畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (4): 1700-1711.doi: 10.11843/j.issn.0366-6964.2025.04.019
马秀玲1(), 张欣如2, 陈莹2, 梁红艳2, 古丽米热·阿布都热依木2, 汪立芹2, 林嘉鹏2, 李伟健1, 王旭光1,*(
), 吴阳升2,*(
)
收稿日期:
2024-08-28
出版日期:
2025-04-23
发布日期:
2025-04-28
通讯作者:
王旭光,吴阳升
E-mail:2234594165@qq.com;wangxuguang@xjau.edu.cn;xj_wys@126.com
作者简介:
马秀玲(2000-), 女, 宁夏人, 硕士生, 主要从事动物遗传育种与繁殖研究, E-mail: 2234594165@qq.com
基金资助:
MA Xiuling1(), ZHANG Xinru2, CHEN Ying2, LIANG Hongyan2, ABDUREYIMU Gulimire2, WANG Liqin2, LIN Jiapeng2, LI Weijian1, WANG Xuguang1,*(
), WU Yangsheng2,*(
)
Received:
2024-08-28
Online:
2025-04-23
Published:
2025-04-28
Contact:
WANG Xuguang, WU Yangsheng
E-mail:2234594165@qq.com;wangxuguang@xjau.edu.cn;xj_wys@126.com
摘要:
旨在用CRISPR/Cas9技术生产阿勒泰羊血小板源生长因子D(PDGFD)基因SNP位点的基因编辑胚胎。本研究根据阿勒泰羊PDGFD基因脂尾性状相关的3个SNPs位点设计合成5个sgRNA (PDGFD-314-sgRNA2、PDGFD-314-sgRNA5、PDGFD-410-sgRNA、PDGFD-397-sgRNA2、PDGFD-397-sgRNA7),结合Cas9核酸酶进行体外活性分析。电转阿勒泰羊体外受精4~5 h的胚胎Cas9-sgRNA核糖核蛋白复合物(RNP),每组35~40枚,3次重复,培养至第7天统计囊胚率,进行基因组靶基因位点扩增及测序分析。受精卵电转PDGFD和MSTN基因(非PDGFD基因)同源重组基因编辑材料,培养至第7天统计囊胚率及进行PDGFD sgRNA脱靶效率分析。结果表明,5个sgRNA在体外均有高效的切割活性;电转受精卵的存活率和卵裂率与对照组差异均不显著(P>0.05),但电转组囊胚率显著低于对照组(P < 0.05)。PDGFD-397-sgRNA2在绵羊体外胚胎中的编辑效率均高于其它sgRNAs。PDGFD-397-sgRNA2在绵羊基因组上错配1个碱基的脱靶位点有19个,覆盖在外显子区的基因有CFDP1,APOO,PCDH11X等;错配2个碱基的位点有31个,覆盖在外显子区的基因有TIMM17B、C1H1orf228和TLL1等。电转PDGFD和MSTN基因同源重组编辑材料,两组胚胎的存活率和卵裂率差异不显著(P>0.05),但前者的囊胚率显著低于后者(P < 0.0 5)。本研究结果表明,阿勒泰羊PDGFD基因尾脂性状相关SNP位点的CRISPR/Cas9编辑显著降低体外胚胎的囊胚率,因此,PDGFD基因可能影响绵羊早期胚胎的发育。综上所述,PDGFD基因可能对绵羊胚胎的早期发育有着重要的作用。
中图分类号:
马秀玲, 张欣如, 陈莹, 梁红艳, 古丽米热·阿布都热依木, 汪立芹, 林嘉鹏, 李伟健, 王旭光, 吴阳升. 阿勒泰羊胚胎PDGFD基因编辑研究[J]. 畜牧兽医学报, 2025, 56(4): 1700-1711.
MA Xiuling, ZHANG Xinru, CHEN Ying, LIANG Hongyan, ABDUREYIMU Gulimire, WANG Liqin, LIN Jiapeng, LI Weijian, WANG Xuguang, WU Yangsheng. PDGFD Gene Editing in Altay Sheep Embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1700-1711.
