畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (3): 1006-1018.doi: 10.11843/j.issn.0366-6964.2025.03.004
收稿日期:
2024-05-30
出版日期:
2025-03-23
发布日期:
2025-04-02
通讯作者:
张俊
E-mail:wxinyi@nwafu.edu.cn;jzhang0701@nwafu.edu.cn
作者简介:
王馨怡(2003-),女,陕西蓝田人,主要从事反刍动物营养研究,E-mail: wxinyi@nwafu.edu.cn
基金资助:
WANG Xinyi1(), YAO Junhu1, ZHANG Xia2, ZHANG Jun1,3,*(
)
Received:
2024-05-30
Online:
2025-03-23
Published:
2025-04-02
Contact:
ZHANG Jun
E-mail:wxinyi@nwafu.edu.cn;jzhang0701@nwafu.edu.cn
摘要:
胆汁酸是胆固醇代谢的重要产物,分泌到肠道中的胆汁酸可通过杀菌抗炎和信号传导等发挥改善肠道结构形态、维护肠道屏障完整、调节肠道微生物区系平衡以及增强黏膜免疫等功能,利于肠道内环境稳态,促进动物正常生长和提高生产性能。本文围绕胆汁酸的功能,系统综述其对动物肠道形态、黏液屏障、微生物屏障和黏膜免疫的调节作用及机制,以期为利用胆汁酸调节肠道健康提供理论依据。
中图分类号:
王馨怡, 姚军虎, 张霞, 张俊. 胆汁酸调控动物肠道健康的作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1006-1018.
WANG Xinyi, YAO Junhu, ZHANG Xia, ZHANG Jun. Advances in Effect and Mechanism of Bile Acids Regulating Animal Intestinal Health[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1006-1018.
表 2
微生物对胆汁酸的转化作用"
转化作用/转化酶 Modification/Enzymes | 微生物生产者 Microbial producers | 转化及位点 Reactions and sites | 产物 Products | 参考文献 Reference |
水解作用/胆盐水解酶 Hydrolysis/Bile salt hydrolase | 拟杆菌门、厚壁菌门肠球菌、放线菌门 | -CONH转化COOH C24/RS | 非共轭胆汁酸 | [ |
脱羟基作用/胆酰辅酶 Dehydroxylation/Baioperonproteins | 厚壁菌门梭状芽孢杆菌属 | -OH转化-H C7 | 脱氧胆酸石胆酸 | [ |
氧化及差向异构化/羟基类固醇脱氢酶 Oxidation and Epimerization/ Hydroxysteroid dehydrogenase | 拟杆菌门、厚壁菌门变形菌门、放线菌门 | -OH转化=O和=O 转化-OH C3, C7, C12 | 熊脱氧胆汁酸胆汁酸含氧衍生物 | [ |
脱硫作用/硫酸酯酶 Desulfation/Sulfatase | 梭菌、消化球菌属、梭菌属变形菌门、假单胞菌属 | -SO3H2转化-OH C3 | 石胆酸、胆酸鹅脱氧胆酸 | [ |
酯化作用 Esterification | 拟杆菌门 | -OH转化-COOR C3和C24/RS | 3-乙酯 24-羰基酯 | [ |
酰胺化作用 Amidation | 拟杆菌、双歧杆菌肠球菌、肠杆菌 | -COOH转化-CONH-R C24/RS | 氨基酸偶联胆汁酸 | [ |
1 |
CHIANG J , FERRELL J M . Bile acids as metabolic regulators and nutrient sensors[J]. Annu Rev Nutr, 2019, 39, 175- 200.
doi: 10.1146/annurev-nutr-082018-124344 |
2 | ZHANG J , ZHANG X , LIU H , et al. Altered bile acid and correlations with gut microbiome in transition dairy cows with different glucose and lipid metabolism status[J]. J Dairy Sci, 2024, |
3 |
PABOIS O , LORENZ C D , HARVEY R D , et al. Molecular insights into the behaviour of bile salts at interfaces: a key to their role in lipid digestion[J]. J Colloid Interface Sci, 2019, 556, 266- 277.
