畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (6): 2590-2599.doi: 10.11843/j.issn.0366-6964.2025.06.006
吴超1(), 明文含1, 卢姝婉1, 杨彩梅1, 刘金松2, 马翔1, 张瑞强1,*(
)
收稿日期:
2024-11-19
出版日期:
2025-06-23
发布日期:
2025-06-25
通讯作者:
张瑞强
E-mail:jt32208@163.com;zrq1034@163.com
作者简介:
吴超(1999-),男,安徽六安人,硕士生,主要从事动物肠道健康调控方面的研究,E-mail: jt32208@163.com
基金资助:
WU Chao1(), MING Wenhan1, LU Shuwan1, YANG Caimei1, LIU Jinsong2, MA Xiang1, ZHANG Ruiqiang1,*(
)
Received:
2024-11-19
Online:
2025-06-23
Published:
2025-06-25
Contact:
ZHANG Ruiqiang
E-mail:jt32208@163.com;zrq1034@163.com
摘要:
猪流行性腹泻病(porcine epidemic diarrhea,PED)是由猪流行性腹泻病毒(porcine epidemic diarrhea virus,PEDV)引起的一种以呕吐、脱水和腹泻为主要特征的急性、高度接触性肠道传染病。近年来,由于PEDV变异毒株的不断出现,许多国家的养猪业遭受了巨大的经济损失。由此,探究PEDV的致病机制及其有效防控措施,可为生猪养殖提供重要保障。本文综述了PEDV在抑制干扰素产生,调控细胞凋亡、细胞自噬、细胞焦亡与炎症反应过程中的逃避机制,分析了PEDV的疫苗和营养防控研究进展,旨在为PED的有效控制提供理论参考。
中图分类号:
吴超, 明文含, 卢姝婉, 杨彩梅, 刘金松, 马翔, 张瑞强. 猪流行性腹泻病毒的天然免疫逃避机制及其防控研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2590-2599.
WU Chao, MING Wenhan, LU Shuwan, YANG Caimei, LIU Jinsong, MA Xiang, ZHANG Ruiqiang. Innate Immune Evasion Mechanisms of Porcine Epidemic Diarrhea Virus and Advances in Prevention and Control Strategies[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2590-2599.
1 |
CHEN P , ZHAO X , ZHOU S , et al. A virulent PEDV strain FJzz1 with genomic mutations and deletions at the high passage level was attenuated in piglets via serial passage in vitro[J]. Virol Sin, 2021, 36 (5): 1052- 1065.
doi: 10.1007/s12250-021-00368-w |
2 |
SUN D , WANG X , WEI S , et al. Epidemiology and vaccine of porcine epidemic diarrhea virus in China: a mini-review[J]. J Vet Med Sci, 2016, 78 (3): 355- 363.
doi: 10.1292/jvms.15-0446 |
3 |
LI C , LU H , GENG C , et al. Epidemic and evolutionary characteristics of swine enteric viruses in South-Central China from 2018 to 2021[J]. Viruses, 2022, 14 (7): 1420.
doi: 10.3390/v14071420 |
4 | WANG D , FANG L , XIAO S . Porcine epidemic diarrhea in China[J]. Virusres, 2016, 226, 7- 13. |
5 |
LIU Q , WANG H Y . Porcine enteric coronaviruses: an updated overview of the pathogenesis, prevalence, and diagnosis[J]. Vet Res Commun, 2021, 45 (2-3): 75- 86.
doi: 10.1007/s11259-021-09808-0 |
6 |
周敏, 汤德元, 曾智勇, 等. 猪流行性腹泻病毒蛋白与宿主蛋白相互作用的研究进展[J]. 畜牧兽医学报, 2025, 56 (6): 2600- 2612.
doi: 10.11843/j.issn.0366-6964.2025.06.007 |
ZHOU M , TANG D Y , ZENG Z Y , et al. Research progress on the interaction between porcine epidemic diarrhea virus proteins andhost proteins[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (6): 2600- 2612.
doi: 10.11843/j.issn.0366-6964.2025.06.007 |
|
7 |
KULANDAISAMY R , KUSHWAHA T , DALAL A , et al. Repurposing of FDA approved drugs against SARS-CoV-2 papain-like protease: Computational, biochemical, and in vitro studies[J]. Front Microbiol, 2022, 13, 877813.