表 1
绵羊PDGFD三个位点的sgRNA序列"
序号 Number | sgRNA名称 Name of sgRNA | 核心序列 Core sequence | 基因位置 Location of genes |
1 | PDGFD-314-sgRNA2 | GGACTAATATCAGTGAAACG | Oar_v3.1,Chr15:3859314 |
2 | PDGFD-314-sgRNA5 | CTAATATCAGTGAAACGGGG | Oar_v3.1,Chr15:3859314 |
3 | PDGFD-410-sgRNA | GACGTACCACTCTGAGCACA | Oar_v.4.0, Chr15:3904410 |
4 | PDGFD-397-sgRNA2 | TCAGTGCCTGGCTCAAATAG | Oar_Rambouillet v1.0, Chr15:4172397 |
5 | PDGFD-397-sgRNA7 | TGGCTCAAATAGCGGCTTGT | Oar_Rambouillet v1.0, Chr15:4172397 |
表 2
PCR扩增所用引物"
序号 Number | 引物名称 Primer name | 引物序列 Primer sequence | 产物/bp Product |
1 | PDGFD-410-F1 | TCTGTTGTCGCTTAGAGTTT | 616 |
2 | PDGFD-410-F2 | AAAAGTGAAAGGGAAGTCG | 415 |
3 | PDGFD-410-R | TAGAAGGATGGCAGAAAGG | |
4 | PDGFD-314-F1 | AAAATGAGTGGTATGTGGGTG | 597 |
5 | PDGFD-314-F2 | GGGCTAAGGTCCCTGGAGT | 409 |
6 | PDGFD-314-R | GGGAAATTCTTGTGGCAGT | |
7 | PDGFD-397-F | GATTGCCCTCCAGATACCA | |
8 | PDGFD-397-R1 | GAGTGGTCTAAGCGGTTTT | 746 |
9 | PDGFD-397-R2 | CTGCTTCATTCCACCTTCC | 474 |
10 | PDGFD-397-HIT-F | ggagtgagtacggtgtgcGATTGCCCTCCAGATACCA | 262 |
11 | PDGFD-397-HIT-R | gagttggatgctggatggGGACTGTCCCTCTTTGGGT |
表 3
阿勒泰羊基因组PDGFD基因SNP位点类型"
位点 Site | PDGFD SNP位点[文献] SNP loci in PDGFD | 哈萨克羊对应位置及碱基类型 Kazakh sheep corresponding position and base type |
1 | Oar_v3.1:Chr15:3622093(C>T)[ | 3 817 380 (T) |
2 | Oar_v3.1:Chr15:3859314(T>C)[ | 4 066 876 (C) |
3 | Oar_v3.1:Chr15:4031794(A>C)[ | 4 242 267 (G) |
4 | Oar_v.4.0:Chr15:3852134(C>T)[ | 4 055 473 (C) |
5 | Oar_v.4.0:Chr15:3904410(G>A)[ | 4 107 625 (A) |
6 | Oar_v.4.0:Chr15:4122606(C>G)[ | 4 326 797 (G) |
7 | Oar_Rambouillet v1.0:Chr15:4172397(A>G)[ | 3 827 484 (G) |
表 4
不同编辑材料编辑的受精卵电转后发育情况"
编辑类型 Editing type | 总卵数/枚 Total number of oocytes | 死亡率/% Mortality rate | 24 h卵裂率/% 24 h cleavage rate | 48 h卵裂率/% 48 h cleavage rate | 7 d囊胚率/% Blastocyst rate on day 7 |
PDGFD-314-sgRNA2 | 109 | 11.96±0.04 | 46.42±0.12 | 90.37±0.09 | 35.70±0.02B |
PDGFD-314-sgRNA5 | 107 | 12.22±0.09 | 42.24±0.04 | 89.86±0.10 | 39.92±0.05b |
PDGFD-410-sgRNA | 109 | 16.98±0.09 | 44.00±0.12 | 93.75±0.08 | 36.77±0.01B |
PDGFD-397-sgRNA2 | 112 | 19.03±0.09 | 42.60±0.13 | 90.33±0.13 | 32.12±0.10B |
PDGFD-397-sgRNA7 | 115 | 10.95±0.06 | 45.55±0.12 | 90.69±0.03 | 36.20±0.01B |
对照组Control | 118 | 1.60±0.03 | 49.89±0.02 | 79.34±0.08 | 57.73±0.05Aa |
表 5
电转编辑不同类型基因对胚胎发育的影响"
编辑类型 Editing type | 总卵数/枚 Total number of oocytes | 死亡率/% Mortality rate | 24 h卵裂率/% 24 h cleavage rate | 48 h卵裂率/% 48 h cleavage rate | 7 d囊胚率/% Blastocyst rate on day 7 |
PDGFD-397-sgRNA2电转编辑组 PDGFD-397-sgRNA2 electrotransfer editing group | 131.00 | 7.36±0.08 | 54.31±0.91 | 94.26±0.06 | 29.68±0.00b |
MSTN电转编辑组 MSTN electrotransfer editing group | 120.00 | 11.79±0.06 | 60.67±0.14 | 92.81±0.02 | 51.99±0.15a |
1 | FARHADI S , HASANPUR K , GHIAS J S , et al. Comprehensive gene expression profiling analysis of adipose tissue in male individuals from fat-and thin tailed sheep breeds[J]. Animals (Basel), 2023, 13 (22): 3475. |
2 |
张越, 曹贵方. 绵羊尾脂沉积的研究进展[J]. 当代畜禽养殖业, 2022 (4): 16- 18.
