畜牧兽医学报 ›› 2023, Vol. 54 ›› Issue (1): 69-79.doi: 10.11843/j.issn.0366-6964.2023.01.007
邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华*
收稿日期:
2022-05-18
出版日期:
2023-01-23
发布日期:
2023-01-17
通讯作者:
肖立华,主要从事分子寄生虫学研究,E-mail:lxiao@scau.edu.cn
作者简介:
邓敏儿(1994-),女,广东清远人,博士生,主要从事分子寄生虫学研究,E-mail:dengminer@stu.scau.edu.cn
基金资助:
DENG Min'er, LI Na, GUO Yaqiong, FENG Yaoyu, XIAO Lihua*
Received:
2022-05-18
Online:
2023-01-23
Published:
2023-01-17
摘要: 原虫生活史复杂,大部分难以通过体外培养完成整个生活史,缺乏高效的基因编辑系统。CRISPR/Cas9系统可以通过人工设计的方式,实现基因的精确、高效、快速编辑,被广泛应用于基因工程各个领域。CRISPR/Cas9系统为原虫的未知功能基因研究开辟了新途径。本文介绍CRISPR/Cas9系统的原理和目前在寄生原虫中的基因定位、基因功能研究、高通量基因家族筛选等方面的应用。
中图分类号:
邓敏儿, 李娜, 郭亚琼, 冯耀宇, 肖立华. CRISPR/Cas9系统在寄生原虫基因编辑中的应用[J]. 畜牧兽医学报, 2023, 54(1): 69-79.
DENG Min'er, LI Na, GUO Yaqiong, FENG Yaoyu, XIAO Lihua. Application of CRISPR/Cas9 System on Gene Editing of Parasitic Protozoa[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 69-79.
[1] | KIM K, SOLDATI D, BOOTHROYD J C. Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker[J]. Science, 1993, 262(5135):911-914. |
[2] | SOLDATI D, BOOTHROYD J C. Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii[J]. Science, 1993, 260(5106):349-352. |
[3] | GOONEWARDENE R, DAILY J, KASLOW D, et al. Transfection of the malaria parasite and expression of firefly luciferase[J]. Proc Natl Acad Sci U S A, 1993, 90(11):5234-5236. |
[4] | ZIRPEL H, CLOS J. Gene replacement by homologous recombination[J]. Methods Mol Biol, 2019, 1971:169-188. |
[5] | 宋海洋, 吴杰, 邹丰才, 等. CRISPR/Cas系统作用机制及其在寄生虫学研究中的应用[J]. 中国畜牧兽医, 2017, 44(1):208-213.SONG H Y, WU J, ZOU F C, et al. Mechanism of CRISPR/Cas system and its application in parasitology[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(1):208-213. (in Chinese) |
[6] | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. |
[7] | MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. |
[8] | SIDIK S M, HUET D, GANESAN S M, et al. A Genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes[J]. Cell, 2016, 166(6):1423-1435.e12. |
[9] | SUAREZ C E, BISHOP R P, ALZAN H F, et al. Advances in the application of genetic manipulation methods to apicomplexan parasites[J]. Int J Parasitol, 2017, 47(12):701-710. |
[10] | SOARES MEDEIROS L C, SOUTH L, PENG D, et al. Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-Cas9 ribonucleoproteins[J]. mBio, 2017, 8(6):e01788-17. |
[11] | LU H Y, BUCK G A. Expression of an exogenous gene in Trypanosoma cruzi epimastigotes[J]. Mol Biochem Parasitol, 1991, 44(1):109-114. |
[12] | HARIHARAN S, AJIOKA J, SWINDLE J. Stable transformation of Trypanosoma cruzi:inactivation of the PUB12. 5 polyubiquitin gene by targeted gene disruption[J]. Mol Biochem Parasitol, 1993, 57(1):15-30. |
[13] | OTSU K, DONELSON J E, KIRCHHOFF L V. Interruption of a Trypanosoma cruzi gene encoding a protein containing 14-amino acid repeats by targeted insertion of the neomycin phosphotransferase gene[J]. Mol Biochem Parasitol, 1993, 57(2):317-330. |
[14] | UPTON S J, TILLEY M, BRILLHART D B. Comparative development of Cryptosporidium parvum (Apicomplexa) in 11 continuous host cell lines[J]. FEMS Microbiol Lett, 1994, 118(3):233-236. |
[15] | VAN DIJK M R, WATERS A P, JANSE C J. Stable transfection of malaria parasite blood stages[J]. Science, 1995, 268(5215):1358-1362. |