doi: 10.1016/j.jcis.2019.08.010 |
4 | URDANETA V , CASADESUS J . Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts[J]. Front Med (Lausanne), 2017, 4, 163. |
5 |
FIORUCCI S , DISTRUTTI E , CARINO A , et al. Bile acids and their receptors in metabolic disorders[J]. Prog Lipid Res, 2021, 82, 101094.
doi: 10.1016/j.plipres.2021.101094 |
6 |
SHI L , JIN L , HUANG W . Bile acids, intestinal barrier dysfunction, and related diseases[J]. Cells, 2023, 12 (14): 1888.
doi: 10.3390/cells12141888 |
7 |
LI T , CHIANG J . Bile acids as metabolic regulators: an update[J]. Curr Opin Gastroenterol, 2023, 39 (3): 249- 255.
doi: 10.1097/MOG.0000000000000934 |
8 |
MACIERZANKA A , TORCELLO-GOMEZ A , JUNGNICKEL C , et al. Bile salts in digestion and transport of lipids[J]. Adv Colloid Interface Sci, 2019, 274, 102045.
doi: 10.1016/j.cis.2019.102045 |
9 |
YAN Y , LIU Y , ZENG C , et al. Effect of digestion on ursolic acid self-stabilized water-in-oil emulsion: Role of bile salts[J]. Foods, 2023, 12 (19): 3657.
doi: 10.3390/foods12193657 |
10 |
MULLISH B H , MCDONALD J , PECHLIVANIS A , et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection[J]. Gut, 2019, 68 (10): 1791- 1800.
doi: 10.1136/gutjnl-2018-317842 |
11 |
ZHENG X , CHEN T , JIANG R , et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism[J]. Cell Metab, 2021, 33 (4): 791- 803.
doi: 10.1016/j.cmet.2020.11.017 |
12 |
BOUZAS C , PASTOR R , GARCIA S , et al. Comparative effects of glucagon-like peptide-1 receptors agonists, 4-dipeptidyl peptidase inhibitors, and metformin on metabolic syndrome[J]. Biomed Pharmacother, 2023, 161, 114561.
doi: 10.1016/j.biopha.2023.114561 |
13 |
VELAZQUEZ-VILLEGAS L A , PERINO A , LEMOS V , et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue[J]. Nat Commun, 2018, 9 (1): 245.
doi: 10.1038/s41467-017-02068-0 |
14 |
KRISHNAMURTHY H K , PEREIRA M , BOSCO J , et al. Gut commensals and their metabolites in health and disease[J]. Front Microbiol, 2023, 14, 1244293.
doi: 10.3389/fmicb.2023.1244293 |
15 |
VELAZQUEZ-VILLEGAS L A , PERINO A , LEMOS V , et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue[J]. Nat Commun, 2018, 9 (1): 245.
doi: 10.1038/s41467-017-02068-0 |
16 |
YE C , WU C , LI Y , et al. Traditional medicine Xianglian pill suppresses high-fat diet-related colorectal cancer via inactivating TLR4/MyD88 by remodeling gut microbiota composition and bile acid metabolism[J]. J Ethnopharmacol, 2024, 333, 118411.
doi: 10.1016/j.jep.2024.118411 |
17 |
WANG Q , SHEN W , SHAO W , et al. Berberine alleviates cholesterol and bile acid metabolism disorders induced by high cholesterol diet in mice[J]. Biochem Biophys Res Commun, 2024, 719, 150088.