doi: 10.3389/fmicb.2022.877813 |
8 |
SEADAWY M G , BINSUWAIDAN R , ALOTAIBI B , et al. The mutational landscape of SARS-CoV-2 variants of concern recovered from egyptian patients in 2021[J]. Front Microbiol, 2022, 13, 923137.
doi: 10.3389/fmicb.2022.923137 |
9 |
WU C , LIU Y , YANG Y , et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods[J]. Acta Pharm Sin B, 2020, 10 (5): 766- 788.
doi: 10.1016/j.apsb.2020.02.008 |
10 |
ZHANG Y , CHEN Y , ZHOU J , et al. Porcine epidemic diarrhea virus: An updated overview of virus epidemiology, virulence variation patterns and virus-host interactions[J]. Viruses, 2022, 14 (11): 2434.
doi: 10.3390/v14112434 |
11 |
DEVARAPALLI P , KUMARI P , SONI S , et al. Patent intelligence of RNA viruses: Implications for combating emerging and re-emerging RNA virus based infectious diseases[J]. Int J Biol Macromol, 2022, 219, 1208- 1215.
doi: 10.1016/j.ijbiomac.2022.08.169 |
12 |
KAEWBORISUTH C , HE Q , JONGKAEWWATTANA A . The accessory protein ORF3 contributes to porcine epidemic diarrhea virus replication by direct binding to the spike protein[J]. Viruses, 2018, 10 (8): 399.
doi: 10.3390/v10080399 |
13 | SHEN Z , YE G , DENG F , et al. Structural basis for the inhibition of host gene expression by porcine epidemic diarrhea virus nsp1[J]. J Virol, 2018, 92 (5): e01896- 17. |
14 |
SHEN Z , WANG G , YANG Y , et al. A conserved region of nonstructural protein 1 from alpha-coronaviruses inhibits host gene expression and is critical for viral virulence[J]. J Biol Chem, 2019, 294 (37): 13606- 13618.
doi: 10.1074/jbc.RA119.009713 |
15 |
NIU X , KONG F , XU J , et al. Mutations in porcine epidemic diarrhea virus nsp1 cause increased viral sensitivity to Host interferon responses and attenuation in vivo[J]. J Virol, 2022, 96 (11): e0046922..
doi: 10.1128/jvi.00469-22 |
16 |
LIU X , ZHANG M , YIN L , et al. PEDV evades MHC-I-related immunity through nsp1-mediated NLRC5 translation inhibition[J]. J Virol, 2024, 98 (11): e0142124.
doi: 10.1128/jvi.01421-24 |
17 |
DENG Q , YANG S , SUN L , et al. A detrimental role of NLRP6 in host iron metabolism during Salmonella infection[J]. Redox Biol, 2022, 49, 102217.
doi: 10.1016/j.redox.2021.102217 |
18 |
SCHLEE M . Master sensors of pathogenic RNA-RIG-I like receptors[J]. Immunobiology, 2013, 218 (11): 1322- 1335.
doi: 10.1016/j.imbio.2013.06.007 |
19 |
SHI F S , YU Y , LI Y L , et al. Expression profile and localization of SARS-CoV-2 nonstructural replicase proteins in infected cells[J]. Microbiol Spectr, 2022, 10 (4): e0074422.
doi: 10.1128/spectrum.00744-22 |
20 |
DING Z , FANG L , JING H , et al. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1[J]. J Virol, 2014, 88 (16): 8936- 8945.
doi: 10.1128/JVI.00700-14 |
21 |
SHAN Y , LIU Z Q , LI G W , et al. Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation[J]. J Zhejiang Univ Sci B, 2018, 19 (7): 570- 580.
doi: 10.1631/jzus.B1700283 |
22 |
SHI D , SHI H , SUN D , et al. Nucleocapsid interacts with NPM1 and protects it from proteolytic cleavage, enhancing cell survival, and is involved in PEDV growth[J]. Sci Rep, 2017, 7, 39700.
doi: 10.1038/srep39700 |
23 |
XU J , MAO J , HAN X , et al. Porcine epidemic diarrhea virus inhibits HDAC1 expression to facilitate its replication via binding of its nucleocapsid protein to host transcription factor Sp1[J]. J Virol, 2021, 95 (18): e0085321.