[16] | WU Y, SIFRI C D, LEI H H, et al. Transfection of Plasmodium falciparum within human red blood cells[J]. Proc Natl Acad Sci U S A, 1995, 92(4):973-977. |
[17] | SHEN B, BROWN K M, LEE T D, et al. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9[J]. mBio, 2014, 5(3):e01114-14. |
[18] | ZHANG W W, MATLASHEWSKI G. CRISPR-Cas9-mediated genome editing in Leishmania donovani[J]. mBio, 2015, 6(4):e00861. |
[19] | HU D D, TANG X M, BEN MAMOUN C, et al. Efficient single-gene and gene family editing in the apicomplexan parasite Eimeria tenella using CRISPR-Cas9[J]. Front Bioeng Biotechnol, 2020, 8:128. |
[20] | BROWN K M, LONG S J, SIBLEY L D. Conditional knockdown of proteins using auxin-inducible degron (AID) fusions in Toxoplasma gondii[J]. Bio Protoc, 2018, 8(4):e2728. |
[21] | BRYANT J M, BAUMGARTEN S, DINGLI F, et al. Exploring the virulence gene interactome with CRISPR/dCas9 in the human malaria parasite[J]. Mol Syst Biol, 2020, 16(8):e9569. |
[22] | XIAO B, YIN S G, HU Y, et al. Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum[J]. Proc Natl Acad Sci U S A, 2019, 116(1):255-260. |
[23] | WAGNER J C, PLATT R J, GOLDFLESS S J, et al. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum[J]. Nat Methods, 2014, 11(9):915-918. |
[24] | GHORBAL M, GORMAN M, MACPHERSON C R, et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system[J]. Nat Biotechnol, 2014, 32(8):819-821. |
[25] | NACER A, CLAES A, ROBERTS A, et al. Discovery of a novel and conserved Plasmodium falciparum exported protein that is important for adhesion of PfEMP1 at the surface of infected erythrocytes[J]. Cell Microbiol, 2015, 17(8):1205-1216. |
[26] | MOGOLLON C M, VAN PUL F J A, IMAI T, et al. Rapid generation of marker-free P. falciparum fluorescent reporter lines using modified CRISPR/Cas9 constructs and selection protocol[J]. PLoS One, 2016, 11(12):e0168362. |
[27] | BRYANT J M, REGNAULT C, SCHEIDIG-BENATAR C, et al.CRISPR/Cas9 genome editing reveals that the intron is not essential for var2csa gene activation or silencing in Plasmodium falciparum[J]. mBio, 2017(8):e00729-17. |
[28] | MOHRING F, HART M N, RAWLINSON T A, et al. Rapid and iterative genome editing in the malaria parasite Plasmodium knowlesi provides new tools for P. vivax research[J]. Elife, 2019, 8:e45829. |
[29] | BOLTRYK S D, PASSECKER A, ALDER A, et al. CRISPR/Cas9-engineered inducible gametocyte producer lines as a valuable tool for Plasmodium falciparum malaria transmission research[J]. Nat Commun, 2021, 12(1):4806. |
[30] | SHEN B, BROWN K, LONG S J, et al. Development of CRISPR/Cas9 for efficient genome editing in Toxoplasma gondii[J]. Methods Mol Biol, 2017, 1498:79-103. |
[31] | LONG S, BROWN K M, DREWRY L L, et al. Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii[J]. PLoS Pathog, 2017, 13(5):e1006379. |
[32] | BROWN K M, LONG S J, SIBLEY L D. Plasma membrane association by N-acylation governs PKG function in Toxoplasma gondii[J]. mBio, 2017, 8(3):e00375-17. |
[33] | SIDIK S M, HACKETT C G, TRAN F, et al. Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9[J]. PLoS One, 2014, 9(6):e100450. |
