2022, 14 (11): 2413.
doi: 10.3390/v14112413 |
11 | ZHOU C J , LIU Y C , WEI Q , et al. HSPA5 promotes attachment and internalization of porcine epidemic diarrhea virus through interaction with the spike protein and the Endo-/Lysosomal pathway[J]. J Virol, 2023, 97 (6): e54923. |
12 | BRIAN D A , BARIC R S . Coronavirus genome structure and replication[J]. Curr Top Microbiol Immunol, 2005, 287, 1- 30. |
13 |
ORTEGO J , CERIANI J E , PATINO C , et al. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway[J]. Virology, 2007, 368 (2): 296- 308.
doi: 10.1016/j.virol.2007.05.032 |
14 |
ZHENG L , WANG X H , GUO D X , et al. Porcine epidemic diarrhea virus E protein suppresses RIG-Ⅰ signaling-mediated interferon-beta production[J]. Vet Microbiol, 2021, 254, 108994.
doi: 10.1016/j.vetmic.2021.108994 |
15 | GAO Q , WENG Z J , FENG Y Z , et al. KPNA2 suppresses porcine epidemic diarrhea virus replication by targeting and degrading virus envelope protein through selective autophagy[J]. J Virol, 2023, 97 (12): e11523. |
16 |
ARNDT A L , LARSON B J , HOGUE B G . A conserved domain in the coronavirus membrane protein tail is important for virus assembly[J]. J Virol, 2010, 84 (21): 11418- 11428.
doi: 10.1128/JVI.01131-10 |
17 |
XU X G , ZHANG H L , ZHANG Q , et al. Porcine epidemic diarrhea virus M protein blocks cell cycle progression at S-phase and its subcellular localization in the porcine intestinal epithelial cells[J]. Acta Virol, 2015, 59 (3): 265- 275.
doi: 10.4149/av_2015_03_265 |
18 |
ZHANG Q Z , SHI K C , YOO D W . Suppression of type Ⅰ interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1[J]. Virology, 2016, 489, 252- 268.
doi: 10.1016/j.virol.2015.12.010 |
19 |
SONG D , PARK B . Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines[J]. Virus Genes, 2012, 44 (2): 167- 175.
doi: 10.1007/s11262-012-0713-1 |
20 |
WANG R Y , YU R S , CHEN B Q , et al. Identification of host cell proteins that interact with the M protein of porcine epidemic diarrhea virus[J]. Vet Microbiol, 2020, 246, 108729.
doi: 10.1016/j.vetmic.2020.108729 |
21 |
LI S S , ZHU Z X , YANG F , et al. Porcine epidemic diarrhea virus membrane protein interacted with IRF7 to inhibit Type Ⅰ IFN production during viral infection[J]. J Immunol, 2021, 206 (12): 2909- 2923.
doi: 10.4049/jimmunol.2001186 |
22 |
ROSENZWEIG R , NILLEGODA N B , MAYER M P , et al. The Hsp70 chaperone network[J]. Nat Rev Mol Cell Biol, 2019, 20 (11): 665- 680.
doi: 10.1038/s41580-019-0133-3 |
23 |
PARK J Y , RYU J , PARK J E , et al. Heat shock protein 70 could enhance porcine epidemic diarrhoea virus replication by interacting with membrane proteins[J]. Vet Res, 2021, 52 (1): 138.
doi: 10.1186/s13567-021-01006-9 |
24 |
DONG S J , WANG R Y , YU R S , et al. Identification of cellular proteins interacting with PEDV M protein through APEX2 labeling[J]. J Proteomics, 2021, 240, 104191.
doi: 10.1016/j.jprot.2021.104191 |
25 |
MCBRIDE R , VAN ZYL M , FIELDING B C . The coronavirus nucleocapsid is a multifunctional protein[J]. Viruses, 2014, 6 (8): 2991- 3018.
doi: 10.3390/v6082991 |
26 |
GRUNEWALD M E , FEHR A R , ATHMER J , et al. The coronavirus nucleocapsid protein is ADP-ribosylated[J]. Virology, 2018, 517, 62- 68.