doi: 10.1016/j.bbrc.2024.150088 |
18 | BAI X, DUAN Z, DENG J, et al. Ginsenoside Rh4 inhibits colorectal cancer via the modulation of gut microbiota-mediated bile acid metabolism[J/OL]. J Adv Res, (2024-07-03)[2024-05-30] https://www.sciencedirect.com/science/article/pii/S2090123224002650. |
19 | SUN B , XIE W , LI X , et al. Inulin enhanced rifaximin-inhibited colon cancer pulmonary metastasis by flora-regulated bile acid pathway[J]. Int J Biol Macromol, 2024, 275 (Pt 1): 133582. |
20 | ZHU Y , SUN G , CIDAN Y , et al. Comprehensive multi-omic evaluation of the microbiota and metabolites in the colons of diverse swine breeds[J]. Animals (Basel), 2024, 14 (8): 1221. |
21 | ROWE J C , WINSTON J A . Collaborative metabolism: Gut microbes play a key role in canine and feline bile acid metabolism[J]. Vet Sci, 2024, 11 (2): 94. |
22 |
YOUSEFI J , TAHERPOUR K , GHASEMI H A , et al. RETRACTED ARTICLE: Effects of emulsifier, betaine and L-carnitine on growth performance, immune response, gut morphology and nutrient digestibility in broiler chickens exposed to cyclic heat stress[J]. Br Poult Sci, 2023, 64 (4): iii- xvi.
doi: 10.1080/00071668.2022.2124100 |
23 |
ZAHID M U , KHALIQUE A , QAISRANI S N , et al. The effect of Acacia nilotica bark extract on growth performance, carcass characteristics, immune response, and intestinal morphology in broilers as an alternative to antibiotic growth promoter[J]. Anim Biosci, 2023, 36 (7): 1059- 1066.
doi: 10.5713/ab.22.0284 |
24 | GU Y F , CHEN Y P , JIN R , et al. Dietary chitooligosaccharide supplementation alleviates intestinal barrier damage, and oxidative and immunological stress in lipopolysaccharide-challenged laying hens[J]. Poult Sci, 2022, 101 (4): 101701. |
25 |
MARTEL J , CHANG S H , KO Y F , et al. Gut barrier disruption and chronic disease[J]. Trends Endocrinol Metab, 2022, 33 (4): 247- 265.
doi: 10.1016/j.tem.2022.01.002 |
26 |
JAIN A K , STOLL B , BURRIN D G , et al. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302 (2): G218- G224.
doi: 10.1152/ajpgi.00280.2011 |
27 |
PERRONE E E , CHEN C , LONGSHORE S W , et al. Dietary bile acid supplementation improves intestinal integrity and survival in a murine model[J]. J Pediatr Surg, 2010, 45 (6): 1256- 1265.
doi: 10.1016/j.jpedsurg.2010.02.094 |
28 |
YANG J , VAN DIJK T H , KOEHORST M , et al. Intestinal farnesoid X receptor modulates duodenal surface area but does not control glucose absorption in mice[J]. Int J Mol Sci, 2023, 24 (4): 4132.
doi: 10.3390/ijms24044132 |
29 |
SONG J , LI Q , LI P , et al. The effects of inulin on the mucosal morphology and immune status of specific pathogen-free chickens[J]. Poult Sci, 2018, 97 (11): 3938- 3946.
doi: 10.3382/ps/pey260 |
30 |
RAIMONDI F , SANTORO P , BARONE M V , et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294 (4): G906- G913.
doi: 10.1152/ajpgi.00043.2007 |
31 |
YAO B , HE J , YIN X , et al. The protective effect of lithocholic acid on the intestinal epithelial barrier is mediated by the vitamin D receptor via a SIRT1/Nrf2 and NF-kappaB dependent mechanism in Caco-2 cells[J]. Toxicol Lett, 2019, 316, 109- 118.
doi: 10.1016/j.toxlet.2019.08.024 |
32 |
BUCKLEY A , TURNER J R . Cell biology of tight junction barrier regulation and mucosal disease[J]. Cold Spring Harb Perspect Biol, 2018, 10 (1): a029314.
doi: 10.1101/cshperspect.a029314 |
33 |
SONG M , YE J , ZHANG F , et al. Chenodeoxycholic acid (CDCA) protects against the lipopolysaccharide-induced impairment of the intestinal epithelial barrier function via the FXR-MLCK pathway[J]. J Agric Food Chem, 2019, 67 (32): 8868- 8874.