doi: 10.1128/JVI.00853-21 |
24 |
TANG Z , DING S , HUANG H , et al. HDAC1 triggers the proliferation and migration of breast cancer cells via upregulation of interleukin-8[J]. Biol Chem, 2017, 398 (12): 1347- 1356.
doi: 10.1515/hsz-2017-0155 |
25 |
XU J , GAO Q , ZHANG W , et al. Porcine epidemic diarrhea virus antagonizes host IFN-λ-mediated responses by tilting transcription factor STAT1 toward acetylation over phosphorylation to block its activation[J]. mBio, 2023, 14 (3): e0340822.
doi: 10.1128/mbio.03408-22 |
26 |
SANG Y , ROWLAND R R , BLECHA F . Molecular characterization and antiviral analyses of porcine type Ⅲ interferons[J]. J Interferon Cytokine Res, 2010, 30 (11): 801- 807.
doi: 10.1089/jir.2010.0016 |
27 |
ZHANG Q , MA J , YOO D . Inhibition of NF-κB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion[J]. Virology, 2017, 510, 111- 126.
doi: 10.1016/j.virol.2017.07.009 |
28 | 袁双玲. 猪流行性腹泻病毒nsp7抑制Ⅰ型IFN信号转导机制研究[D]. 武汉: 华中农业大学, 2017. |
YUAN S L. Studies on the molecular mechanism of porcineepidemic diarrhoea virus non-structural proteinnsp7 inhibiting ifn-i signaling inhibited type iinterferon signaling [D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese) | |
29 |
TANG R , XU J , ZHANG B , et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity[J]. J Hematol Oncol, 2020, 13 (1): 110.
doi: 10.1186/s13045-020-00946-7 |
30 |
SHI F , LV Q , WANG T , et al. Coronaviruses Nsp5 antagonizes porcine gasdermin D-mediated pyroptosis by cleaving pore-forming p30 fragment[J]. mBio, 2022, 13 (1): e0273921.
doi: 10.1128/mbio.02739-21 |
31 |
DAI Z , LIU W C , CHEN X Y , et al. Gasdermin D-mediated pyroptosis: mechanisms, diseases, and inhibitors[J]. Front Immunol, 2023, 14, 1178662.
doi: 10.3389/fimmu.2023.1178662 |
32 |
BAO D , YI S , ZHAO L , et al. Porcine epidemic diarrhea virus infection of porcine intestinal epithelial cells causes mitochondrial DNA release and the activation of the NLRP3 inflammasome to mediate interleukin-1β secretion[J]. Vet Sci, 2024, 11 (12): 643.
doi: 10.3390/vetsci11120643 |
33 |
YU L , DONG J , WANG Y , et al. Porcine epidemic diarrhea virus nsp4 induces pro-inflammatory cytokine and chemokine expression inhibiting viral replication in vitro[J]. Arch Virol, 2019, 164 (4): 1147- 1157.
doi: 10.1007/s00705-019-04176-2 |
34 |
QI X , CAO Y , WU S , et al. miR-129a-3p inhibits PEDV replication by targeting the EDA-mediated NF-κB pathway in IPEC-J2 cells[J]. Int J Mol Sci, 2021, 22 (15): 8133.
doi: 10.3390/ijms22158133 |
35 |
ZHANG Y , LIU Y , YANG S , et al. Water extract of portulaca oleracea inhibits PEDV infection-induced pyrolysis by Caspase-1/GSDMD[J]. Curr Issues Mol Biol, 2023, 45 (12): 10211- 10224.
doi: 10.3390/cimb45120637 |
36 |
GUO X , ZHANG M , ZHANG X , et al. Porcine epidemic diarrhea virus induces autophagy to benefit its replication[J]. Viruses, 2017, 9 (3): 53.
doi: 10.3390/v9030053 |
37 |
LIN H , LI B , LIU M , et al. Nonstructural protein 6 of porcine epidemic diarrhea virus induces autophagy to promote viral replication via the PI3K/Akt/mTOR axis[J]. Vet Microbiol, 2020, 244, 108684.