doi: 10.1016/j.virol.2017.11.020 |
27 |
DING Z , FANG L R , JING H Y , et al. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1[J]. J Virol, 2014, 88 (16): 8936- 8945.
doi: 10.1128/JVI.00700-14 |
28 |
SHI D , SHI H Y , SUN D B , et al. Nucleocapsid interacts with NPM1 and protects it from proteolytic cleavage, enhancing cell survival, and is involved in PEDV growth[J]. Sci Rep, 2017, 7, 39700.
doi: 10.1038/srep39700 |
29 |
LI X L , ZHOU J B , CHEN Z R , et al. P53 mutations in colorectal cancer-molecular pathogenesis and pharmacological reactivation[J]. World J Gastroenterol, 2015, 21 (1): 84- 93.
doi: 10.3748/wjg.v21.i1.84 |
30 | SU M J , SHI D , XING X X , et al. Coronavirus porcine epidemic diarrhea virus nucleocapsid protein interacts with p53 to induce cell cycle arrest in S-phase and promotes viral replication[J]. J Virol, 2021, 95 (16): e18721. |
31 |
WU T T , WEI X N , ZHENG S M , et al. Poly(A)-binding protein cytoplasmic 1 inhibits porcine epidemic diarrhea virus replication by interacting with nucleocapsid protein[J]. Viruses, 2022, 14 (6): 1196.
doi: 10.3390/v14061196 |
32 |
WANG H , CHEN X Y , KONG N , et al. TRIM21 inhibits porcine epidemic diarrhea virus proliferation by proteasomal degradation of the nucleocapsid protein[J]. Arch Virol, 2021, 166 (7): 1903- 1911.
doi: 10.1007/s00705-021-05080-4 |
33 |
WANG H , KONG N , JIAO Y J , et al. EGR1 suppresses porcine epidemic diarrhea virus replication by regulating IRAV to degrade viral nucleocapsid protein[J]. J Virol, 2021, 95 (19): e0064521.
doi: 10.1128/JVI.00645-21 |
34 |
QIN W , KONG N , ZHANG Y , et al. Nuclear ribonucleoprotein RALY targets virus nucleocapsid protein and induces autophagy to restrict porcine epidemic diarrhea virus replication[J]. J Biol Chem, 2022, 298 (8): 102190.
doi: 10.1016/j.jbc.2022.102190 |
35 |
ZHAI X , KONG N , WANG C , et al. PRPF19 limits porcine epidemic diarrhea virus replication through targeting and degrading viral capsid protein[J]. J Virol, 2023, 97 (1): e0161422.
doi: 10.1128/jvi.01614-22 |
36 |
QIN W , KONG N , WANG C , et al. hnRNP K degrades viral nucleocapsid protein and induces type Ⅰ IFN production to inhibit porcine epidemic diarrhea virus replication[J]. J Virol, 2022, 96 (22): e0155522.
doi: 10.1128/jvi.01555-22 |
37 |
QIN W , KONG N , ZHANG Y , et al. PTBP1 suppresses porcine epidemic diarrhea virus replication via inducing protein degradation and IFN production[J]. J Biol Chem, 2023, 299 (8): 104987.
doi: 10.1016/j.jbc.2023.104987 |
38 |
DONG S , KONG N , WANG C , et al. FUBP3 degrades the porcine epidemic diarrhea virus nucleocapsid protein and induces the production of type Ⅰ interferon[J]. J Virol, 2022, 96 (13): e0061822.
doi: 10.1128/jvi.00618-22 |
39 |
DONG S , KONG N , ZHANG Y , et al. TARDBP inhibits porcine epidemic diarrhea virus replication through degrading viral nucleocapsid protein and activating type Ⅰ interferon signaling[J]. J Virol, 2022, 96 (10): e0007022.