doi: 10.1021/acs.jafc.9b03173 |
34 |
SONG M , ZHANG F , FU Y , et al. Tauroursodeoxycholic acid (TUDCA) improves intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets[J]. J Anim Sci Biotechnol, 2022, 13 (1): 73.
doi: 10.1186/s40104-022-00713-3 |
35 |
RUAN D , WU S , FOUAD A M , et al. Curcumin alleviates LPS-induced intestinal homeostatic imbalance through reshaping gut microbiota structure and regulating group 3 innate lymphoid cells in chickens[J]. Food Funct, 2022, 13 (22): 11811- 11824.
doi: 10.1039/D2FO02598A |
36 |
DIEGO-CABERO N , MEREU A , MENOYO D , et al. Bile acid mediated effects on gut integrity and performance of early-weaned piglets[J]. BMC Vet Res, 2015, 11, 111.
doi: 10.1186/s12917-015-0425-6 |
37 |
SONG M , ZHANG F , CHEN L , et al. Dietary chenodeoxycholic acid improves growth performance and intestinal health by altering serum metabolic profiles and gut bacteria in weaned piglets[J]. Anim Nutr, 2021, 7 (2): 365- 375.
doi: 10.1016/j.aninu.2020.07.011 |
38 | VAN DER LUGT B , VOS M , GROOTTE B M , et al. The effects of sulfated secondary bile acids on intestinal barrier function and immune response in an inflammatory in vitro human intestinal model[J]. Heliyon, 2022, 8 (2): e8883. |
39 | LEE H Y , CRAWLEY S , HOKARI R , et al. Bile acid regulates MUC2 transcription in colon cancer cells via positive EGFR/PKC/Ras/ERK/CREB, PI3K/Akt/IkappaB/NF-kappaB and p38/MSK1/CREB pathways and negative JNK/c-Jun/AP-1 pathway[J]. Int J Oncol, 2010, 36 (4): 941- 953. |
40 |
SANTOS G M , ISMAEL S , MORAIS J , et al. Intestinal alkaline phosphatase: A review of this enzyme role in the intestinal barrier function[J]. Microorganisms, 2022, 10 (4): 746.
doi: 10.3390/microorganisms10040746 |
41 |
GUPTA U , DEY P . Rise of the guardians: Gut microbial maneuvers in bacterial infections[J]. Life Sci, 2023, 330, 121993.
doi: 10.1016/j.lfs.2023.121993 |
42 |
IANCU M A , PROFIR M , ROSU O A , et al. Revisiting the intestinal microbiome and its role in diarrhea and constipation[J]. Microorganisms, 2023, 11 (9): 2177.
doi: 10.3390/microorganisms11092177 |
43 |
CAI J , SUN L , GONZALEZ F J . Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis[J]. Cell Host Microbe, 2022, 30 (3): 289- 300.
doi: 10.1016/j.chom.2022.02.004 |
44 |
CHIANG J Y . Bile acid metabolism and signaling[J]. Compr Physiol, 2013, 3 (3): 1191- 1212.
doi: 10.1002/j.2040-4603.2013.tb00517.x |
45 |
MOHANTY I , MANNOCHIO-RUSSO H , SCHWEER J V , et al. The underappreciated diversity of bile acid modifications[J]. Cell, 2024, 187 (7): 1801- 1818.
doi: 10.1016/j.cell.2024.02.019 |
46 |
WANG Y Z , MEI P C , BAI P R , et al. A strategy for screening and identification of new amino acid-conjugated bile acids with high coverage by liquid chromatography-mass spectrometry[J]. Anal Chim Acta, 2023, 1239, 340691.