doi: 10.1016/j.vetmic.2020.108684 |
38 |
ZHANG W , CHEN K , GUO Y , et al. Involvement of PRRSV NSP3 and NSP5 in the autophagy process[J]. Virol J, 2019, 16 (1): 1- 11.
doi: 10.1186/s12985-018-1108-2 |
39 |
WU K , LI B , ZHANG X , et al. CSFV restricts necroptosis to sustain infection by inducing autophagy/mitophagy-targeted degradation of RIPK3[J]. Microbiol Spectr, 2024, 12 (1): e0275823.
doi: 10.1128/spectrum.02758-23 |
40 |
LIN H , LI B , LIU M , et al. Nonstructural protein 6 of porcine epidemic diarrhea virus induces autophagy to promote viral replication via the PI3K/Akt/mTOR axis[J]. Vet Microbiol, 2020, 244, 108684.
doi: 10.1016/j.vetmic.2020.108684 |
41 | LI X , YAN Z , MA J , et al. TRIM28 promotes porcine epidemic diarrhea virus replication by mitophagy-mediated inhibition of the JAK-STAT1 pathway[J]. Int J Biol Macromol, 2024, 254 (Pt 1): 127722. |
42 |
PARK J Y , RYU J , HONG E J , et al. Porcine epidemic diarrhea virus infection induces autophagosome formation but inhibits autolysosome formation during replication[J]. Viruses, 2022, 14 (5): 1050.
doi: 10.3390/v14051050 |
43 | 宋丽丽, 马德慧, 王贝贝, 等. 细胞自噬与病毒感染关系的研究进展[J]. 基因组学与应用生物学, 2019, 38 (12): 5495- 5503. |
SONG L L , MA D H , WANG B B , et al. Research progress on the relationship between cell autophagy and viralInfection[J]. Genomics And Applied Biology, 2019, 38 (12): 5495- 5503. | |
44 |
PRESTES E B , BRUNO J C P , TRAVASSOS L H , et al. The unfolded protein response and autophagy on the crossroads of coronaviruses infections[J]. Front Cell Infect Microbiol, 2021, 11, 668034.
doi: 10.3389/fcimb.2021.668034 |
45 |
ZHANG Z L , WANG N N , MA Q L , et al. Somatic and germline mutations in the tumor suppressor gene PARK2 impair PINK1/Parkin-mediated mitophagy in lung cancer cells[J]. Acta Pharmacol Sin, 2020, 41 (1): 93- 100.
doi: 10.1038/s41401-019-0260-6 |
46 |
WANG J , KAN X , LI X , et al. Porcine epidemic diarrhoea virus (PEDV) infection activates AMPK and JNK through TAK1 to induce autophagy and enhance virus replication[J]. Virulence, 2022, 13 (1): 1697- 1712.
doi: 10.1080/21505594.2022.2127192 |
47 |
ZOU D , XU J , DUAN X , et al. Porcine epidemic diarrhea virus ORF3 protein causes endoplasmic reticulum stress to facilitate autophagy[J]. Vet Microbiol, 2019, 235, 209- 219.
doi: 10.1016/j.vetmic.2019.07.005 |
48 |
SUN P , JIN J , WANG L , et al. Porcine epidemic diarrhea virus infections induce autophagy in Vero cells via ROS-dependent endoplasmic reticulum stress through PERK and IRE1 pathways[J]. Vet Microbiol, 2021, 253, 108959.
doi: 10.1016/j.vetmic.2020.108959 |
49 |
YUAN L , CHEN Z , SONG S , et al. p53 degradation by a coronavirus papain-like protease suppresses type i interferon signaling[J]. J Biol Chem, 2015, 290 (5): 3172- 3182.
doi: 10.1074/jbc.M114.619890 |
50 |
CHEN Y , ZHANG Z , LI J , et al. Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis[J]. Virol J, 2018, 15 (1): 170.
doi: 10.1186/s12985-018-1078-4 |
51 |
KIM Y , LEE C . Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor[J]. Virology, 2014, 460-461, 180- 193.