doi: 10.1128/jvi.00070-22 |
40 | BEALL A , YOUNT B , LIN C M , et al. Characterization of a pathogenic full-length cDNA clone and transmission model for porcine epidemic diarrhea virus strain PC22A[J]. mBio, 2016, 7 (1): e01451- 15. |
41 |
LEE S , SON K Y , NOH Y H , et al. Genetic characteristics, pathogenicity, and immunogenicity associated with cell adaptation of a virulent genotype 2b porcine epidemic diarrhea virus[J]. Vet Microbiol, 2017, 207, 248- 258.
doi: 10.1016/j.vetmic.2017.06.019 |
42 |
SUN M , MA J , YU Z , et al. Identification of two mutation sites in spike and envelope proteins mediating optimal cellular infection of porcine epidemic diarrhea virus from different pathways[J]. Vet Res, 2017, 48 (1): 44.
doi: 10.1186/s13567-017-0449-y |
43 |
ZOU D , XU J , DUAN X , et al. Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic reticulum stress to facilitate autophagy[J]. Vet Microbiol, 2019, 235, 209- 219.
doi: 10.1016/j.vetmic.2019.07.005 |
44 |
KAEWBORISUTH C , YINGCHUTRAKUL Y , ROYTRAKUL S , et al. Porcine epidemic diarrhea virus (PEDV) ORF3 interactome reveals inhibition of virus replication by cellular VPS36 protein[J]. Viruses, 2019, 11 (4): 382.
doi: 10.3390/v11040382 |
45 |
WU Z , CHENG L , XU J , et al. The accessory protein ORF3 of porcine epidemic diarrhea virus inhibits cellular interleukin-6 and interleukin-8 productions by blocking the nuclear factor-kappaB p65 activation[J]. Vet Microbiol, 2020, 251, 108892.
doi: 10.1016/j.vetmic.2020.108892 |
46 |
GUPTA M , AZUMAYA C M , MORITZ M , et al. CryoEM and AI reveal a structure of SARS-CoV-2 Nsp2, a multifunctional protein involved in key host processes[J]. bioRxiv [Preprint], 2021,
doi: 10.1101/2021.05.10.443524 |
47 |
YEH C H , BELLON M , NICOT C . FBXW7: a critical tumor suppressor of human cancers[J]. Mol Cancer, 2018, 17 (1): 115.
doi: 10.1186/s12943-018-0857-2 |
48 |
LI M , WU Y , CHEN J , et al. Innate immune evasion of porcine epidemic diarrhea virus through degradation of the FBXW7 protein via the Ubiquitin-proteasome pathway[J]. J Virol, 2022, 96 (5): e0088921.
doi: 10.1128/jvi.00889-21 |
49 |
YE G , DENG F , SHEN Z , et al. Structural basis for the dimerization and substrate recognition specificity of porcine epidemic diarrhea virus 3C-like protease[J]. Virology, 2016, 494, 225- 235.
doi: 10.1016/j.virol.2016.04.018 |
50 |
WANG D , FANG L , SHI Y , et al. Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO[J]. J Virol, 2016, 90 (4): 2090- 2101.
doi: 10.1128/JVI.02514-15 |
51 |
陈松彪, 刘飞飞, 尚珂, 等. 病毒感染与宿主抗感染免疫之间"博弈"——凋亡、坏死和焦亡分子机制[J]. 畜牧兽医学报, 2024, 55 (1): 59- 70.
doi: 10.11843/j.issn.0366-6964.2024.01.007 |
CHEN S B , LIU F F , SHANG K , et al. Molecular mechanism of the "battle" between virus infection and host antiviral immunity-apoptosis, necroptosis and pyroptosis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (1): 59- 70.
doi: 10.11843/j.issn.0366-6964.2024.01.007 |
|
52 |
KAYAGAKI N , STOWE I B , LEE B L , et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature, 2015, 526 (7575): 666- 671.
doi: 10.1038/nature15541 |
53 |
SHI F , LV Q , WANG T , et al. Coronaviruses Nsp5 antagonizes porcine gasdermin D-mediated pyroptosis by cleaving pore-forming p30 fragment[J]. mBio, 2022, 13 (1): e0273921.