doi: 10.1016/j.aca.2022.340691 |
47 | KISTHARDT S C , THANISSERY R , PIKE C M , et al. The microbial-derived bile acid lithocholate and its epimers inhibit Clostridioides difficile growth and pathogenicity while sparing members of the gut microbiota[J]. J Bacteriol, 2023, 205 (9): e18023. |
48 |
DAHIYA M , JOVEL J , MONAGHAN T , et al. In silico analysis of changes in predicted metabolic capabilities of intestinal microbiota after fecal microbial transplantation for treatment of recurrent Clostridioides difficile Infection[J]. Microorganisms, 2023, 11 (4): 1078.
doi: 10.3390/microorganisms11041078 |
49 |
DODEN H L , RIDLON J M . Microbial hydroxysteroid dehydrogenases: From alpha to omega[J]. Microorganisms, 2021, 9 (3): 469.
doi: 10.3390/microorganisms9030469 |
50 |
ZHU Q F , WANG Y Z , AN N , et al. Alternating dual-collision energy scanning mass spectrometry approach: Discovery of novel microbial bile-acid conjugates[J]. Anal Chem, 2022, 94 (5): 2655- 2664.
doi: 10.1021/acs.analchem.1c05272 |
51 |
FU T , HUAN T , RAHMAN G , et al. Paired microbiome and metabolome analyses associate bile acid changes with colorectal cancer progression[J]. Cell Rep, 2023, 42 (8): 112997.
doi: 10.1016/j.celrep.2023.112997 |
52 |
PAIK D , YAO L , ZHANG Y , et al. Human gut bacteria produce Tau(Eta)17-modulating bile acid metabolites[J]. Nature, 2022, 603 (7903): 907- 912.
doi: 10.1038/s41586-022-04480-z |
53 |
ZHANG X , YUN Y , LAI Z , et al. Supplemental Clostridium butyricum modulates lipid metabolism by reshaping the gut microbiota composition and bile acid profile in IUGR suckling piglets[J]. J Anim Sci Biotechnol, 2023, 14 (1): 36.
doi: 10.1186/s40104-023-00828-1 |
54 |
ELKINS C A , MOSER S A , SAVAGE D C . Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species[J]. Microbiology (Reading), 2001, 147 (12): 3403- 3412.
doi: 10.1099/00221287-147-12-3403 |
55 |
TANAKA H , HASHIBA H , KOK J , et al. Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization[J]. Appl Environ Microbiol, 2000, 66 (6): 2502- 2512.
doi: 10.1128/AEM.66.6.2502-2512.2000 |
56 |
WIJAYA A , HERMANN A , ABRIOUEL H , et al. Cloning of the bile salt hydrolase (bsh) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of bsh genes in food enterococci[J]. J Food Prot, 2004, 67 (12): 2772- 2778.
doi: 10.4315/0362-028X-67.12.2772 |
57 |
KITAHARA M , TAKAMINE F , IMAMURA T , et al. Assignment of Eubacterium sp, VPI 12708 and related strains with high bile acid 7alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces[J]. Int J Syst Evol Microbiol, 2000, 50 (3): 971- 978.
doi: 10.1099/00207713-50-3-971 |
58 |
KITAHARA M , TAKAMINE F , IMAMURA T , et al. Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7alpha-dehydroxylating activity[J]. Int J Syst Evol Microbiol, 2001, 51 (1): 39- 44.
doi: 10.1099/00207713-51-1-39 |
59 |
BURNS D A , HEAP J T , MINTON N P . SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate[J]. J Bacteriol, 2010, 192 (3): 657- 664.
doi: 10.1128/JB.01209-09 |
60 | HARRIS S C , DEVENDRAN S , MENDEZ-GARCIA C , et al. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243(T)[J]. Gut Microbes, 2018, 9 (6): 523- 539. |
61 |
EDENHARDER R , PFUTZNER A , HAMMANN R . Characterization of NAD-dependent 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and of NADP-dependent 7 beta-hydroxysteroid dehydrogenase from Peptostreptococcus productus[J]. Biochim Biophys Acta, 1989, 1004 (2): 230- 238.