[34] | MARKUS B M, BELL G W, LORENZI H A, et al. Optimizing systems for Cas9 expression in Toxoplasma gondii[J]. mSphere, 2019, 4(3):e00386-19. |
[35] | WANG Y F, SANGARÉ L O, PAREDES-SANTOS T C, et al. Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages[J]. Nat Commun, 2020, 11(1):5258. |
[36] | HARDING C R, SIDIK S M, PETROVA B, et al. Genetic screens reveal a central role for heme metabolism in artemisinin susceptibility[J]. Nat Commun, 2020, 11(1):4813. |
[37] | YOUNG J, DOMINICUS C, WAGENER J, et al. A CRISPR platform for targeted in vivo screens identifies Toxoplasma gondii virulence factors in mice[J]. Nat Commun, 2019, 10(1):3963. |
[38] | DELGADO I L S, TAVARES A, FRANCISCO S, et al. Characterization of a MOB1 homolog in the apicomplexan parasite Toxoplasma gondii[J]. Biology (Basel), 2021, 10(12):1233. |
[39] | 王沛, 王萌, 李婷婷, 等. 弓形虫4个假定蛋白基因缺失株的构建及其基本生物功能学研究[J]. 畜牧兽医学报, 2022, 53(10):3598-3608.WANG P, WANG M, LI T T, et al. Generation and basic functional characterization of four hypothetical protein genes deletion strains of Toxoplasma gondii[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10):3598-3608.(in Chinese) |
[40] | LIANG Q L, NIE L B, LI T T, et al. Functional characterization of 17 protein serine/threonine phosphatases in Toxoplasma gondii using CRISPR-Cas9 system[J]. Front Cell Dev Biol, 2022, 9:738794. |
[41] | LIU J, LI T T, LIANG Q L, et al. Characterization of functions in parasite growth and virulence of four Toxoplasma gondii genes involved in lipid synthesis by CRISPR-Cas9 system[J]. Parasitol Res, 2021, 120(11):3749-3759. |
[42] | XU L Q, YAO L J, JIANG D, et al. A uracil auxotroph Toxoplasma gondii exerting immunomodulation to inhibit breast cancer growth and metastasis[J]. Parasit Vectors, 2021, 14(1):601. |
[43] | CHEN Y, LIU Q, XUE J X, et al. Genome-wide CRISPR/Cas9 screen identifies new genes critical for defense against oxidant stress in Toxoplasma gondii[J]. Front Microbiol, 2021, 12:670705. |
[44] | THEISEN D J, DAVIDSON J T, BRISE? O C G, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens[J]. Science, 2018, 362(6415):694-699. |
[45] | XU X P, ELSHEIKHA H M, LIU W G, et al. The role of type II fatty acid synthesis enzymes FabZ, ODSCI, and ODSCII in the pathogenesis of Toxoplasma gondii infection[J]. Front Microbiol, 2021, 12:703059. |
[46] | ROSENBERG A, LUTH M R, WINZELER E A, et al. Evolution of resistance in vitro reveals mechanisms of artemisinin activity in Toxoplasma gondii[J]. Proc Natl Acad Sci U S A, 2019, 116(52):26881-26891. |
[47] | RAMAKRISHNAN C, MAIER S, WALKER R A, et al. An experimental genetically attenuated live vaccine to prevent transmission of Toxoplasma gondii by cats[J]. Sci Rep, 2019, 9(1):1474. |
[48] | MARKUS B M, BOYDSTON E A, LOURIDO S. CRISPR-mediated transcriptional repression in Toxoplasma gondii[J]. mSphere, 2021, 6(5):e0047421. |
[49] | PENG D, KURUP S P, YAO P Y, et al. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi[J]. mBio, 2015, 6(1):e02097-14. |
[50] | CRUZ A, BEVERLEY S M. Gene replacement in parasitic protozoa[J]. Nature, 1990, 348(6297):171-173. |
[51] | SOLLELIS L, GHORBAL M, MACPHERSON C R, et al. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites[J]. Cell Microbiol, 2015, 17(10):1405-1412. |