doi: 10.3969/j.issn.1005-5959.2022.04.006 |
ZHANG Y , CAO G F . Research progress on tail fat deposition in sheep[J]. Journal of Contemporary Livestock and Poultry Industry, 2022 (4): 16- 18.
doi: 10.3969/j.issn.1005-5959.2022.04.006 |
|
3 | 甘尚权, 张伟, 沈敏, 等. 绵羊X染色体59578440位点多态分析及其与尾(臀)脂性状相关性研究[J]. 新疆农业科学, 2013, 50 (12): 2311- 2316. |
GAN S Q , ZHANG W , SHEN M , et al. Polymorphism analysis of 59578440 locus on X chromosome of sheep and its correlation with tail (hip) fat traits[J]. Xinjiang Agricultural Sciences, 2013, 50 (12): 2311- 2316. | |
4 | 马林. 绵羊尾脂沉积相关lncRNA的比较转录组研究[D]. 杨凌: 西北农林科技大学, 2018. |
MA L. Comparative transcriptome study of lncRNA related to tail fat deposition in sheep[D]. Yangling: Northwest A&F University, 2018. (in Chinese) | |
5 |
宋淑珍, 刘俊斌, 朱才业, 等. 断尾对兰州大尾羊生长性能、脂肪沉积分布和屠宰性能的影响[J]. 畜牧兽医学报, 2023, 54 (2): 642- 655.
doi: 10.11843/j.issn.0366-6964.2023.02.021 |
SONG S Z , LIU J B , ZHU C Y , et al. Effects of tail docking on growth performance, fat deposition distribution and slaughter performance of Lanzhou fat-tailed sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 642- 655.
doi: 10.11843/j.issn.0366-6964.2023.02.021 |
|
6 |
孟秋赤, 卢光玉, 陈定双, 等. 山羊GPR35基因表达特性分析及对皮下脂肪细胞分化作用的研究[J]. 畜牧兽医学报, 2023, 54 (12): 4993- 5007.
doi: 10.11843/j.issn.0366-6964.2023.12.011 |
MENG Q C , LU G Y , CHEN D S , et al. Expression characteristics of GPR35 gene in goat and its effect on subcutaneous adipocyte differentiation[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (12): 4993- 5007.
doi: 10.11843/j.issn.0366-6964.2023.12.011 |
|
7 |
ROSEN E D , MACDOGALD O A . Adipocyte differentiation from the inside out[J]. Nat Rev Mol Cell Biol, 2006, 7 (12): 885- 896.
doi: 10.1038/nrm2066 |
8 |
梁慧丽, 解玉静, 司博文, 等. 基于全基因组重测序分析大尾寒羊基因组变异特征和群体结构[J]. 畜牧兽医学报, 2024, 55 (11): 4968- 4979.
doi: 10.11843/j.issn.0366-6964.2024.11.016 |
LIANG H L , XIE Y J , SI B W , et al. Analysis of genome variation and population structure of large tail Han sheep based on whole genome resequencing[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (11): 4968- 4979.