doi: 10.1016/0005-2760(89)90272-5 |
62 | DODEN H , SALLAM L A , DEVENDRAN S , et al. Metabolism of Oxo-bile acids and characterization of recombinant 12alpha-hydroxysteroid dehydrogenases from bile acid 7alpha-dehydroxylating human gut bacteria[J]. Appl Environ Microbiol, 2018, 84 (10): e00235- 18. |
63 |
WANG P , CHEN Q , YUAN P , et al. Gut microbiota involved in desulfation of sulfated progesterone metabolites: A potential regulation pathway of maternal bile acid homeostasis during pregnancy[J]. Front Microbiol, 2022, 13, 1023623.
doi: 10.3389/fmicb.2022.1023623 |
64 |
JIANG M , XU M , REN S , et al. Transgenic overexpression of steroid sulfatase alleviates cholestasis[J]. Liver Res, 2017, 1 (1): 63- 69.
doi: 10.1016/j.livres.2017.03.001 |
65 |
ROBBEN J , JANSSEN G , MERCKX R , et al. Formation of delta 2- and delta 3-cholenoic acids from bile acid 3-sulfates by a human intestinal Fusobacterium strain[J]. Appl Environ Microbiol, 1989, 55 (11): 2954- 2959.
doi: 10.1128/aem.55.11.2954-2959.1989 |
66 | BURCHAT N , VIDOLA J , PFREUNDSCHUH S , et al. Intestinal stearoyl-CoA desaturase-1 regulates energy balance via alterations in bile acid homeostasis[J]. bioRxiv, 2024, 12, 575400. |
67 |
SONG X , SUN X , OH S F , et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis[J]. Nature, 2020, 577 (7790): 410- 415.
doi: 10.1038/s41586-019-1865-0 |
68 |
QUINN R A , MELNIK A V , VRBANAC A , et al. Global chemical effects of the microbiome include new bile-acid conjugations[J]. Nature, 2020, 579 (7797): 123- 129.
doi: 10.1038/s41586-020-2047-9 |
69 |
DEVLIN A S , FISCHBACH M A . A biosynthetic pathway for a prominent class of microbiota-derived bile acids[J]. Nat Chem Biol, 2015, 11 (9): 685- 690.
doi: 10.1038/nchembio.1864 |
70 |
WATANABE M , FUKIYA S , YOKOTA A . Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humans and rodents[J]. J Lipid Res, 2017, 58 (6): 1143- 1152.
doi: 10.1194/jlr.M075143 |
71 |
INAGAKI T , MOSCHETTA A , LEE Y K , et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor[J]. Proc Natl Acad Sci U S A, 2006, 103 (10): 3920- 3925.
doi: 10.1073/pnas.0509592103 |
72 |
GADALETA R M , GARCIA-IRIGOYEN O , CARIELLO M , et al. Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor[J]. EBioMedicine, 2020, 54, 102719.
doi: 10.1016/j.ebiom.2020.102719 |
73 |
PI Y , WU Y , ZHANG X , et al. Gut microbiota-derived ursodeoxycholic acid alleviates low birth weight-induced colonic inflammation by enhancing M2 macrophage polarization[J]. Microbiome, 2023, 11 (1): 19.
doi: 10.1186/s40168-022-01458-x |
74 |
WANG S , DONG W , LIU L , et al. Interplay between bile acids and the gut microbiota promotes intestinal carcinogenesis[J]. Mol Carcinog, 2019, 58 (7): 1155- 1167.
doi: 10.1002/mc.22999 |
75 |
XU M , CEN M , SHEN Y , et al. Deoxycholic Acid-Induced Gut Dysbiosis Disrupts Bile Acid Enterohepatic Circulation and Promotes Intestinal Inflammation[J]. Dig Dis Sci, 2021, 66 (2): 568- 576.
doi: 10.1007/s10620-020-06208-3 |
76 |
YIN Q , YU J , LI J , et al. Enhancing milk quality and modulating rectal microbiota of dairy goats in starch-rich diet: the role of bile acid supplementation[J]. J Anim Sci Biotechnol, 2024, 15 (1): 7.
