1 |
PIETSCHMANN J , GUINAT C , BEER M , et al. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate[J]. Arch Virol, 2015, 160 (7): 1657- 1667.
doi: 10.1007/s00705-015-2430-2
|
2 |
邓桦, 李慧, 杨鸿, 等. 急性非洲猪瘟的实验病理学研究[J]. 畜牧兽医学报, 2020, 51 (11): 2836- 2848.
doi: 10.11843/j.issn.0366-6964.2020.11.022
|
|
DENG H , LI H , YANG H , et al. Experimental pathological study of acute African swine fever[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (11): 2836- 2848.
doi: 10.11843/j.issn.0366-6964.2020.11.022
|
3 |
卢会鹏. 3种TLR激动剂的免疫佐剂活性比较研究[D]. 扬州: 扬州大学, 2022.
|
|
LU H P. Comparative study on three of adjuvanticities of TLR agonist[D]. Yangzhou: Yangzhou University, 2022.
|
4 |
何宇恒, 刘雪婷, 庞忠宝, 等. 非洲猪瘟病毒K205R蛋白重组腺病毒载体的构建及小鼠免疫效力评价[J]. 中国兽医杂志, 2023, 59 (5): 12- 18.
|
|
HE Y H , LIU X T , PANG Z B , et al. Construction of recombinant adenovirus harboring African swine fever virus K205R and evaluation of its immune efficacy in mice[J]. Chinese Journal of Veterinary Medicine, 2023, 59 (5): 12- 18.
|
5 |
胡永新, 赵永刚, 张永强, 等. 表达非洲猪瘟病毒P72蛋白复制缺陷型重组腺病毒的构建及鉴定[J]. 畜牧兽医学报, 2019, 50 (8): 1635- 1641.
doi: 10.11843/j.issn.0366-6964.2019.08.012
|
|
HU Y X , ZHAO Y G , ZHANG Y G , et al. Construction and identification of replication defective recombinant adenovirus expressing ASFV p72protein[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (8): 1635- 1641.
doi: 10.11843/j.issn.0366-6964.2019.08.012
|
6 |
DUBANIEWICZ A . Mycobacterial heat shock proteins in sarcoidosis and tuberculosis[J]. Int J Mol Sci, 2023, 24 (6): 5084.
doi: 10.3390/ijms24065084
|
7 |
FU F , TIAN H , LI X , et al. C-terminal heat shock protein 70 of Mycobacterium tuberculosis as a molecular adjuvant for DNA vaccination with the porcine circovirus type 2 ORF2 (capsid) gene in mice[J]. Vet J, 2013, 195 (2): 244- 247.
doi: 10.1016/j.tvjl.2012.06.005
|
8 |
CHEN W , ZHAO D , HE X , et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs[J]. Sci China Life Sci, 2020, 63 (5): 623- 634.
doi: 10.1007/s11427-020-1657-9
|
9 |
BORCA M V , RAMIREZ-MEDINA E , SILVA E , et al. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain[J]. J Virol, 2020, 94 (7): e02017- 19.
|
10 |
SAKURAI F , TACHIBANA M , MIZUGUCHI H . Adenovirus vector-based vaccine for infectious diseases[J]. Drug Metab Pharmacokinet, 2022, 42, 100432.
doi: 10.1016/j.dmpk.2021.100432
|
11 |
SIMÓN-MATEO C , ANDRÉS G , ALMAZÁN F , VIÑUELA E . Proteolytic processing in African swine fever virus: evidence for a new structural polyprotein, pp62[J]. J Virol, 1997, 71 (8): 5799- 5804.
doi: 10.1128/jvi.71.8.5799-5804.1997
|
12 |
GALICIA M , MORALES D , POGADO P , et al. Identification of potential CD8+ epitopes in pp62 polyprotein of African swine fever virus using computational immunology[J]. Bio Technologia, 2023, 104 (3): 221- 231.
|
13 |
MARTYNOVA E , RIZVANOV A , URBANOWICZ R A , et al. Inflammasome Contribution to the Activation of Th1, Th2, and Th17 Immune Responses[J]. Front Microbiol, 2022, 13, 851835.
|
14 |
SRIRAM Y , ANUSHKA A , ARCHISMITA C , et al. Mycobacterium tuberculosis EspR modulates Th1-Th2 shift by transcriptionally regulating IL-4, steering increased mycobacterial persistence and HIV propagation during co-infection[J]. Front Immunol, 2023, 141276817- 1276817.
|