doi: 10.1128/mbio.02739-21 |
54 | ANGELINI M M , AKHLAGHPOUR M , NEUMAN B W , et al. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles[J]. mBio, 2013, 4 (4): e00524- 13. |
55 |
JOHN K , ALLA V , MEIER C , et al. GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria[J]. Cell Death Differ, 2011, 18 (5): 874- 886.
doi: 10.1038/cdd.2010.153 |
56 |
XU X , LIU Y , GAO J , et al. GRAMD4 regulates PEDV-induced cell apoptosis inhibiting virus replication via the endoplasmic reticulum stress pathway[J]. Vet Microbiol, 2023, 279, 109666.
doi: 10.1016/j.vetmic.2023.109666 |
57 |
LIN H , LI B , LIU M , et al. Nonstructural protein 6 of porcine epidemic diarrhea virus induces autophagy to promote viral replication via the PI3K/Akt/mTOR axis[J]. Vet Microbiol, 2020, 244, 108684.
doi: 10.1016/j.vetmic.2020.108684 |
58 |
PETI W , JOHNSON M A , HERRMANN T , et al. Structural genomics of the severe acute respiratory syndrome coronavirus: nuclear magnetic resonance structure of the protein nsP7[J]. J Virol, 2005, 79 (20): 12905- 12913.
doi: 10.1128/JVI.79.20.12905-12913.2005 |
59 |
JIN R , CAO X , LU M , et al. The intersection molecule MDA5 in Cancer and COVID-19[J]. Front Immunol, 2022, 13, 963051.
doi: 10.3389/fimmu.2022.963051 |
60 |
ZHANG J , FANG P , REN J , et al. Porcine epidemic diarrhea virus nsp7 inhibits MDA5 dephosphorylation to antagonize type Ⅰ interferon production[J]. Microbiol Spectr, 2023, 11 (2): e0501722.
doi: 10.1128/spectrum.05017-22 |
61 |
ZHANG J , YUAN S , PENG Q , et al. Porcine epidemic diarrhea virus nsp7 inhibits interferon-induced JAK-STAT signaling through sequestering the interaction between KPNA1 and STAT1[J]. J Virol, 2022, 96 (9): e0040022.
doi: 10.1128/jvi.00400-22 |
62 | ZENG Z , DENG F , SHI K , et al. Dimerization of coronavirus nsp9 with diverse modes enhances its nucleic acid binding affinity[J]. J Virol, 2018, 92 (17): e00692- 18. |
63 |
HEATON N S , RANDALL G . Multifaceted roles for lipids in viral infection[J]. Trends Microbiol, 2011, 19 (7): 368- 375.
doi: 10.1016/j.tim.2011.03.007 |
64 |
SHI X , ZHANG Q , YANG N , et al. PEDV inhibits HNRNPA3 expression by miR-218-5p to enhance cellular lipid accumulation and promote viral replication[J]. mBio, 2024, 15 (2): e0319723.
doi: 10.1128/mbio.03197-23 |
65 |
XU X , MA M , SHI X , et al. The novel Nsp9-interacting host factor H2BE promotes PEDV replication by inhibiting endoplasmic reticulum stress-mediated apoptosis[J]. Vet Res, 2023, 54 (1): 27.
doi: 10.1186/s13567-023-01158-w |
66 |
SUN Y , LI H . Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase[J]. Protein Cell, 2013, 4 (2): 103- 116.
doi: 10.1007/s13238-012-2105-7 |
67 | 赵雄伟, 李慧春, 陈鹏飞, 等. 猪流行性腹泻病毒Nsp12与宿主RNF7蛋白相互作用的研究[J]. 中国预防兽医学报, 2021, 43 (5): 461- 467. |
ZHAO X W , LI H C , CHEN P F , et al. Identification of the interaction between Nsp12 of porcine epidemic diarrhea virus and RNF7 of host protein[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43 (05): 461- 467. | |
68 |
REN J , DING Z , FANG P , et al. ATPase and helicase activities of porcine epidemic diarrhea virus nsp13[J]. Vet Microbiol, 2021, 257, 109074.