doi: 10.1016/j.virol.2014.04.040 |
52 | 陈昭. 猪流行性腹泻病毒诱导IPEC-J2细胞凋亡发生的分子机制[D]. 哈尔滨: 东北农业大学, 2023. |
CHEN Z. Molecular mechanisms underlying porcine epidemic diarrhea virus-induced apoptosisin IPEC-J2 cells [D]. Harbin: Northeast Agricultural University, 2023. (in Chinese) | |
53 |
BORDI L , CASTILLETTI C , FALASCA L , et al. Bcl-2 inhibits the caspase-dependent apoptosis induced by SARS-CoV without affecting virus replication kinetics[J]. Arch Virol, 2006, 151 (2): 369- 377.
doi: 10.1007/s00705-005-0632-8 |
54 |
LIU X , ZHANG Q , ZHANG L , et al. A newly isolated Chinese virulent genotype GIIb porcine epidemic diarrhea virus strain: Biological characteri-stics, pathogenicity and immune protective effects as an inactivated vaccine candidate[J]. Virus Res, 2019, 259, 18- 27.
doi: 10.1016/j.virusres.2018.10.012 |
55 |
XU X , DU L , FAN B , et al. A flagellin-adjuvanted inactivated porcine epidemic diarrhea virus (PEDV) vaccine provides enhanced immune protection against PEDV challenge in piglets[J]. Arch Virol, 2020, 165 (6): 1299- 1309.
doi: 10.1007/s00705-020-04567-w |
56 |
马茹梦, 赵玉梁, 马明爽, 等. 不同猪源受体菌表达猪流行性腹泻病毒保护性抗原S1诱导免疫应答的比较研究[J]. 畜牧兽医学报, 2024, 55 (5): 2090- 2099.
doi: 10.11843/j.issn.0366-6964.2024.05.027 |
MA R M , ZHAO Y L , MA M S , et al. Comparative study on the lmmune response induced by the different porcine receptor bacteria with expressing the protective antigen s1 of porcine epidemic diarrhea virus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (5): 2090- 2099.
doi: 10.11843/j.issn.0366-6964.2024.05.027 |
|
57 |
CHATTHA K S , ROTH J A , SAIF L J . Strategies for design and application of enteric viral vaccines[J]. Annu Rev Anim Biosci, 2015, 3, 375- 395.
doi: 10.1146/annurev-animal-022114-111038 |
58 | 邬沛伶, 李依璇, 王浩杰, 等. 猪流行性腹泻疫苗研究进展[J]. 畜牧兽医学报, 2025, 56 (3): 1042- 1058. |
WU P L , LI Y X , WANG H J , et al. Research progress of porcine epidemic diarrhea vaccine for pigs[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (3): 1042- 1058. | |
59 |
PENG Q , FAN B , SONG X , et al. Genetic signatures associated with the virulence of porcine epidemic diarrhea virus AH2012/12[J]. J Virol, 2023, 97 (10): e0106323.
doi: 10.1128/jvi.01063-23 |
60 |
ZHANG D , XIE Y , LIAO Q , et al. Development of a safe and broad-spectrum attenuated PEDV vaccine candidate by S2 subunit replacement[J]. J Virol, 2024, 98 (11): e0042924.
doi: 10.1128/jvi.00429-24 |
61 |
LU Y , CLARK-DEENER S , GILLAM F , et al. Virus-like particle vaccine with B-cell epitope from porcine epidemic diarrhea virus (PEDV) incorporated into hepatitis B virus core capsid provides clinical alleviation against PEDV in neonatal piglets through lactogenic immunity[J]. Vaccine, 2020, 38 (33): 5212- 5218.
doi: 10.1016/j.vaccine.2020.06.009 |
62 |
KAO C F , CHIOU H Y , CHANG Y C , et al. The characterization of immunoprotection induced by a cDNA clone derived from the attenuated Taiwan porcine epidemic diarrhea virus pintung 52 Strain[J]. Viruses, 2018, 10 (10): 543.
doi: 10.3390/v10100543 |
63 |
DO V T , JANG J , PARK J , et al. Recombinant adenovirus carrying a core neutralizing epitope of porcine epidemic diarrhea virus and heat-labile enterotoxin B of Escherichia coli as a mucosal vaccine[J]. Arch Virol, 2020, 165 (3): 609- 618.
doi: 10.1007/s00705-019-04492-7 |
64 |
WANG X , WANG L , HUANG X , et al. Oral delivery of probiotics expressing dendritic cell-targeting peptide fused with porcine epidemic diarrhea virus COE antigen: A promising vaccine strategy against PEDV[J]. Viruses, 2017, 9 (11): 312.