doi: 10.11843/j.issn.0366-6964.2024.11.016 |
|
9 | 王铁男, 刘莉. 羊尾脂的研究及利用现状[J]. 草食家畜, 2021 (3): 6- 10. |
WANG T N , LIU L . Research and utilization status of sheep tail fat[J]. Herbivorous Livestock, 2021 (3): 6- 10. | |
10 | 马丽娜, 马青, 李颖康. 滩羊尾脂组织候选基因mRNA表达量分析研究[J]. 畜牧与饲料科学, 2018, 39 (9): 19- 23. |
MA L N , MA Q , LI Y K . Analysis of mRNA expression levels of candidate genes in Tan sheep tail fat tissue[J]. Animal Husbandry and Feed Science, 2018, 39 (9): 19- 23. | |
11 | 李星艳, 王世银, 许瑞霞, 等. 阿勒泰羊CFD基因的克隆及其在不同营养状态阿勒泰羊尾脂中的表达分析[J]. 新疆农业科学, 2016, 53 (6): 1136- 1144. |
LI X Y , WANG S Y , XU R X , et al. Cloning of CFD gene in Altay sheep and its expression analysis in tail fat of Altay sheep under different nutritional states[J]. Xinjiang Agricultural Sciences, 2016, 53 (6): 1136- 1144. | |
12 | 赵伟利. 脂肪组织差异表达基因RETN、CAV1、PLA2G16与阿勒泰羊尾脂沉积代谢关系的研究[D]. 石河子: 石河子大学, 2015. |
ZHAO W L. Study on the relationship between differentially expressed genes RETN, CAV1, PLA2G16 in adipose tissue and tail fat deposition metabolism of Altay sheep[D]. Shihezi: Shihezi University, 2015. (in Chinese) | |
13 | 许瑞霞. 阿勒泰大尾羊FABP4、ADIPOQ和CFD基因分子克隆及其组织差异性表达的研究[D]. 石河子: 石河子大学, 2015. |
XU R X. Molecular cloning of FABP4, ADIPOQ and CFD genes in Altay fat-tailed sheep and study on their tissue differential expression[D]. Shihezi: Shihezi University, 2015. (in Chinese) | |
14 |
LI X , YANG J , SHEN M , et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits[J]. Nat Commun, 2020, 11 (1): 2815.
doi: 10.1038/s41467-020-16485-1 |
15 |
DONG K , YANG M , HAN J , et al. Genomic analysis of worldwide sheep breeds reveals PDGFD as a major target of fat-tail selection in sheep[J]. BMC Genomics, 2020, 21 (1): 800.
doi: 10.1186/s12864-020-07210-9 |
16 |
PAN Z , LI S , LIU Q , et al. Rapid evolution of a retro-transposable hotspot of ovine genome underlies the alteration of BMP2 expression and development of fat tails[J]. BMC Genomics, 2019, 20 (1): 261.
doi: 10.1186/s12864-019-5620-6 |
17 |
ZHU C , LI N , CHENG H , et al. Genome wide association study for the identification of genes associated with tail fat deposition in Chinese sheep breeds[J]. Biol Open, 2021, 10 (5): bio054932.
doi: 10.1242/bio.054932 |
18 | LI Q , LU Z , JIN M , et al. Verification and Analysis of Sheep Tail Type-Associated PDGF-D Gene Polymorphisms[J]. Animals (Basel), 2020, 10 (1): 89. |
19 |
XU Y X , WANG B , JING J N , et al. Whole-body adipose tissue multi-omic analyses in sheep reveal molecular mechanisms underlying local adaptation to extreme environments[J]. Commun Biol, 2023, 6 (1): 159.
doi: 10.1038/s42003-023-04523-9 |
20 |
KALDS P , HUANG S , ZHOU S , et al. ABE-induced PDGFD start codon silencing unveils new insights into the genetic architecture of sheep fat tails[J]. J Genet Genomics, 2023, 50 (12): 1022- 1025.
doi: 10.1016/j.jgg.2023.07.008 |
21 |
HOSAKA K , WANG C , ZHANG S , et al. Perivascular localized cells commit erythropoiesis in PDGF-B-expressing solid tumors[J]. Cancer Commun (Lond), 2023, 43 (6): 637- 660.