doi: 10.1186/s40104-023-00957-7 |
77 |
YANG B , HUANG S , ZHAO G , et al. Dietary supplementation of porcine bile acids improves laying performance, serum lipid metabolism and cecal microbiota in late-phase laying hens[J]. Anim Nutr, 2022, 11, 283- 292.
doi: 10.1016/j.aninu.2022.08.003 |
78 |
GONG T , LIU L , JIANG W , et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases[J]. Nat Rev Immunol, 2020, 20 (2): 95- 112.
doi: 10.1038/s41577-019-0215-7 |
79 |
CHE Y , XU W , DING C , et al. Bile acids target mitofusin 2 to differentially regulate innate immunity in physiological versus cholestatic conditions[J]. Cell Rep, 2023, 42 (1): 112011.
doi: 10.1016/j.celrep.2023.112011 |
80 |
WANG Y , YU Y , LI L , et al. Bile acid-dependent transcription factors and chromatin accessibility determine regional heterogeneity of intestinal antimicrobial peptides[J]. Nat Commun, 2023, 14 (1): 5093.
doi: 10.1038/s41467-023-40565-7 |
81 | TREMBLAY S , ROMAIN G , ROUX M , et al. Bile acid administration elicits an intestinal antimicrobial program and reduces the bacterial burden in two mouse models of enteric infection[J]. Infect Immun, 2017, 85 (6): e00942- 16. |
82 |
LIU T C , KERN J T , JAIN U , et al. Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation[J]. Cell Host Microbe, 2021, 29 (6): 988- 1001.
doi: 10.1016/j.chom.2021.04.004 |
83 | 廖楚瑶, 李思奇, 张尊建, 等. 肠道疾病中胆汁酸及其受体对NLRP3炎症小体调控作用的研究进展[J]. 药学进展, 2022, 46 (3): 218- 225. |
LIAO C Y , LI S Q , ZHANG Z J , et al. Research progress in the regulatory of bile acids and bile acids-activated receptors on NLRP3 inflammasome in intestinal diseases[J]. Advances in Pharmacy, 2022, 46 (3): 218- 225. | |
84 | 聂源. 基于肠道菌-肝胆汁酸轴探究熊果酸抑制肝纤维化的作用机制[D]. 南昌: 南昌大学, 2022. |
NIE Y. Exploring the mechanism of ursolic acid in inhibiting liver fibrosis based on the intestinal microbiota-hepatobiliac axis[D]. Nanchang: Nanchang University, 2022. (in Chinese) | |
85 |
HANG S , PAIK D , YAO L , et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation[J]. Nature, 2019, 576 (7785): 143- 148.
doi: 10.1038/s41586-019-1785-z |
86 |
DONG X , QI M , CAI C , et al. Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression[J]. JCI Insight, 2024, 9 (2): e170428.
doi: 10.1172/jci.insight.170428 |
87 |
XING J H , NIU T M , ZOU B S , et al. Gut microbiota-derived LCA mediates the protective effect of PEDV infection in piglets[J]. Microbiome, 2024, 12 (1): 20.
doi: 10.1186/s40168-023-01734-4 |
88 |
PENG X R , FENG L , JIANG W D , et al. Supplementation exogenous bile acid improved growth and intestinal immune function associated with NF-kappaB and TOR signalling pathways in on-growing grass carp (Ctenopharyngodon idella): Enhancement the effect of protein-sparing by dietary lipid[J]. Fish Shellfish Immunol, 2019, 92, 552- 569.
doi: 10.1016/j.fsi.2019.06.047 |
89 |
KUBOTA H , ISHIZAWA M , KODAMA M , et al. Vitamin D receptor mediates attenuating fffect of lithocholic acid on dextran sulfate sodium induced colitis in mice[J]. Int J Mol Sci, 2023, 24 (4): 3517.