doi: 10.1016/j.vetmic.2021.109074 |
69 |
CAO L , LIU S , LI Y , et al. The nuclear matrix protein SAFA surveils viral RNA and facilitates immunity by activating antiviral enhancers and super-enhancers[J]. Cell Host Microbe, 2019, 26 (3): 369- 384.e8.
doi: 10.1016/j.chom.2019.08.010 |
70 |
ZHOU H , YAN Y , GAO J , et al. Heterogeneous nuclear protein U degraded the m6A methylated TRAF3 transcript by YTHDF2 to promote porcine epidemic diarrhea virus replication[J]. J Virol, 2023, 97 (2): e0175122.
doi: 10.1128/jvi.01751-22 |
71 |
ROOPENIAN D C , AKILESH S . FcRn: the neonatal Fc receptor comes of age[J]. Nat Rev Immunol, 2007, 7 (9): 715- 725.
doi: 10.1038/nri2155 |
72 |
JIA X , CHEN J , QIAO C , et al. Porcine epidemic diarrhea virus nsp13 protein downregulates neonatal Fc receptor expression by causing promoter hypermethylation through the NF-kappaB signaling pathway[J]. J Immunol, 2023, 210 (4): 475- 485.
doi: 10.4049/jimmunol.2200291 |
73 |
BOUVET M , IMBERT I , SUBISSI L , et al. RNA 3'-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex[J]. Proc Natl Acad Sci U S A, 2012, 109 (24): 9372- 9377.
doi: 10.1073/pnas.1201130109 |
74 | LU Y , CAI H , LU M , et al. Porcine epidemic diarrhea virus deficient in RNA cap guanine-N-7 methylation is attenuated and induces higher type Ⅰ and Ⅲ interferon responses[J]. J Virol, 2020, 94 (16): e00447- 20. |
75 |
LI S , YANG F , MA C , et al. Porcine epidemic diarrhea virus nsp14 inhibits NF-kappaB pathway activation by targeting the IKK complex and p65[J]. Anim Dis, 2021, 1 (1): 24.
doi: 10.1186/s44149-021-00025-5 |
76 |
ZENG W , REN J , YANG G , et al. Porcine epidemic diarrhea virus and its nsp14 suppress ER stress induced GRP78[J]. Int J Mol Sci, 2023, 24 (5): 4936.
doi: 10.3390/ijms24054936 |
77 |
KINDLER E , GIL-CRUZ C , SPANIER J , et al. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication[J]. PLoS Pathog, 2017, 13 (2): e1006195.
doi: 10.1371/journal.ppat.1006195 |
78 |
WU Y , ZHANG H , SHI Z , et al. Porcine epidemic diarrhea virus nsp15 antagonizes interferon signaling by RNA degradation of TBK1 and IRF3[J]. Viruses, 2020, 12 (6): 599.
doi: 10.3390/v12060599 |
79 | 宋利娜. 猪流行性腹泻病毒非结构蛋白Nsp15抑制IFNβ机制研究[D]. 长春: 吉林大学, 2021. |
SONG L N. Mechanism of PEDV nonstructural protein 15 inhibiting IFNβ. [D]. Changchun: Jilin University, 2021. (in Chinese) | |
80 | ZHANG Q , KE H , BLIKSLAGER A , et al. Type Ⅲ interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling[J]. J Virol, 2018, 92 (4): e01677- 17. |
81 | XING Y , CHEN J , TU J , et al. The papain-like protease of porcine epidemic diarrhea virus negatively regulates type Ⅰ interferon pathway by acting as a viral deubiquitinase[J]. J Gen Virol, 2013, 94 (Pt 7): 1554- 1567. |
82 |
YU L , DONG J , WANG Y , et al. Porcine epidemic diarrhea virus nsp4 induces pro-inflammatory cytokine and chemokine expression inhibiting viral replication in vitro[J]. Arch Virol, 2019, 164 (4): 1147- 1157.