doi: 10.3390/v9110312 |
65 |
FANG X , YUE M , WEI J , et al. Evaluation of the anti-aging effects of a probiotic combination isolated from centenarians in a SAMP8 mouse model[J]. Front Immunol, 2021, 12, 792746.
doi: 10.3389/fimmu.2021.792746 |
66 |
MOUSAVI E , MAKVANDI M , TEIMOORI A , et al. Antiviral effects of Lactobacillus crispatus against HSV-2 in mammalian cell lines[J]. J Chin Med Assoc, 2018, 81 (3): 262- 267.
doi: 10.1016/j.jcma.2017.07.010 |
67 |
BILIAVSKA L , PANKIVSKA Y , POVNITSA O , et al. Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the Genera Pediococcus, Leuconostoc and Lactobacillus against human adenovirus type 5[J]. Medicina (Kaunas), 2019, 55 (9): 519.
doi: 10.3390/medicina55090519 |
68 |
CHEN Y M , LIMAYE A , CHANG H W , et al. Screening of lactic acid bacterial strains with antiviral activity against porcine epidemic diarrhea[J]. Probiotics Antimicrob Proteins, 2022, 14 (3): 546- 559.
doi: 10.1007/s12602-021-09829-w |
69 |
KAN Z , ZHANG S , LIAO G , et al. Mechanism of Lactiplantibacillus plantarum regulating Ca2+ affecting the replication of PEDV in small intestinal epithelial cells[J]. Front Microbiol, 2023, 14, 1251275.
doi: 10.3389/fmicb.2023.1251275 |
70 |
BHOSALE P B , ABUSALIYA A , KIM H H , et al. Apigetrin promotes TNFα-induced apoptosis, necroptosis, G2/M phase cell cycle arrest, and ROS generation through inhibition of NF-κB pathway in Hep3B liver cancer cells[J]. Cells, 2022, 11 (17): 2734.
doi: 10.3390/cells11172734 |
71 |
LIU Y , ZHAO L , XIE Y , et al. Antiviral activity of portulaca oleracea L. extracts against porcine epidemic diarrhea virus by partial suppression on myd88/NF-κb activation in vitro[J]. Microb Pathog, 2021, 154, 104832.
doi: 10.1016/j.micpath.2021.104832 |
72 |
GONG T , WU D , FENG Y , et al. Inhibitory effects of quercetin on porcine epidemic diarrhea virus in vitro and in vivo[J]. Virology, 2024, 589, 109923.
doi: 10.1016/j.virol.2023.109923 |
73 | 王亭亭. 黄芪发酵多糖提取物组份鉴定及其对猪流行性腹泻的免疫调节作用[D]. 济南: 山东农业大学, 2021. |
WANG T T. Components identification of the polysaccharide extract originedfrom astragalus fermentation and the immunomodulation in PEDV vaccine [D]. Jinan: Shandong Agricultural University, 2021. (in Chinese) | |
74 |
ROOHBAKHSH A , SHAMSIZADEH A , HAYES A W , et al. Melatonin as an endogenous regulator of diseases: The role of autophagy[J]. Pharmacol Res, 2018, 133, 265- 276.
doi: 10.1016/j.phrs.2018.01.022 |
75 | FAVERO G , FRANCESCHETTI L , BONOMINI F , et al. Melatonin as an anti-inflammatory agent modulating inflammasome activation[J]. Int J Endocrinol, 2017, 2017 (1): 1835195. |
76 |
TANG H , ZHONG H , LIU W , et al. Melatonin alleviates hyperglycemia-induced cardiomyocyte apoptosis via regulation of long non-coding RNA H19/miR-29c/MAPK axis in diabetic cardiomyo-pathy[J]. Pharmaceuticals (Basel), 2022, 15 (7): 821.
doi: 10.3390/ph15070821 |
77 |
ZHAI X , WANG N , JIAO H , et al. Melatonin and other indoles show antiviral activities against swine coronaviruses in vitro at pharmacological concen-trations[J]. J Pineal Res, 2021, 71 (2): e12754.