doi: 10.3390/ijms24043517 |
90 |
LEE G R . The balance of Th17 versus treg cells in autoimmunity[J]. Int J Mol Sci, 2018, 19 (3): 730.
doi: 10.3390/ijms19030730 |
[1] | 白国松, 滕春然, 王俊洪, 钟儒清, 马腾, 陈亮, 张宏福. 酶解玉米蛋白粉替代鱼粉和豆粕对断奶仔猪生长性能和肠道健康的影响[J]. 畜牧兽医学报, 2025, 56(2): 953-968. |
[2] | 于秀菊, 胡燕姣, 刘佳悦, 王海东, 朱芷葳, 范阔海, 王蓉蓉, 段承昊, 石佳炜, 杨丽华. 一株鸡源唾液乳杆菌的分离鉴定及其对育雏早期蛋鸡肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(9): 4161-4171. |
[3] | 陈雨, 修子清, MGENIMusa, 施屹, 张俊秋, 蒋小雨, 吕景智, 孙雅望. 蒲公英与木通提取物对断奶仔兔生长性能、肠道健康和药物转运体基因相对表达量的影响[J]. 畜牧兽医学报, 2024, 55(8): 3725-3739. |
[4] | 李亚霖, 甄士博, 曹林, 孙逢雪, 王利华. 植物乳杆菌及其后生元对育成期母貂生长性能、免疫功能及肠道健康的影响[J]. 畜牧兽医学报, 2024, 55(6): 2530-2539. |
[5] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[6] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
[7] | 牛晓雨, 邢媛媛, 李大彪. 植物活性成分对动物肠道屏障功能的调控作用及其机制[J]. 畜牧兽医学报, 2024, 55(4): 1467-1477. |
[8] | 李铁, 齐梦迪, 张克英, 王建萍, 白世平, 曾秋凤, 彭焕伟, 玄月, 吕莉, 丁雪梅. 育雏育成期饲粮添加益生菌对蛋鸡生长性能、血清指标、肠道健康及后续生产性能的影响[J]. 畜牧兽医学报, 2024, 55(3): 1062-1076. |
[9] | 张道亮, 丁红研, 王留幸, 邰文俊, 孔昊, 赵畅, 冯士彬, 王希春, 薛艳锋, 吴金节, 李玉. 瘤胃酸中毒对山羊胃肠道功能、形态和菌群的影响[J]. 畜牧兽医学报, 2024, 55(10): 4760-4772. |
[10] | 牟湘钰, 徐云若, 胡静怡, 周欣妍, 朱勇文. 家禽支链氨基酸营养需要研究进展[J]. 畜牧兽医学报, 2024, 55(1): 31-38. |
[11] | 罗菊, 毛嘉妮, 夏银钊, 杨震国. circRNAs对哺乳动物肠道屏障功能的调控作用[J]. 畜牧兽医学报, 2023, 54(11): 4439-4448. |
[12] | 武殿阁, 夏苗, 颜安, 江皓天, 樊佳奇, 周思源, 韦旭, 刘树栋, 陈宝江. 香芹酚对肉兔生长性能、养分表观消化率及肠道形态、短链脂肪酸含量和菌群相关指标的影响[J]. 畜牧兽医学报, 2023, 54(10): 4233-4246. |
[13] | 袁铜, 黄靓, 杨琳, 王文策, 朱勇文. 肠道菌群及其代谢产物调节动物线粒体功能的研究进展[J]. 畜牧兽医学报, 2023, 54(1): 48-57. |
[14] | 张德明, 黄嘉訸, 李劲树, 郑红梅, 王少英, 杨公社, 史新娥. 猪肠道微生物及其代谢产物与肠道屏障研究进展[J]. 畜牧兽医学报, 2022, 53(5): 1334-1344. |
[15] | 杜雪儿, 王菁, 姚军虎, 曹阳春. 胆汁酸肠肝循环转运蛋白及FXR对其的调控机制[J]. 畜牧兽医学报, 2021, 52(10): 2721-2739. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||