doi: 10.1007/s00705-019-04176-2 |
83 |
SHI P , SU Y , LI R , et al. PEDV nsp16 negatively regulates innate immunity to promote viral proliferation[J]. Virus Res, 2019, 265, 57- 66.
doi: 10.1016/j.virusres.2019.03.005 |
[1] | 王运珂, 王娜, 岳珂, 何坤淼, 张兴, 刘垚, 张改平. 体外对猪流行性腹泻病毒复制具有抑制效应的物质[J]. 畜牧兽医学报, 2025, 56(6): 2577-2589. |
[2] | 吴超, 明文含, 卢姝婉, 杨彩梅, 刘金松, 马翔, 张瑞强. 猪流行性腹泻病毒的天然免疫逃避机制及其防控研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2590-2599. |
[3] | 李程程, 赵永祥, 曹秋霞, 宋旭, 李宇鹏, 范宝超, 郭容利, 徐业芬, 李彬. 紧密连接蛋白CLDN4促进猪流行性腹泻病毒感染[J]. 畜牧兽医学报, 2025, 56(6): 2826-2835. |
[4] | 潘红, 周赛赛, 袁红根, 宋云峰. 口蹄疫病毒3′UTR负链互作的宿主蛋白筛选[J]. 畜牧兽医学报, 2025, 56(5): 2279-2291. |
[5] | 胡米, 沈瑶歆, 范宝超, 孙敏, 周金柱, 郭容利, 李彬. Eudragit L100修饰的铝锰双金属有机框架作为猪流行性腹泻灭活疫苗口服递送载体的初步评价[J]. 畜牧兽医学报, 2025, 56(5): 2292-2230. |
[6] | 邬沛伶, 李依璇, 王浩杰, 李亚菲, 刘绍蒙, 刘青芸, 王湘如. 猪流行性腹泻疫苗研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1042-1058. |
[7] | 余昕雅, 何海健, 王磊, 倪语晨, 杜静, 周莹珊, 董婉玉, 王晓杜. LncRNA 18850对猪流行性腹泻病毒复制的影响[J]. 畜牧兽医学报, 2025, 56(3): 1366-1375. |
[8] | 张冬萱, 王智豪, 乔岩, 赵肖肖, 范松杰, 张超. 猪流行性腹泻病毒S1蛋白的原核表达及其核酸适配体的筛选[J]. 畜牧兽医学报, 2025, 56(2): 839-850. |
[9] | 张素, 孙丽芳, 李兰兰, 吴琳娇, 陈磊清, 吴允昆. 非洲猪瘟病毒结构蛋白与宿主蛋白相互作用研究进展[J]. 畜牧兽医学报, 2025, 56(1): 95-106. |
[10] | 刘维哲, 罗成刚, 袁蓉, 廖艺杰, 文艺悯, 孙莹, 俞恩波, 曹三杰, 黄小波. 一株猪流行性腹泻病毒强毒株的分离与鉴定[J]. 畜牧兽医学报, 2024, 55(7): 3049-3063. |
[11] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[12] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
[13] | 王静, 张淑娟, 胡霞, 刘向阳, 张兴翠, 宋振辉. CD44通过影响猪流行性腹泻病毒复制调节钠氢交换体3活性[J]. 畜牧兽医学报, 2024, 55(5): 2176-2185. |
[14] | 胡泽奇, 李润成, 谭祖明, 谢秀艳, 王江平, 秦乐娟, 李荣, 葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(5): 2267-2272. |
[15] | 林莉莉, 张梦迪, 朱琳琳, 马海龙, 孙琪, 何启盖, 张梦佳, 李文涛. 基于猪流行性腹泻病毒GⅡb亚型重组荧光病毒中和抗体检测方法的建立[J]. 畜牧兽医学报, 2024, 55(4): 1649-1660. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||