doi: 10.1002/cac2.12423 |
22 |
BERNARD M , MENET R , LECORDIER S , et al. Endothelial PDGF-D contributes to neurovascular protection after ischemic stroke by rescuing pericyte functions[J]. Cell Mol Life Sci, 2024, 81 (1): 225.
doi: 10.1007/s00018-024-05244-w |
23 | WENG Z , AHMAD A , LI Y , et al. Emerging roles of PDGF-D signaling pathway in tumor development and progression[J]. Biochim Biophys Acta, 2010, 1806 (1): 122- 30. |
24 | 刘洁琼. PDGF-D在乳腺癌进展、转移及化疗药物运输中的作用和机制研究[D]. 长沙: 中南大学, 2011. |
LIU J Q. The role and mechanism of PDGF-D in breast cancer progression, metastasis and chemotherapy drug delivery[D]. Changsha: Central South University, 2011. (in Chinese) | |
25 |
JUNG S C , KANG D , KO E A . Roles of PDGF/PDGFR signaling in various organs[J]. Korean J Physiol Pharmacol, 2024,
doi: 10.4196/kjpp.24.309 |
26 | 汪立芹, 何宗霖, 林嘉鹏, 等. 萨福克羔羊卵泡诱导发育效果的研究[J]. 中国农业大学学报, 2015, 20 (4): 141- 146. |
WANG L Q , HE Z L , LIN J P , et al. Study on the effect of follicle-induced development in Saffoke lambs[J]. Journal of China Agricultural University, 2015, 20 (4): 141- 146. | |
27 | 王宇辉. PDGFD基因编辑对滩羊胎儿期脂尾发育的影响研究[D]. 杨凌: 西北农林科技大学, 2024. |
WANG Y H. Effects of PDGFD gene editing on fetal fat tail development of Tan sheep[D]. Yangling: Northwest A&F University, 2024. (in Chinese) | |
28 | KALDS T G P. 基于基因组编辑和组学分析的绵羊PDGFD基因功能研究[D]. 杨凌: 西北农林科技大学, 2022. |
KALDS T G P. Functional study of PDGFD gene in sheep based on genome editing and omics analysis[D]. Yangling: Northwest A&F University, 2022. (in Chinese) | |
29 |
LU W , XU P , DENG B , et al. PDGFD switches on stem cell endothelial commitment[J]. Angiogenesis, 2022, 25 (4): 517- 533.
doi: 10.1007/s10456-022-09847-4 |
30 | KIM H J, ChENG P, TRAVISANO S, et al. Molecular mechanisms of coronary artery disease risk at the PDGFD locus[DB/OL]. bioRxiv[Preprint]. 2023: 2023.01.26.525789. |
31 |
WENG Y , CHEN N , ZHANG R , et al. An integral blood-brain barrier in adulthood relies on microglia-derived PDGFB[J]. Brain Behav Immun, 2024, 115, 705- 717.
doi: 10.1016/j.bbi.2023.11.023 |
32 |
CRISPO M , MULET A P , TESSON L , et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J]. PLoS One, 2015, 10 (8): e0136690.
doi: 10.1371/journal.pone.0136690 |
33 |
GIM G M , KWON D H , EOM K H , et al. Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9[J]. Biotechnol J, 2022, 17 (7): e2100198.
doi: 10.1002/biot.202100198 |
34 |
GUO R , WANG H , MENG C , et al. Efficient and specific generation of MSTN-edited Hu sheep using C-CRISPR[J]. Genes (Basel), 2023, 14 (6): 1216.
doi: 10.3390/genes14061216 |
35 |
PI W , FENG G , LIU M , et al. Electroporation delivery of Cas9 sgRNA ribonucleoprotein-mediated genome editing in sheep IVF zygotes[J]. Int J Mol Sci, 2024, 25 (17): 9145.
doi: 10.3390/ijms25179145 |
36 |
PAPPANO W N , STEILITZ B M , SCOTT I C , et al. Use of Bmp1/Tll1 doubly homozygous null mice and proteomics to identify and validate in vivo substrates of bone morphogenetic protein 1/tolloid-like metalloproteinases[J]. Mol Cell Biol, 2003, 23 (13): 4428- 4438.
doi: 10.1128/MCB.23.13.4428-4438.2003 |
37 |
CHU LF , LENG N , ZHANG J , ET al . Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm[J]. Genome Biol, 2016, 17 (1): 173.