[52] | LI W, ZHANG N, LIANG X Y, et al. Transient transfection of Cryptosporidium parvum using green fluorescent protein (GFP) as a marker[J]. Mol Biochem Parasitol, 2009, 168(2):143-148. |
[53] | VINAYAK S, PAWLOWIC M C, SATERIALE A, et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum[J]. Nature, 2015, 523(7561):477-480. |
[54] | KELLEHER M, TOMLEY F M. Transient expression of β-galactosidase in differentiating sporozoites of Eimeria tenella[J]. Mol Biochem Parasitol, 1998, 97(1-2):21-31. |
[55] | HAO L L, LIU X Y, ZHOU X Y, et al. Transient transfection of Eimeria tenella using yellow or red fluorescent protein as a marker[J]. Mol Biochem Parasitol, 2007, 153(2):213-215. |
[56] | YAN W C, LIU X Y, SHI T Y, et al. Stable transfection of Eimeria tenella:constitutive expression of the YFP-YFP molecule throughout the life cycle[J]. Int J Parasitol, 2009, 39(1):109-117. |
[57] | TANG X M, SUO J X, LIANG L, et al. Genetic modification of the protozoan Eimeria tenella using the CRISPR/Cas9 system[J]. Vet Res, 2020, 51(1):41. |
[58] | SUAREZ C E, MCELWAIN T F. Transient transfection of purified Babesia bovis merozoites[J]. Exp Parasitol, 2008, 118(4):498-504. |
[59] | SUAREZ C E, MCELWAIN T F. Stable expression of a GFP-BSD fusion protein in Babesia bovis merozoites[J]. Int J Parasitol, 2009, 39(3):289-297. |
[60] | HAKIMI H, ISHIZAKI T, KEGAWA Y, et al. Genome editing of Babesia bovis using the CRISPR/Cas9 system[J]. mSphere, 2019, 4(3):e00109-19. |
[61] | HOWE D K, MERCIER C, MESSINA M, et al. Expression of Toxoplasma gondii genes in the closely-related apicomplexan parasite Neospora caninum[J]. Mol Biochem Parasitol, 1997, 86(1):29-36. |
[62] | BECKERS C J M, WAKEFIELD T, JOINER K A. The expression of Toxoplasma proteins in Neospora caninum and the identification of a gene encoding a novel rhoptry protein[J]. Mol Biochem Parasitol, 1997, 89(2):209-223. |
[63] | ARRANZ-SOLÍS D, REGIDOR-CERRILLO J, LOURIDO S, et al. Toxoplasma CRISPR/Cas9 constructs are functional for gene disruption in Neospora caninum[J]. Int J Parasitol, 2018, 48(8):597-600. |
[64] | CHENG P P, ZHANG Z H, YANG F Y, et al. FnCas12a/crRNA-mediated genome editing in Eimeria tenella[J]. Front Genet, 2021, 12:738746. |
[65] | MOHSIN M, LI Y G, ZHANG X, et al. Development of CRISPR-CAS9 based RNA drugs against Eimeria tenella infection[J]. Genomics, 2021, 113(6):4126-4135. |
[66] | LANDER N, LI Z H, NIYOGI S, et al. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment[J]. mBio, 2015, 6(4):e01012. |
[67] | BENEKE T, MADDEN R, MAKIN L, et al. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids[J]. R Soc Open Sci, 2017, 4(5):170095. |
[68] | BENEKE T, DEMAY F, HOOKWAY E, et al. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections[J]. PLoS Pathog, 2019, 15(6):e1007828. |
[69] | CHIURILLO M A, LANDER N. The long and winding road of reverse genetics in Trypanosoma cruzi[J]. Microb Cell, 2021, 8(9):203-207. |
[70] | ZHANG W W, LYPACZEWSKI P, MATLASHEWSKI G. Optimized CRISPR-Cas9 genome editing for Leishmania and its use to target a multigene family, induce chromosomal translocation, and study DNA break repair mechanisms[J]. mSphere, 2017, 2(1):e00340-16. |