doi: 10.1111/jpi.12754 |
[1] | 王运珂, 王娜, 岳珂, 何坤淼, 张兴, 刘垚, 张改平. 体外对猪流行性腹泻病毒复制具有抑制效应的物质[J]. 畜牧兽医学报, 2025, 56(6): 2577-2589. |
[2] | 周敏, 汤德元, 曾智勇, 王彬, 黄涛, 胡雯雯, 毛茵茗, 周飘, 何松. 猪流行性腹泻病毒蛋白与宿主蛋白相互作用的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2600-2612. |
[3] | 李程程, 赵永祥, 曹秋霞, 宋旭, 李宇鹏, 范宝超, 郭容利, 徐业芬, 李彬. 紧密连接蛋白CLDN4促进猪流行性腹泻病毒感染[J]. 畜牧兽医学报, 2025, 56(6): 2826-2835. |
[4] | 胡米, 沈瑶歆, 范宝超, 孙敏, 周金柱, 郭容利, 李彬. Eudragit L100修饰的铝锰双金属有机框架作为猪流行性腹泻灭活疫苗口服递送载体的初步评价[J]. 畜牧兽医学报, 2025, 56(5): 2292-2230. |
[5] | 邬沛伶, 李依璇, 王浩杰, 李亚菲, 刘绍蒙, 刘青芸, 王湘如. 猪流行性腹泻疫苗研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1042-1058. |
[6] | 余昕雅, 何海健, 王磊, 倪语晨, 杜静, 周莹珊, 董婉玉, 王晓杜. LncRNA 18850对猪流行性腹泻病毒复制的影响[J]. 畜牧兽医学报, 2025, 56(3): 1366-1375. |
[7] | 张冬萱, 王智豪, 乔岩, 赵肖肖, 范松杰, 张超. 猪流行性腹泻病毒S1蛋白的原核表达及其核酸适配体的筛选[J]. 畜牧兽医学报, 2025, 56(2): 839-850. |
[8] | 刘维哲, 罗成刚, 袁蓉, 廖艺杰, 文艺悯, 孙莹, 俞恩波, 曹三杰, 黄小波. 一株猪流行性腹泻病毒强毒株的分离与鉴定[J]. 畜牧兽医学报, 2024, 55(7): 3049-3063. |
[9] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[10] | 徐红, 商红旗, 张雪, 钱嘉莉, 王传红, 宋旭, 宝梅英, 刘诗雨, 张格格, 郭容利, 赵永祥, 范宝超, 李彬. C8orf4基因编码蛋白对猪流行性腹泻病毒体外复制的抑制效应[J]. 畜牧兽医学报, 2024, 55(5): 2100-2108. |
[11] | 王静, 张淑娟, 胡霞, 刘向阳, 张兴翠, 宋振辉. CD44通过影响猪流行性腹泻病毒复制调节钠氢交换体3活性[J]. 畜牧兽医学报, 2024, 55(5): 2176-2185. |
[12] | 胡泽奇, 李润成, 谭祖明, 谢秀艳, 王江平, 秦乐娟, 李荣, 葛猛. PEDV、PoRVA和PDCoV TaqMan三重RT-qPCR检测方法的建立与初步应用[J]. 畜牧兽医学报, 2024, 55(5): 2267-2272. |
[13] | 林莉莉, 张梦迪, 朱琳琳, 马海龙, 孙琪, 何启盖, 张梦佳, 李文涛. 基于猪流行性腹泻病毒GⅡb亚型重组荧光病毒中和抗体检测方法的建立[J]. 畜牧兽医学报, 2024, 55(4): 1649-1660. |
[14] | 任莉鑫, 张静怡, 徐沙沙, 杨柳, 张兴翠, 宋振辉. ACE2对猪流行性腹泻病毒体外感染传代猪小肠上皮细胞的影响[J]. 畜牧兽医学报, 2024, 55(3): 1238-1248. |
[15] | 周建浩, 王东方, 刘影, 王淑娟, 马震原, 谢彩华, 赵雪丽, 杨海波, 冯桂丹, 康台生, 胡煜锋, 李博文, 闫若潜. 猪流行性腹泻病毒微滴式数字PCR定量检测方法的建立及初步应用[J]. 畜牧兽医学报, 2024, 55(1): 413-418. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||