doi: 10.1186/s13059-016-1033-x |
38 |
CELAURO E , CARRA S , RODRIGUEZ A , et al. Functional analysis of the cfdp1 gene in zebrafish provides evidence for its crucial role in craniofacial development and osteogenesis[J]. Exp Cell Res, 2017, 361 (2): 236- 245.
doi: 10.1016/j.yexcr.2017.10.022 |
39 | 孙珂欣. 滩羊PDGFD基因对其尾部脂肪沉积的影响研究[D]. 杨凌: 西北农林科技大学, 2022. |
SUN K X. Effect of PDGFD gene on tail fat deposition of Tan sheep[D]. Yangling: Northwest A&F University, 2022. (in Chinese) | |
40 |
KALDS P , LUO Q , SUN K , et al. Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways[J]. Anim Genet, 2021, 52 (6): 799- 812.
doi: 10.1111/age.13133 |
[1] | 解雅茹, 金昊延, 孔辰, 蔡蓓, 张令锴. CRISPR/Cas9系统在家畜生殖细胞中的研究进展[J]. 畜牧兽医学报, 2025, 56(2): 479-491. |
[2] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[3] | 蓝昕蕊, 赵宝宝, 张碧菡, 林晓语, 马会明, 王勇胜. β-谷甾醇对猪卵母细胞体外成熟和胚胎发育的影响[J]. 畜牧兽医学报, 2024, 55(4): 1629-1637. |
[4] | 王家丽, 杨帆, 邵文华, 黄梦瑶, 曹伟军, 蒲秀瑛, 张伟, 郑海学. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55(4): 1810-1818. |
[5] | 张多, 滕蔓, 张卓, 刘金玲, 郑鹿平, 各思雨, 韩放, 罗琴, 柴书军, 赵东, 余祖华, 罗俊. 一株马立克病病毒特超强变异株meq基因编辑缺失候选疫苗毒株的构建与鉴定[J]. 畜牧兽医学报, 2024, 55(12): 5672-5683. |
[6] | 丁修虎, 林志平, 赵芳, 陈坤琳, 仲跻峰, 张燕, 高运东, 李惠侠, 王慧利, 张建丽, 丁强. 利用CRISPR/Cas9技术制备BLG基因敲除牛乳腺上皮细胞系[J]. 畜牧兽医学报, 2024, 55(10): 4475-4488. |
[7] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[8] | 费晓钰, 石超群, 刘雪明, 苏峰, 姜运良. CRISPR/Cas9系统介导的猪MRC1修饰基因降低PCV2复制的研究[J]. 畜牧兽医学报, 2023, 54(3): 934-946. |
[9] | 杨小耿, 张慧珠, 李键, 向华, 何翃闳. DNA甲基化在哺乳动物卵母细胞和早期胚胎发育中的研究进展[J]. 畜牧兽医学报, 2023, 54(2): 443-450. |
[10] | 陈俊贞, 权冉, 付强, 葛丽娟, 袁圆圆, 张成远, 李建林, 史慧君. 热休克蛋白HSP90B1影响牛病毒性腹泻病毒复制的研究[J]. 畜牧兽医学报, 2023, 54(2): 683-693. |
[11] | 张宸艺博, 余彤, 任斌斌, 郑睿智, 朱文治, 苏建民. 动物早期胚胎发育中表观重编程的机制[J]. 畜牧兽医学报, 2023, 54(12): 4898-4909. |
[12] | 张硕, 周雨潇, 吴海波, 索伦. 长效CRISPR/Cas9基因编辑结局的动态追踪研究[J]. 畜牧兽医学报, 2023, 54(10): 4196-4208. |
[13] | 邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79. |
[14] | 赵为民, 王慧利, 曹少先, 郭日红, 王泽平, 陈哲, 徐奎, 付言峰, 李碧侠, 任守文, 程金花. 猪CD163基因的单碱基编辑研究[J]. 畜牧兽医学报, 2022, 53(4): 1041-1050. |
[15] | 刘悦, 薛翔澜, 李晓波, 蒋琳, 浦亚斌, 何晓红, 马月辉, 赵倩君. 染色质开放性与动物胚胎发育关系的研究进展[J]. 畜牧兽医学报, 2022, 53(3): 680-687. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||