[71] | SHRIVASTAVA R, TUPPERWAR N, DRORY-RETWITZER M, et al. Deletion of a single LeishIF4E-3 allele by the CRISPR-Cas9 system alters cell morphology and infectivity of Leishmania[J]. mSphere, 2019, 4(5):e00450-19. |
[72] | BAKER N, CATTA-PRETA C M C, NEISH R, et al. Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival[J]. Nat Commun, 2021, 12(1):1244. |
[73] | PAWLOWIC M C, VINAYAK S, SATERIALE A, et al. Generating and maintaining transgenic Cryptosporidium parvum parasites[J]. Curr Protoc Microbiol, 2017, 46:20B.2.1-20B.2.32. |
[74] | VINAYAK S, JUMANI R S, MILLER P, et al. Bicyclic azetidines kill the diarrheal pathogen Cryptosporidium in mice by inhibiting parasite phenylalanyl-tRNA synthetase[J]. Sci Transl Med, 2020, 12(563):eaba8412. |
[75] | CHOUDHARY H H, NAVA M G, GARTLAN B E, et al. A conditional protein degradation system to study essential gene function in Cryptosporidium parvum[J]. mBio, 2020, 11(4):e01231-20. |
[76] | XU R, FENG Y Y, XIAO L H, et al. Insulinase-like protease 1 contributes to macrogamont formation in Cryptosporidium parvum[J]. mBio, 2021, 12(2):e03405-20. |
[77] | HASAN M M, STEBBINS E E, CHOY R K M, et al. Spontaneous selection of Cryptosporidium drug resistance in a calf model of infection[J]. Antimicrob Agents Chemother, 2021, 65(6):e00023-21. |
[78] | NISHIKAWA Y, SHIMODA N, FEREIG R M, et al. Neospora caninum dense granule protein 7 regulates the pathogenesis of Neosporosis by modulating host immune response[J]. Appl Environ Microbiol, 2018, 84(18):e01350-18. |
[79] | MINEO T W P, CHERN J H, THIND A C, et al. Efficient gene knockout and knockdown systems in Neospora caninum enable rapid discovery and functional assessment of novel proteins[J]. mSphere, 2022, 7(1):e0089621. |
[1] | 邱梅玉, 张雪梅, 张宁, 刘明军. 引导编辑技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(4): 1345-1355. |
[2] | 王家丽, 杨帆, 邵文华, 黄梦瑶, 曹伟军, 蒲秀瑛, 张伟, 郑海学. Tollip敲除猪肾细胞系的构建[J]. 畜牧兽医学报, 2024, 55(4): 1810-1818. |
[3] | 张晨俭, 李隐侠, 丁强, 刘伟佳, 王慧利, 何南, 吴家顺, 曹少先. CRISPR/Cas9技术高效制备山羊SOCS2基因编辑胚胎[J]. 畜牧兽医学报, 2024, 55(1): 129-141. |
[4] | 杨富升, 古小彬. 近十年PCR技术在寄生虫病诊断中的应用[J]. 畜牧兽医学报, 2023, 54(8): 3183-3194. |
[5] | 林梦娟, 高沙沙, 赵星辰, 仲宇欣, 吴俊, 张军忍, 郭大伟. 常山酮抗原虫作用研究进展[J]. 畜牧兽医学报, 2023, 54(3): 924-933. |
[6] | 费晓钰, 石超群, 刘雪明, 苏峰, 姜运良. CRISPR/Cas9系统介导的猪MRC1修饰基因降低PCV2复制的研究[J]. 畜牧兽医学报, 2023, 54(3): 934-946. |
[7] | 刘铃, 王丹丹, 崔凯, 马月辉, 蒋琳. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54(2): 434-442. |
[8] | 陈俊贞, 权冉, 付强, 葛丽娟, 袁圆圆, 张成远, 李建林, 史慧君. 热休克蛋白HSP90B1影响牛病毒性腹泻病毒复制的研究[J]. 畜牧兽医学报, 2023, 54(2): 683-693. |
[9] | 张硕, 周雨潇, 吴海波, 索伦. 长效CRISPR/Cas9基因编辑结局的动态追踪研究[J]. 畜牧兽医学报, 2023, 54(10): 4196-4208. |
[10] | 郑雨昕, 张义伟, 姜宁. 恶性疟原虫ApiAP2蛋白质家族研究进展[J]. 畜牧兽医学报, 2022, 53(5): 1354-1363. |
[11] | 赵为民, 王慧利, 曹少先, 郭日红, 王泽平, 陈哲, 徐奎, 付言峰, 李碧侠, 任守文, 程金花. 猪CD163基因的单碱基编辑研究[J]. 畜牧兽医学报, 2022, 53(4): 1041-1050. |
[12] | 李兆龙, 张惠芳, 丰志华, 方舟. 携带CRISPR/Cas9的重组腺联病毒对伪狂犬病病毒感染小鼠的治疗效应[J]. 畜牧兽医学报, 2022, 53(3): 834-846. |
[13] | 邹惠影, 李俊良, 朱化彬. 引导编辑系统的研究与应用进展[J]. 畜牧兽医学报, 2022, 53(11): 3721-3730. |
[14] | 张义伟, 苏紫薇, 李其龙, 陈冉, 姜宁. 伯氏疟原虫ANKA株感染小鼠的T细胞、NK细胞及细胞因子变化[J]. 畜牧兽医学报, 2022, 53(11): 4008-4018. |
[15] | 罗俊, 刘金玲, 郑鹿平, 罗琴, 滕蔓. 家禽疱疹病毒CRISPR/Cas9基因编辑最新研究进展[J]. 畜牧兽医学报, 2022, 53(10): 3335-3344. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||